The algorithmicx package®

Szész Janos
szaszjanosQusers.sourceforge.net

December 17, 2003

Abstract
The algorithmicx package provides many possibilities to customize
the layout of algorithms. You can use one of the predefined layouts (for
pseudocode, pascal and c look), with or without modifications, or you
can define a completely new layout for your specific needs.

Contents
1 Introduction

2 The predefined layouts
2.1 The algpseudocode layout
2.1.1 Theforblock
2.1.2 The while block
2.1.3 Therepeatblock
2.14 Theif block oo
2.1.5 The procedure block
2.1.6 The function block,
2.1.7 Theloop block
2.1.8 Require and Ensure
2.1.9 Placing comments in sources
2.1.10 Options o o
2.1.11 Changing command names
2.2 The algpascal layout
2.2.1 The Begin... End block
222 TheForloop
2.23 The Whileloop
2.24 The Repeat... Until block
225 ThelIf command
2.2.6 The Procedure command
2.2.7 The Function command
2.3 Thealgclayout. L.

*This is the documentation for the version 1.0 of the package.

N

© 000000~ Utut Wi

3 Custom algorithmic blocks 12

3.1 Blocksandloops 12
3.2 algblock 12
3.3 algeblock 13
34 algloop 14
3.5 algcloop 14
3.6 algsetblock. 15
3.7 algsetcblock Lo 16
4 Bugs 17

1 Introduction

All this has begun in my last year at the university. The only thing that I knew
of IATEX was that it exists, and that it is “good”. I started using it, but I needed
to display some algorithms. So I begun searching for a good algorithmic style,
and I have found the algorithmic package. It was a great joy for me, and I
started to use it... Well... Everything went nice, until I needed some block
that wasn’t defined in there. What to do? I was no ETEX guru, in fact I only
knew the few basic macros. But there was no other way, so I opened the style
file, and I copied one existing block, renamed a few things, and voila! This (and
some other small changes) where enough for me. ..

One year later — for one good soul — I had to make some really big changes
on the style. And there on a sunny day came the idea. What if I would write
some macros to let others create blocks automatically? And so I did! Since then
the style was completely rewritten several times. ..

I had fun writing it, may you have fun using it! I am still no I TEX guru, so
if you are, and you find something really ugly in the style, please mail me! All
ideas for improvements are welcome!

Thanks go to Benedek Zsuzsa, Ionescu Clara, Szdécs Zoltan, Cseke Botond,
Kanoc and many-many others.

2 The predefined layouts

The algorithmicx package has the following predefined layouts:

algpseudocode has (almost) the same look as the one defined in the algorithmic
package. The main difference is that while the algorithmic package
doesn’t allow you to modify predefined structures, or to create new ones,
the algorithmicx package gives you full control over the definitions (ok,
there are some limitations — you can not send mail with a, say, \For
command).

algpascal aims to create a formatted pascal program, it performs automatic
indentation (!), so you can transform a pascal program into an algpascal
algorithm description with some basic substitution rules.

algc — yeah, just like the algpascal... but for c...

Each algorithm begins with the \begin{algorithmic}[lines] command,
the optional lines controls the line numbering: 0 means no line numbering,
1 means number every line, and n means number lines n, 2n, 3n...until the
\end{algorithmic} command, witch ends the algorithm.

2.1 The algpseudocode layout

If you are familiar with the algorithmic package, then you’ll find it easy to
switch, and you have good chances to use previously written algorithms without
changing them (some comments needs to be placed to their right place, but you
will be happy to have them there). You only need to read the section 2.1.9 and
2.1.10.

The first algorithm one should write is the first algorithm ever (ok, an im-
proved version), Fuclid’s algorithm:

algorithm 1 Euclid’s algorithm

1: procedure EucLID(a,b) > The g.c.d. of a and b
2 r«— amodb

3 while r # 0 do > We have the answer if r is 0
4 a<—b

5: be—r

6 r <« amodb

7 end while

8 return b > The ged is b
9: end procedure

Created with the following source:

\begin{algorithm}
\caption{Euclid’s algorithm}
\begin{algorithmic}[1]
\Procedure{Euclid}{a,b}\Comment{The g.c.d. of a and b}
\State $r\leftarrow a\bmod b$
\While{$r\not=0$}\Comment{We have the answer if r is 0}
\State $a\leftarrow b$
\State $b\leftarrow r$
\State $r\leftarrow a\bmod b$
\EndWhile
\State \textbf{return} b\Comment{The gcd is b}
\EndProcedure
\end{algorithmic}
\end{algorithm}

The \State stands at the beginning of each simple statement; the respective
statement is put in a new line, with the needed indentation. The \Procedure
...\EndProcedure and \While ...\EndWhile blocks (like any block defined in
the algpseudocode layout) automatically indent their content. The indenta-
tion of the source doesn’t matter, so

\begin{algorithmic}[1]

\Repeat

\Comment{forever}\State this\Until{you die.}
\end{algorithmic}

results

1: repeat > forever
2: this
3: until you die.

But, generally, it is a good idea to keep the source indented, since you will
find errors much easier. And your tex file looks better!

2.1.1 The for block

The for block may have one of the forms:

\For{<text>}
<body>
\EndFor

or

\ForAll{<text>}
<body>
\EndFor

Example

\begin{algorithmic}[1]
\State $sum\leftarrow 0$
\For{$i\leftarrow 1, n$}

\State $sum\leftarrow sum+i$
\EndFor
\end{algorithmic}

1: sum <« 0

2: for i +— 1,n do

3: sum «— sum +1
4: end for

2.1.2 The while block
The while block has the form:

\While{<text>}
<body>
\EndWhile

Example:

\begin{algorithmicl}[1]
\State $sum\leftarrow 0$
\State $i\leftarrow 1%
\While{$i\le n$}
\State $sum\leftarrow sum+i$
\State $i\leftarrow i+1$
\EndWhile
\end{algorithmic}

1: sum « 0

21— 1

3. while 1 < n do

4: sum «— sum + 1
5 —1+1

6: end while

2.1.3 The repeat block

The repeat block has the form:

\Repeat
<body>
\Until{<text>}

Example:

\begin{algorithmicl}[1]

\State $sum\leftarrow 0$

\State $i\leftarrow 1$

\Repeat
\State $sum\leftarrow sum+i$
\State $i\leftarrow i+1$

\Until{$i>n$}

\end{algorithmic}

1: sum «— 0
2: 11
3: repeat

4: sum «— sum +1
5: 1+—1+1
6: until i > n

2.1.4 The if block

The if block has the form:

\If{<text>}

<body>
[
\ElsIf{<text>}<body>

\ElsIf{<text>}<body>
]
[
\Else
<body>
]
\EndIf

Example

\begin{algorithmic}[1]
\If{$quality\ge 9%}
\State $answer\leftarrow
\ElsIf{$quality\ge 7$}
\State $answer\leftarrow
\ElsIf{$quality\ge 5%}
\State $answer\leftarrow
\ElsIf{$quality\ge 3$}
\State $answer\leftarrow
\Else
\State $answer\leftarrow
\EndIf
\end{algorithmic}

1: if quality > 9 then

2 answer «— per fect

3: else if quality > 7 then
4: answer «— good

5. else if quality > 5 then
6: answer «— medium
7. else if quality > 3 then
8 answer «— bad

9: else

10: answer «— unusable
11: end if

perfect$
good$
medium$
bad$

unusable$

2.1.5 The procedure block
The procedure block has the form:

\Procedure{<text>}{<text>}
<body>
\EndProcedure

Example: See Euclid’s algorithm somewhere on the first pages. ..

2.1.6 The function block
The function block has the same syntax as the procedure block:

\Function{<text>}{<text>}
<body>
\EndFunction

2.1.7 The loop block
The loop block has the form:

\Loop
<body>
\EndLoop

2.1.8 Require and Ensure

The starting conditions for the algorithm can be described with the require
instruction, and its result with the ensure instruction.:

\Require something
\Ensure something

Example:

\begin{algorithmic}[1]
\Require $x\geb5$
\Ensure $x\le-5%
\Statex
\While{$x>-58}
\State $x\leftarrow x-1$
\EndWwhile
\end{algorithmic}

Require: z > 5
Ensure: z < -5

1: while z > —5 do
2: r+—1x—1
3. end while

2.1.9 Placing comments in sources

Comments may be placed everywhere in the source (there are no limitations
like those in the algorithmic package), feel the freedom!

If you would like to change the form in witch comments are displayed, just
change the \algorithmiccomment macro:

\renewcommand{\algorithmiccomment}[1]{\hskip 3em\rightarrow #1}

will result:

Lrz—x+1 — Here is the new comment

2.1.10 Options

The algpseudocode package supports the following options:

noend/end
With noend specified all end ... lines are omitted. You get a somewhat
smaller algorithm, and the ugly feeling, that something is missing. .. The
end value is the default, it means, that all end ... lines are in their right
place.

compatible/noncompatible

If you would like to use old algorithms, written with the algorithmic
package without (too much) modification, then use the compatible op-
tion. This option defines the uppercase version of the commands. Note
that you still need to remove the [...] comments (these comments ap-
peared due to some limitations in the algorithmic package, these limi-
tations and comments are gone now). The default noncompatible does
not define the all uppercase commands.

2.1.11 Changing command names

One common thing for a pseudocode is to change the command names. Many
people use many different kind of pseudocode command names. This pack-
age uses something like the following definitions for command names (you can
change any of them):

\newcommand{\algorithmicend}{\textbf{end}}
\newcommand{\algorithmicwhile}{\textbf{whilel}}
\newcommand{\algorithmicfor}{\textbf{for}}
<and many others>

The following command changes the name of the While command:

\renewcommand{\algorithmicwhile}{\textbf{am\’igl}}

After this all while’s in the pseudocode will be replaced with amig.
If you need to change the order of the words (or the number of parameters)
then redefine one of the following:

\renewcommand{\algorithmicWhilel}[1]%
{\algorithmicwhile\ #1 \algorithmicdo}
\renewcommand{\algorithmicFor}[1]%
{\algorithmicfor\ #1 \algorithmicdo}
\renewcommand{\algorithmicIf}[1]%
{\algorithmicif\ #1 \algorithmicthen}
\renewcommand{\algorithmicElse}{\algorithmicelse}
\renewcommand{\algorithmicElsIf}[1]%
{\algorithmicelse\ \algorithmicif\ #1 \algorithmicthen}
\renewcommand{\algorithmicEndWhilel}/,
{\algorithmicend\ \algorithmicwhile}
\renewcommand{\algorithmicEndFor}J,
{\algorithmicend\ \algorithmicfor}
<and many others>

The following makes the \EndWhile have 2 params, and the order of the
words changed:

\renewcommand{\algorithmicEndWhile} [2]%
{#1\algorithmicwhile\ #2\algorithmicend}

After this all \EndWhile commands must be followed by 2 params.

2.2 The algpascal layout

One of the most important features of the algpascal layout is that it performs
automatically the end-of-block indentation. Here is an example to demonstrate
this feature:

begin

sum = 0;

for i =1ton do
sum = sum + 1;

writeln(sum);

end.

AN I

is obtained from:

\begin{algorithmic}[1]
\BEGIN

\State $sum:=0$;
\For{i=1}{n}

\State $sum:=sum+i$;
\State writeln(sum);
\END.

\end{algorithmic}

Note, that the \For is not closed explicitly, its end is detected automatically.
Again, the indentation in the source doesn’t affect the output. In this layout
every parameter passed to an instruction is put in mathematical mode.

2.2.1 The Begin... End block

\Begin
<body>
\End

The Begin... End block (and the Repeat... Until block) are the only
blocks in the algpascal style (instead of \Begin you may write \Asm). This
means, that every other loop is ended automatically after the following command
(another loop, or a block).

2.2.2 The For loop

\For{<assignment>}{<expression>}
<command>

The For loop (as all other loops) ends after the following command (a block
counts also as a command). So if you write:

\begin{algorithmicl}[1]

\Begin

\State $sum := 0$;

\State $prod := 1$;
\For{i = 1}{10}

\Begin
\State $sum := sum + i$;
\State $prod := prod * i$;
\End
\End.
\end{algorithmic}
you'll get:
1: begin
2: sum := 0;
3: prod :=1;
4: for i =1 to 10 do
5: begin
6: sum = sum + ;
7 prod := prod * 1,
8: end
9: end.

10

2.2.3 The While loop

\While{<expression>}
<command>

I think the syntax is enough. ..

2.2.4 The Repeat... Until block

\Repeat
<body>
\Until{<expression>}

2.2.5 The If command

\If{<expression>}
<command>

[
\Else
<command>

]

Every Else matches the nearest If.

2.2.6 The Procedure command

\Procedure<some text>

Procedure just writes the “procedure” word on a new line...

probably put a Begin... End block after it.
2.2.7 The Function command
\Function<some text>

Just like Procedure.

2.3 The algc layout

Sorry, the algc layout is unfinished. The commands defined are:

e \{... \} block

\FOR with 3 params

\IF with 1 param

e \ELSE with no params

\WHILE with 1 param

11

You will

e \DO with no params
e \FUNCTION with 3 params

e \RETURN with no params

3 Custom algorithmic blocks

3.1 Blocks and loops

Most of environments defined in the standard layouts (and most probably the
ones you will define) are divided in two categories:

Blocks are the environments witch contain an arbitrary number of commands,
and nested blocks. Each block has a name, begins with a starting com-
mand and ends with an ending command. The commands in a block are
indented by \algorithmicindent (or another amount).

If your algorithm ends without closing all blocks, the algorithmicx pack-
age gives you a nice error. So be good, and close them all!

Blocks are all the environments defined in the algpseudocode package,
the \Begin ... \End block in the algpascal package, and some other ones.

Loops (Let us call them loops...) The loops are environments that include
only one command, loop or block; a loop is closed automatically after this
command. So loops have no ending commands. If your algorithm (or a
block) ends before the single command of a loop, then this is considered
an empty command, and the loop is closed. Feel free to leave open loops
at the end of blocks!

Loops are most of the environments in the algpascal and algc packages.

For some rare constructions you can create mixtures of the two environments
(see the \algsetblock macro). Each block and loop may be continued with
another one (like the If with Else).

3.2 algblock
With \algblock you can create a block:

\algblock[Name] {Start}{Stop}
\begin{algorithmicl}[1]
\Start

\Start

\Stop

\Start

\Stop
\Stop
\end{algorithmic}

12

The block will have the name Name, start with the \Start command, and
end with the \Stop command. If the Name is missing then Start is used instead.

3.3 algcblock

With \algcblock you can create a block that continues an open block or loop.

\algblock[Name]{Start}{Stop}
\algcblock [CName] {Name}{CStart}{CStop}
\begin{algorithmic}[1]
\Start

\Start

\CStart

\CStop
\CStart

\Start

\Stop
\CStop
\end{algorithmic}

1: Start
2 Start
3 CStart
4 CStop
5. CStart

6 Start
7 Stop
8: CStop

This creates a \Start...\Stop block, and a block named \CName that con-
tinues the Name block, begins with CStart, and ends with CStop.
The most relevant use of \algcblock is in the definition of \If...\E1lsIf...\Else

\algblock{If}{EndIf} % the If block
\algcblock [Tf]{If}{E1sIf}{EndIf}) \ElsIf switches from If to If
\algcblock{If}{Else}{EndIf} % and \Else may follow only once

13

... \EndIf:

3.4 algloop
\algloop [Name] {Start}

This creates a loop named Name, starting with \Start. The loop has no
ending command, since it ends after the first state, block or loop that follows
this loop.

\algloop{For}
\algblock{Begin}{End}
\begin{algorithmic}[1]
\For
\Begin
\For
\For
\Begin
\End
\Begin
\End
\End
\end{algorithmic}

1: For

2 Begin

3 For

4: For

5: Begin
6 End
7 Begin

8 End

9 End

3.5 algcloop

With \algcloop you can create a loop that continues an open block or loop.

\algloop{If}
\algcloop{If}{Else}
\algblock{Begin}{End}
\begin{algorithmicl}[1]
\If
\Begin
\End
\Else
\If
\Begin
\End
\end{algorithmic}

14

If
Begin
End
Else
If
Begin
End

Note that you can continue a loop with a block, and a block with a loop — 1
don’t know what use this has, but there is no reason (and good implementation)
to restrict this. If you have found a good example for the mixed use, then be
proud for it!

3.6 algsetblock

The \algsetblock macro does not really create a block — at least not always.
It gives you the means to create a custom block or loop or whatever it comes
out.

\algsetblock [Name] {Start}{Stop}{3}{1lcm}
\begin{algorithmic}[1]
\Start

\State 1

\State 2

\State 3
\State 4
\Start

\State 1
\Stop
\State 2
\end{algorithmic}

. Start

1
2
3

1
2
3
4:
5: 4
6: Start
7 1
8: Stop
9: 2
This creates an environment named Name, starting with \Start and possibly
ending with \Stop, with a lifetime of 3 statement (or blocks or loops), and with
1 cm indentation.
The created environment behaves as follows:

15

You can start it with \Start. The nested environments are indented by
1 cm.

If it is followed by at least 3 environments, then it closes automatically
after the third one. If the lifetime parameter is left empty, then it sup-
ports an infinite number of environments, and it must be closed manually

(block).

If you put a \Stop before the automatic closure, then this \Stop closes
the environment. If the lifetime is infinite (left empty) then it MUST be
closed with \Stop, or another closing command.

If you define later a block that continues this one, then on the starting
command of the second block the first one is closed.

If you leave the Stop parameter empty, then the lifetime must be finite,
or you must give a block or loop that continues this one. In this case the
continuation is not optional.

3.7 algsetcblock

This macro creates a custom block, that continues another one.

\algsetblock[Name]l{Start}{Stop}{3}{1cm}
\algsetcblock [CName] {Name}{CStart}{CStop}{2}{2cm}
\begin{algorithmic}[1]

\Start

\State 1

\CStart

\State 1

\State 2

\State 3

\Start

\State 1

\CStart

\State 1

\CStop

\end{algorithmic}

1
2
3
4:
5:
6
7
8
9

03

. CStart

. CStart

. Start

1

. Start

1

16

10: 1
11: CStop

4 Bugs

At this time there are no known bugs. If you find some, please contact me on
szaszjanos@users.sourceforge.net.

17

