
The TEXPower bundle
Documentation∗

Stephan Lehmke

mailto:Stephan.Lehmke@udo.edu

Hans Fr. Nordhaug

mailto:hansfn@users.sourceforge.net

April 9, 2005

Contents

1 Usage and general options 3
1.1 General options . 3
1.2 Side effects of page contents duplication 4
1.3 Setting the base font . 4
1.4 Switches . 4
1.5 Configuration files . 5
1.6 Miscellaneous commands . 5
1.7 Page Anchors . 6
1.8 Dependencies on other packages . 6
1.9 What else is part of the TEXPower bundle? 7

2 The \pause command 9

3 The \stepwise command 9
3.1 fragilesteps environment . 11
3.2 \boxedsteps and \nonboxedsteps . 11
3.3 Custom versions of \stepwise . 12
3.4 Starred versions of \stepwise commands 12
3.5 The optional argument of \stepwise . 12
3.6 Customizing the way 〈stepcontents〉 is diplayed 12

∗Documentation for TEXPower v0.2 of April 8, 2005.

1

mailto:Stephan.Lehmke@udo.edu
mailto:hansfn@users.sourceforge.net

3.7 Variants of \step . 14
3.8 Optional arguments of \step . 16
3.9 Finding out what’s going on . 17
3.10 \afterstep . 17

4 Page transitions and automatic advancing 18
4.1 Page transitions . 18
4.2 Automatic advancing of pages . 19

5 Color management, color emphasis and highlighting 20
5.1 Standard colors . 20
5.2 Color sets . 20
5.3 Color Background Options . 21
5.4 Color variants . 22
5.5 Miscellaneous color management commands 24
5.6 Color Emphasis and Highlighting . 25
5.7 New commands for emphasis and highlighting elements 26
5.8 Predefined standard colors . 27

6 Structured page backgrounds and panels 28
6.1 Structured page backgrounds . 28
6.2 Panel-specific user level commands . 32
6.3 Navigation buttons . 34

The TEXPower bundle contains style and class files for creating dynamic online presen-
tations with LATEX.

The heart of the bundle is the package texpower.sty which implements some com-
mands for presentation effects. This includes setting page transitions, color highlighting
and displaying pages incrementally.

For finding out how to achieve special effects (as shown in the ??), please look at the
comments inside the files ending with example.tex and demo.tex and read this manual
to find out what’s going on.

For your own first steps with TEXPower, the simple demo file simpledemo.tex is the
best starting place. There, some basic applications of the dynamic features provided by
the texpower package are demonstrated. You can make your own dynamic presentations
by modifying that demo to your convenience.
simpledemo.tex uses the article document class for maximum compatibility. There

are other simple demos named slidesdemo.tex, foilsdemo.tex, seminardemo.tex,
pp4sldemo.tex, pdfslidemo.tex, pdfscrdemo.tex, prosperdemo.tex, and
ifmslidemo.tex which demonstrate how to combine TEXPower with the most
popular presentation-making document classes and packages.

2

The other, more sophisticated examples demonstrate the expressive power of the
texpower package. Look at the commented code of these examples to find out how
to achieve special effects and create your own presentation effects with TEXPower.

1 Usage and general options

The texpower package is loaded by putting

\usepackage{texpower}

into the preamble of a document.
There are no specific restrictions as to which document classes can be used.
It should be stressed that TEXPower is not (currently) a complete presentation pack-

age. It just adds dynamic presentation effects (and some other gimmicks specifically
interesting for dynamic presentations) and should always be combined with a document
class dedicated to designing presentations (or a package like pdfslide).

Some of the presentation effects created by texpower require special capabilities of
the viewer which is used for presenting the resulting document. The target for the
development of texpower has so far been Adobe Acrobat® Reader, which means
the document should (finally) be produced in pdf format. The produced pdf documents
should display well in GSview also, but that viewer doesn’t support page transitions
and duration.

There are no specific restrictions as to which way the pdf format is produced. All
demos and examples have been tested with pdfLATEX and standard LATEX, using dvips

and Adobe Acrobat® Distiller or dvips and ps2pdf (from the Ghostscript suite)
for generating pdf.

1.1 General options

option: display . Enable ‘dynamic’ features. If not set, it is assumed that the docu-
ment is to be printed, and all commands for dynamic presentations, like \pause

or \stepwise have no effect.

option: printout (default) . Disable ‘dynamic’ features. As this is the default behav-

iour, setting this option explicitly is useful only if the option display is set by
default for instance in the tpoptions.cfg file (see section 1.5).

option: verbose . Output some administrative info.

Some font options are listed in section 1.3.

3

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfslide.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.cs.wisc.edu/~ghost/gsview/
http://www.adobe.com/products/acrobat/
http://www.ghostscript.com/

1.2 Side effects of page contents duplication

In the implementation of the \pause and \stepwise commands, it is neccessary to
duplicate some material on the page.

This way, not only ‘visible’ page contents will be duplicated, but also some ‘invisible’
control code stored in whatsits (see the TEXbook for an explanation of this concept).
Duplicating whatsits can lead to undesirable side effects.

For instance, a \section command creates a whatsit for writing the table of contents
entry. Duplicating this whatsit will also duplicate the toc entry. So, whatsit items
effecting file access are inhibited when duplicating page material.

The current version of texpower is a little smarter when handling whatsits. Some
commands (related to writing to files and hyperlinks) are made stepwise-aware. This
means that links can point to the actual subpage where the anchor is and not to the last
(sub)page of an incremental page. However, if you want the old behaviour just use

option: oldfiltering switches on the old (pre 0.2) very aggressive/robust filtering
of whatsits.

The oldfiltering can be turned on and off inside the document using
\oldfilteringon/off. This command is useful if texpower isn’t smart enough...

A second type of whatsits is created by TEX’s \special command which is used for
instance for color management. Some drivers, like dvips and textures, use a color stack
which is controlled by \special items included in the dvi file. When page contents are
duplicated, then these \specials are also duplicated, which can seriously mess up the
color stack.
texpower implements a ‘color stack correction’ method by maintaining a stack of

color corrections, which should counteract this effect. Owing to potential performance
problems, this method is turned off by default.

option: fixcolorstack switches on color stack correction. Use it if you experience
strange color switches in your document.

1.3 Setting the base font

texpower offers no options for setting the base font of the document. Use the
tpslifonts package in stead. Read more in section 1.9.

Further, there are packages like cmbright or beton which change the whole set of
fonts to something less fragile than cmr.

1.4 Switches

There are some boolean registers provided and set automatically by texpower.

boolean: psspecialsallowed True if PostScript® specials may be used.

4

texpower tries to find out whether or not PostScript® specials may be used in the
current document. For instance, pdfLATEX can’t interpret arbitrary specials. This
switch is set automatically and can be used inside a document to enable/disable
parts which need PostScript® specials.

boolean: display True if display option was given.

This switch indicates whether ‘dynamic’ features of texpower are enabled. Use
it inside your document to distinguish between the ‘presented’ and the printed
version of your document.

boolean: TPcolor True if any of the color highlighting options (see section 5) were
given.

This switch indicates whether ‘color’ features of texpower are enabled (compare
section 5). You can use it inside your document to distinguish between a ‘colored’
and a ‘monochrome’ version of your document.

1.5 Configuration files

texpower loads three configuration files (if present):

file: tpoptions.cfg is loaded before options are processed. Can be used to set default
options in a system-specific way. See the comments inside the file tpoptions.cfg

which is part of the TEXPower bundle for instructions.

file: tpsettings.cfg is loaded at the end of texpower. Here, you can do some system-
specific settings. See the comments inside the file tpsettings.cfg which is part
of the TEXPower bundle for instructions.

file: tpcolors.cfg is loaded if TPcolor is true. The file defines the standard col-

ors/colorsets (see section 5). See the comments inside the file tpcolors.cfg which
is part of the TEXPower bundle for instructions.

1.6 Miscellaneous commands

Some important commands that don’t fit in the latter sections:

\oldfilteringon reverts to the old (pre v0.2) aggressive/robust filtering of whatsits.

\oldfilteringoff turns on the new better treatment of whatsits.

\currentpagevalue{〈value〉} sets how to find the number of the current page,

\value{page} is default. Used to name the hyper target on the first subpage
of every page. Also used in the TeXPower navigation buttons.

5

\pausesafecounter{〈counter〉} is used to add counters that are to be restored to

their original value after \pause. The page counter is always restored. In addition
the slide counter is restored if the seminar class is used. If you need more
counters to be restored after \pause, use \pausesafecounter.

1.7 Page Anchors

For each physical page TEXPower (when in display mode) makes a number of subpages -
this is the dynamics. For convenience TEXPower defines an anchor to the first subpage of
physical page n, firstpage.n. The standard page anchor for physical page n, page.n,
points to the last subpage of physical page n. If you want to link to any other subpage
just insert a \hyperlink in the standard way assuming you haven’t turned on the old
filtering (1.2).

1.8 Dependencies on other packages

textpower always loads the packages ifthen and calc, as the extended command syntax
provided by these is indispensable for the macros to work. They are in the base and
tools area of the LATEX distribution, respectively, so I hope they are available on all
systems.

Furthermore, texpower loads the package color if any color-specific options are set
(see section 5).

Further packages are not loaded automatically by texpower to avoid incompatibilities,
although some features of texpower are enabled only if a certain package is loaded. If
you wish to use these features, you are responsible for loading the respective package
yourself.

If some necessary package is not loaded, texpower will issue a warning and disable
the respective features.

The following packages are neccessary for certain features of texpower:

package: hyperref is neccessary for page transition effects to work (see section 4).

In particular, the \pageDuration (see section 4.2) command only works if the
version of hyperref loaded is at least v6.70a (where the pdfpageduration key was
introduced).

Commands which work only when hyperref is loaded are marked with h in the
description.

package: soul is neccessary for the implementation of the commands \hidetext and

\highlighttext (see section 3.6).

Commands which work only when soul is loaded are marked with s in the de-
scription.

6

1.9 What else is part of the TEXPower bundle?

Besides the package texpower (which is described here), there are four more packages,
tpslifonts, fixseminar, automata and tplists, and one document class, powersem,
in the TEXPower bundle. Except for tpslifonts and tplists these files have no docu-
mentation of their own. They will be described in this section until they are turned into
dtx files producing their own documentation.

See the file 00readme.txt which is part of the TEXPower bundle for a short description
of all files.

The document class powersem

This is planned to provide a more ‘modern’ version of seminar which can be used for
creating dynamic presentations.

Currently, this document class doesn’t do much more than load seminar and apply
some fixes, but it is planned to add some presentation-specific features (like navigation
panels).

There are three new options which are specific for powersem, all other options are
passed to seminar:

option: display Turns off all features of seminar (notes, vertical centering of slides)
which can disturb dynamic presentations.

option: calcdimensions seminar automatically calculates the slide dimensions
\slidewidth and \slideheight only for the default letter and for its own op-
tion a4. For all the other paper sizes which are possible with the KOMA option, the
slide dimensions are not calculated automatically.

The calcdimensions option makes powersem calculate the slide dimensions auto-
matically from paper size and margins.

option: truepagenumbers The truepagenumbers option makes powersem count pages
with the counter page, independently of the counter slide. This enables proper
working of TeXPowers navigation buttons (some of which calculate relative page
numbers) even when the counter slide is reset frequently (for slide numberings of
the type <l>.<n>.<m>).

option: KOMA Makes seminar load scrartcl (from the KOMA-Script bundle) instead
of article as its base class. All new features of scrartcl are then available also
for slides.

option: UseBaseClass Makes seminar load the class \baseclass (initially article)
instead of article as its base class.

option: reportclass Makes seminar load the class \baseclass (initially report)
instead of article.

option: bookclass Makes seminar load the class \baseclass (initially book) instead
of article.

7

There is one change in powersem which will lead to incompatibilities with seminar.
seminar has the unfortunate custom of not exchanging \paperwidth and \paperheight

when making landscape slides, as for instance typearea and geometry do.
This leads to problems with setting the paper size for pdf files, as done for instance

by the hyperref package.
powersem effectively turns off seminar’s papersize management and leaves

this to the base class (with the pleasant side effect that you can use e. g.
\documentclass[KOMA,a0paper]{powersem} for making posters).

In consequence, the portrait option of seminar is turned on by powersem to avoid
confusing seminar. You have to explicitly use the landscape option (and a base class
or package which understands this option) to get landscape slides with powersem.

The package fixseminar

Unfortunately, there are some fixes to seminar which can not be applied in powersem

because they have to be applied after hyperref is loaded (if this package should be
loaded).

The package fixseminar applies these fixes, so this package should be loaded after
hyperref (if hyperref is loaded at all, otherwise fixseminar can be loaded anywhere
in the preamble).

It applies two fixes:

� In case pdflatex is being run, the lengths \pdfpageheight and \pdfpagewidth

have to be set in a ‘magnification-sensitive’ way.

� hyperref introduces some code at the beginning of every page which can produce
spurious vertical space, which in turn disturbs building dynamic pages. This code
is ‘fixed’ so it cannot produce vertical space.

The package tpslifonts

Presentations to be displayed ‘online’ with a video beamer have special needs concerning
font configuration owing to low ‘screen’ resolution and bad contrast caused by possibly
bad light conditions combined with color highlighting.

This package tries to cater to these needs by offering a holistic configuration of all
document fonts, including text, typewriter, and math fonts. Special features are ‘smooth
scaling’ of Type1 fonts and careful design size selection for optimal readability.

For more information on package options and used fonts (and on implementation)
read the documentation coming with the package - check the tpslifonts directory.

The package automata

Experimental package for drawing automata in the sense of theoretical computer science
(using PSTricks) and animating them with TeXPower. Only DFA and Mealy automata
are supported so far.

The package tplists

Experimental package providing easy dynamic lists. Currently there are stepped, flipped
and dimmed versions of itemize and enumerate (and corresponding lists from the eqlist

8

and paralist package). For more information and an example, compile (and then read)
the file tplists.dtx.

2 The \pause command

\pause is derived from the \pause command from the package texpause which is part
of the PPower4 suite by Klaus Guntermann.

It will ship out the current page, start a new page and copy whatever was on the
current page onto the new page, where typesetting is resumed.

This will create the effect of a pause in the presentation, i. e. the presentation stops
because the current page ends at the point where the \pause command occurred and is
resumed at this point when the presenter switches to the next page.

Things to pay attention to
1. \pause should appear in vertical mode only, i. e. between paragraphs or at places

where ending the current paragraph doesn’t hurt.

2. This means \pause is forbidden in all boxed material (including tabular), head-
ers/footers, and floats.

3. \pause shouldn’t appear either in environments which have to be closed to work
properly, like picture, tabbing, and (unfortunately) environments for aligned
math formulas.

4. \pause does work in all environments which mainly influence paragraph format-
ting, like center, quote or all list environments.

5. \pause doesn’t really have problems with automatic page breaking, but beware of
overfull pages/slides. In this case, it may occur that only the last page(s)/slide(s)
of a sequence are overfull, which changes vertical spacing, making lines ‘wobble’
when switching to the last page/slide of a sequence.

6. The duplication of page material done by \pause can lead to unwanted side effects.
See section 1.2 for further explanations. In particular, if you should experience
strange color switches when using \pause (and you are not using pdftex), turn
on color stack correction with the option fixcolorstack. In addition you should
be aware of \pausesafecounter, see section 1.6.

A lot of the restrictions for the use of pause can be avoided by using \stepwise (see
next section).

3 The \stepwise command

\stepwise{〈contents〉} is a command for displaying some part of a LATEX doc-

ument (which is contained in 〈contents〉) ‘step by step’. As of itself, \stepwise

9

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pp4sty.zip
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
mailto:guntermann@iti.informatik.tu-darmstadt.de

doesn’t do very much. If 〈contents〉 contains one or more constructs of the form

\step{〈stepcontents〉} , the following happens:

1. The current contents of the page are saved (as with \pause).

2. As many pages as there are \step commands in 〈contents〉 are produced.

Every page starts with what was on the current page when \stepwise started.

The first page also contains everything in 〈contents〉 which is not in
〈stepcontents〉 for any \step command.

The second page additionally contains the 〈stepcontents〉 for the first \step

command, and so on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise ends and typesetting is re-
sumed (still on the current page).

This will create the effect that the \step commands are executed ‘step by step’.

Things to pay attention to
1. \stepwise should appear in vertical mode only, i. e. between paragraphs, just

like \pause.

2. Don’t put \pause or nested occurrences of \stepwise into 〈contents〉.

3. Structures where \pause does not work (like tabular or aligned equations) can
go completely into 〈contents〉, where \step can be used freely (see ??).

4. As 〈contents〉 is read as a macro argument, constructs involving catcode changes
(like \verb or language switches) won’t work in 〈contents〉 unless you use the
fragilesteps environment (3.1).

5. Several instances of \stepwise may occur on one page, also combined with \pause

(outside of 〈contents〉).
But beware of page breaks in 〈contents〉. This will really mess things up.

Overfull pages/slides are also a problem, just like with \pause. See the description
of \pause (section 2) concerning this and also concerning side effects of duplicating
page material.

6. \step can go in 〈stepcontents〉. The order of execution of \step commands is
just the order in which they appear in 〈contents〉, independent of nesting within
each other.

7. As 〈contents〉 is executed several times, LATEX constructs changing global coun-
ters, accessing files etc. are problematic. This concerns sections, numbered equa-
tions, labels, hyperlinks and the like.

Counters are taken care of explicitly by \stepwise, so equation numbers are no
problem.

10

Commands accessing toc files and such (like \section) are taken care of by the
whatsit suppression mechanism (compare section 1.2).

3.1 fragilesteps environment

The fragilesteps environment is a wrapper around \stepwise that makes it possible
to use verbatim. The code for this environment is based on similar code from beamer -
an excellent presentation class written by Till Tantau - thanks! Using the fragilesteps
environment enables the use of the listings package to display code line by line. There
are some examples in verbexample.tex.

3.2 \boxedsteps and \nonboxedsteps

By default, 〈stepcontents〉 belonging to a \step which is not yet ‘active’ are ig-
nored altogether. This makes it possible to include e. g. tabulators & or line breaks
into 〈stepcontents〉 without breaking anything.

Sometimes, however, this behaviour is undesirable, for instance when stepping through
an equation ‘from outer to inner’, or when filling in blanks in a paragraph. Then, the
desired behaviour of a \step which is not yet ‘active’ is to create an appropriate amount
of blank space where 〈stepcontents〉 can go as soon as it is activated.

The simplest and most robust way of doing this is to create an empty box (aka
\phantom) with the same dimensions as the text to be hidden.

This behaviour is toggled by the following commands. See section 3.6 for more so-
phisticated (albeit more fragile) variants.

\boxedsteps makes \step create a blank box the size of 〈stepcontents〉 when inac-

tive and put 〈stepcontents〉 into a box when active.

\nonboxedsteps makes \step ignore 〈stepcontents〉 when inactive and leave

〈stepcontents〉 alone when active (default).

Things to pay attention to
1. The settings effected by \boxedsteps and \nonboxedsteps are local, i. e. whenever

a group closes, the setting is restored to its previous value.

2. Putting stuff into boxes can break things like tabulators (&). It can also mess up
math spacing, which then has to be corrected manually. Compare the following
examples:

(
a + b

c

) (
a+b

c

) (
a + b

c

)

11

3.3 Custom versions of \stepwise

Sometimes, it might happen that vertical spacing is different on every page of a se-
quence generated by \stepwise, making lines ‘wobble’. This is usually fixed if you use
\liststepwise or \parstepwise (described below) in stead of \stepwise.

There are two custom versions of \stepwise which should produce better vertical
spacing.

\liststepwise{〈contents〉} works exactly like \stepwise, but adds an ‘invisible

rule’ before 〈contents〉. Use for list environments and aligned equations.

\parstepwise{〈contents〉} works like \liststepwise, but \boxedsteps is turned

on by default. Use for texts where \steps are to be filled into blank spaces.

3.4 Starred versions of \stepwise commands

Usually, the first page of a sequence produced contains only material which is not part
of any 〈stepcontents〉. The first 〈stepcontents〉 are displayed on the second page of
the sequence.

For special effects (see example ??), it might be desirable to have the first
〈stepcontents〉 active even on the first page of the sequence.

All variants of \stepwise have a starred version (e. g. \stepwise*) which does exactly
that.

3.5 The optional argument of \stepwise

Every variant of \stepwise takes an optional argument, like this

\stepwise[〈settings〉]{〈contents〉} .

〈settings〉 will be placed right before the internal loop which produces the sequence of
pages. It can contain settings of parameters which modify the behaviour of \stepwise
or \step. 〈settings〉 is placed inside a group so all changes are local to this call of
\stepwise.

Some internal macros and counters which can be adjusted are explained in the follow-
ing.

3.6 Customizing the way 〈stepcontents〉 is diplayed

Internally, there are three macros (taking one argument each) which control how
〈stepcontents〉 is displayed: \displaystepcontents, \hidestepcontents, and
\activatestep. Virtually, every \step{〈stepcontents〉} is replaced by

\hidestepcontents{〈stepcontents〉}
when this step is not yet active.

12

\displaystepcontents{\activatestep{〈stepcontents〉}} when this step is acti-

vated for the first time.

\displaystepcontents{〈stepcontents〉}
when this step has been activated before.

By redefining these macros, the behaviour of \step is changed accordingly. You can
redefine them inside 〈contents〉 to provide a change affecting one \step only, or in the
optional argument of \stepwise to provide a change for all \steps inside 〈contents〉.

In the ??, it is demonstrated how special effects can be achieved by redefining these
macros.
\activatestep is set to \displayidentical by default, the default settings of

\hidestepcontents and \displaystepcontents depend on whether \boxedsteps or
\nonboxedsteps (default) is used.
texpower offers nine standard definitions.
For interpreting \displaystepcontents:

\displayidentical Simply expands to its argument. The same as LATEXs \@ident.

Used by \nonboxedsteps (default).

\displayboxed Expands to an \mbox containing its argument. Used by \boxedsteps.

For interpreting \hidestepcontents:

\hideignore Expands to nothing. The same as LATEXs \@gobble. Used by

\nonboxedsteps (default).

\hidephantom Expands to a \phantom containing its argument. Used by
\boxedsteps.

\hidevanish In a colored document, makes its argument ‘vanish’ by setting all colors
to \vanishcolor (defaults to pagecolor; compare section 5.7). Note that this
will give weird results with structures backgrounds.

For monochrome documents, there is no useful interpretation for this command,
so it is disabled.

s \hidetext Produces blank space of the same dimensions as the space that would be
occupied if its argument would be typeset in the current paragraph. Respects
automatic hyphenation and line breaks.

This command needs the soul package to work, which is not loaded by texpower

itself. Consult the documentation of soul concerning restrictions on commands
implemented using soul. If you don’t load the soul package yourself, there is no
useful definition for this command, so it defaults to \hidephantom.

13

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html

\hidedimmed In a colored document, displays its argument with dimmed colors (com-
pare section 5.8). Note that this doesn’t make the argument completely invisible.

For monochrome documents, there is no useful interpretation for this command,
so it is disabled.

For interpreting \activatestep:

\highlightboxed If the colorhighlight option (see section 5) is set, expands to a
box with colored background containing its argument. Otherwise, expands to an
\fbox containing its argument. It is made sure that the resulting box has the same
dimensions as the argument (the outer frame may overlap surrounding text).

There is a new length register \highlightboxsep which acts like \fboxsep for
the resulting box and defaults to 0.5\fboxsep.

s \highlighttext If the colorhighlight option (see section 5) is set, puts its argument
on colored background. Otherwise, underlines its argument. It is made sure that
the resulting text has the same dimensions as the argument (the outer frame may
overlap surrounding text).

\highlightboxsep is used to determine the extent of the coloured box(es) used
as background.

This command needs the soul package to work (compare the description of
\hidetext). If you don’t load the soul package yourself, there is no useful defin-
ition for this command, so it is disabled.

\highlightenhanced In a colored document, displays its argument with enhanced

colors (compare section 5.8).

For monochrome documents, there is no useful interpretation for this command,
so it is disabled.

3.7 Variants of \step

There are a couple of custom versions of \step which make it easier to achieve special
effects needed frequently.

\bstep Like \step, but is always boxed (see section 3.2). \bstep{〈stepcontents〉}
is implemented in principle as {\boxedsteps\step{〈stepcontents〉}}.
In aligned equations where \stepwise is used for being able to put tabulators into
〈stepcontents〉, but where nested occurrences of \step should be boxed to assure
correct sizes of growing braces or such, this variant of \step is more convenient
than using \boxedsteps for every nested occurrence of \step.

\switch{〈ifinactive〉}{〈ifactive〉} is a variant of \step which, instead of mak-

ing its argument appear, switches between 〈ifinactive〉 and 〈ifactive〉 when
activated.

14

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html

In fact, \step{〈stepcontents〉} is in principle implemented by

\switch{\hidestepcontents{〈stepcontents〉}}
{\displaystepcontents{〈stepcontents〉}}

This command can be used, for instance, to add an \underbrace to a formula,
which is difficult using \step.

Beware of problems when 〈ifinactive〉 and 〈ifactive〉 have different dimensions.

\dstep A variant of \step which takes no argument, but simply switches colors to

‘dimmed’ (compare section 5.8) if not active. Not that the scope of this color
change will last until the next outer group closes. This command does nothing in
a monochrome document.

\vstep A variant of \step which takes no argument, but simply switches all colors

to \vanishcolor (defaults to pagecolor; compare section 5.7) if not active. Not
that the scope of this color change will last until the next outer group closes. This
command does nothing in a monochrome document.

\steponce Like \step, but goes inactive again in the subsequent step.

\multistep is a shorthand macro for executing several steps successively. In fact,
it would better be called \multiswitch, because it’s functionality is based on
\switch, it only acts like a (simplified) \step command which is executed ‘several
times’. The syntax is

\multistep[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps. Only one instance of 〈stepcontents〉 is displayed
at a time. Inside 〈stepcontents〉, a counter substep can be evaluated which
tells the number of the current instance. In the starred form the last instance of
〈stepcontents〉 stays visible.

\movie works like \multistep, but between \steps, pages are advanced automatically
every 〈dur〉 seconds. The syntax is

\movie{〈n〉}{〈dur〉}[〈stop〉]{〈stepcontents〉}

where 〈n〉 is the number of steps. The additional optional argument 〈stop〉 gives
the code (default: \stopAdvancing) which stops the animation. (\movie accepts
the same first optional argument as \multistep but it was left out above.)

\overlays is another shorthand macro for executing several steps successively. In
contrast to \multistep, it doesn’t print things after each other, but over each
other. The syntax is

15

\overlays[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps. Inside 〈stepcontents〉, a counter substep can
be evaluated which tells the number of the current instance.

\restep , \rebstep , \reswitch , \redstep , \revstep .

Frequently, it is desirable for two or more steps to appear at the same time, for
instance to fill in arguments at several places in a formula at once (see example
??).

\restep{〈stepcontents〉} is identical with \step{〈stepcontents〉}, but is ac-

tivated at the same time as the previous occurrence of \step.

\rebstep , \reswitch , \redstep , and \revstep do the same for \bstep,
\switch, \dstep, and \vstep.

3.8 Optional arguments of \step

Sometimes, letting two \steps appear at the same time (with \restep) is not the only
desirable modification of the order in which \steps appear. \step, \bstep and \switch

take two optional arguments for influencing the mode of activation, like this:

\step[〈activatefirst〉][〈whenactive〉]{〈stepcontents〉} .

Both 〈activatefirst〉 and 〈whenactive〉 should be conditions in the syntax of the
\ifthenelse command (see the documentation of the ifthen package for details).

〈activatefirst〉 checks whether this \step is to be activated for the first time.

The default value is \value{step}=\value{stepcommand} (see section 3.9 for a list

of internal values). By using \value{step}=〈n〉, this \step can be forced to appear
as the nth one. See example ?? for a demonstration of how this can be used to make
\steps appear in arbitrary order.

〈whenactive〉 checks whether this \step is to be considered active at all. The

default behaviour is to check whether this \step has been activated before (this is saved
internally for every step). See example ?? for a demonstration of how this can be used
to make \steps appear and disappear after a defined fashion.

If you know what you’re doing. . .
Both optional arguments allow two syntctical forms:

1. enclosed in square brackets [] like explained above.

2. enclosed in braces (). In this case, 〈activatefirst〉 and 〈whenactive〉 are not
treated as conditions in the sense of \ifthenelse, but as conditionals like those
used internally by LATEX. That means, 〈activatefirst〉 (when enclosed in braces)
can contain arbitrary TEX code which then takes two arguments and expands
to one of them, depending on whether the condition is fulfilled or not fulfilled.

16

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/ifthen.html

For instance, \step[〈activatefirst〉]{〈stepcontents〉} could be replaced by
\step(\ifthenelse{〈activatefirst〉}){〈stepcontents〉}.
See example ?? for a simple application of this syntax.

Internally, the default for the treatment of 〈whenactive〉 is (\if@first@TP@true),
where \if@first@TP@true is an internal condition checking whether this \step has
been activated before.

3.9 Finding out what’s going on

Inside 〈settings〉 and 〈contents〉, you can refer to the following internal state variables
which provide information about the current state of the process executed by \stepwise:

counter: firststep The number from which to start counting steps (see counter step

below). Is 0 by default and 1 for starred versions (section 3.4) of \stepwise. You
can set this in 〈settings〉 for special effects (see example ??).

counter: totalsteps The total number of \step commands occurring in 〈contents〉.

counter: step The number of the current iteration, i. e. the number of the current page
in the sequence of pages produced by \stepwise. Runs from \value{firststep}

to \value{totalsteps}.

counter: stepcommand The number of the \step command currently being executed.

boolean: firstactivation true if this \step is active for the first time, false oth-
erwise.

boolean: active true if this \step is currently active, false otherwise.

stepcommand, firstactivation, and active are useful only inside 〈stepcontents〉.

3.10 \afterstep

It might be neccessary to set some parameters which affect the appearance of the page
(like page transitions) inside 〈stepcontents〉. However, the \step commands are usu-
ally placed deeply inside some structure, so that all local settings are likely to be undone
by groups closing before the page is completed.

\afterstep{〈settings〉} puts 〈settings〉 right before the end of the page, after

the current step is performed.

Things to pay attention to
1. There can be only one effective value for 〈settings〉. Every occurrence of

\afterstep overwrites this value globally.

17

2. \afterstep will not be executed in 〈stepcontents〉 if the corresponding \step

is not active, even if 〈stepcontents〉 is displayed owing to a redefinition of
\hidestepcontents, like in example ??.

3. As 〈settings〉 is put immediately before the page break, there is no means of
restoring the original value of whatever has been set. So if you set something
via \afterstep and want it to be reset in some later step, you have to reset it
explicitly with another call of \afterstep.

4 Page transitions and automatic advancing

4.1 Page transitions

I am indepted to Marc van Dongen for allowing me to include a suite of commands
written by him and posted to the PPower4 mailing list which set page transitions (using
hyperrefs \hypersetup).

These commands work only if the hyperref package is loaded.
The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the outside.

h \pageTransitionSplitHI Split Horizontally to the inside.

h \pageTransitionSplitVO Split Vertically to the outside.

h \pageTransitionSplitVI Split Vertically to the inside.

h \pageTransitionBlindsH Horizontal Blinds.

h \pageTransitionBlindsV Vertical Blinds.

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing edge.

〈angle〉 is a number between 0 and 360 which specifies the direction (in degrees)
in which to wipe.

Apparently, only the values 0, 90, 180, 270 are supported.

h \pageTransitionDissolve Dissolve.

18

mailto:dongen@cs.ucc.ie
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing edge.

〈angle〉 is a number between 0 and 360 which specifies the direction (in degrees)
in which to glitter.

Apparently, only the values 0, 270, 315 are supported.

h \pageTransitionReplace Simple Replace (the default).

Things to pay attention to
1. The setting of the page transition is a property of the page, i. e. whatever page tran-

sition is in effect when a page break occurs, will be assigned to the corresponding
pdf page.

2. The setting of the page transition is undone when a group ends.

Make sure no LATEX environment is ended between a \pageTransition setting
and the next page break. In particular, in 〈stepcontents〉, \afterstep should
be used (see example ??).

3. Setting page transitions works well with \pause. Here, \pause acts as a page
break, i. e. a different page transition can be set before every occurrence of \pause.

4.2 Automatic advancing of pages

If you have loaded a sufficiently new version of the hyperref package (which allows to
set pdfpageduration), then the following command is defined which enables automatic
advancing of pdf pages.

h \pageDuration{〈dur〉} causes pages to be advanced automatically every 〈dur〉 sec-

onds. 〈dur〉 should be a non-negative fixed-point number.
Depending on the pdf viewer, this will happen only in full-screen mode.
See example ?? for a demonstration of this effect.
The same restrictions as for page transitions apply. In particular, the page duration

setting is undone by the end of a group, i. e. it is useless to set the page duration if a
LATEX environment ends before the next page break.

There is no ‘neutral’ value for 〈dur〉 (0 means advance as fast as possible). You
can make automatic advancing stop by calling \pageDuration{}. texpower offers the
custom command

h \stopAdvancing

to do this.

19

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html

5 Color management, color emphasis and highlighting

TEXPower tries to find out whether you are making a colored document. This is assumed
if

� the color package has been loaded before the texpower package or

� a color-related option (see sections 5.3 and 5.6) is given to the texpower package
(in this case, the color package is loaded automatically).

If this is the case, TEXPower installs an extensive color management scheme on top of
the kernel of the color package.

In the following, some new concepts established by this management scheme are ex-
plained. Sections 5.3 and 5.6 list options for color activation, section 5.7 lists some new
highlighting commands, and section 5.8 gives the names and meaning of TEXPower’s
predefined colors.

Note that parts of the kernel of the color package are overloaded for special
purposes (getting driver-independent representations of defined colors to be used by
\colorbetween (5.5), for instance), so it is recommended to execute color definition
commands like \definecolor after the texpower package has been loaded (see also the
next section on \defineTPcolor).

5.1 Standard colors

TEXPower maintains a list of standard colors which are recognized and handled by
TEXPower’s color management. Some commands like \dimcolors (see section 5.4) affect
all standard colors. There are some predefined colors which are in this list from the
outset (see section 5.8).

If colors defined by the user are to be recognized by TEXPower, they have to be
included in this list. The easiest way is to use the following command for defining them.

\defineTPcolor{〈name〉}{〈model〉}{〈def〉} acts like \definecolor from the color

package, but the color 〈name〉 is also added to the list of standard colors.
If you want to make a color a standard color which is defined elsewhere (by a document

class, say), you can simply add it to the list of standard colors with the command

\addTPcolor{〈name〉} .

5.2 Color sets

Every standard color may be defined in one or several color sets. There are two
fundamentally different types of color set:

The current color set. This contains the current definition of every standard color
which is actually used at the moment. Every standard color should be defined
at least in the current color set. The current color set is not distinguished by a
special name.

20

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html

Named color sets. These are ‘containers’ for a full set of color definitions (for the stan-
dard colors) which can be activated by respective commands (see below). The
color sets are distinguished by their names. Color definitions in a named color
set are not currently available, they have to be made available by activating the
named color set.

There are four predefined color sets named whitebg, lightbg, darkbg, blackbg,
each of which contains a full set of (predefined) standard colors customized for a
white, light, dark, black background color, respectively.

There are the following commands for manipulating color sets:

\usecolorset{〈name〉} Make the color set named 〈name〉 the current color set. All

standard colors in the current color set which are also in color set 〈name〉 are
overwritten.

The standard color textcolor is set automatically after activating color set 〈name〉.

\dumpcolorset{〈name〉} Copy the definitions of all standard colors in the current color

set into color set named 〈name〉. All standard colors in color set 〈name〉 will be
overwritten.

Using \defineTPcolor{〈name〉} or \definecolor{〈name〉} will define the color
〈name〉 in the current color set. To define a color in color set 〈cset〉, use

\defineTPcolor[〈cset〉]{〈name〉} .

Things to pay attention to
1. Color sets are not really ‘TEX objects’, but are distinguished by color name suffixes.

This means, a color named foo is automatically in the current color set. Executing
\defineTPcolor[〈cset〉]{foo} means executing \definecolor for a specific color
the name of which is a combination of foo and 〈cset〉.
Consequently, \usecolorset and \dumpcolorset do not copy color sets as com-
posite objects, but simply all colors the names of which are generated from the list
of standard colors.

2. The command \usecolorset{〈name〉} overwrites only those colors which have
been defined in color set 〈name〉. If a standard color is defined in the current color
set, but not in color set 〈name〉, it is preserved (but if \dumpcolorset{〈name〉} is
executed later, then it will also be copied back into the color set 〈name〉).

5.3 Color Background Options

For activating the predefined color sets, there are shorthands \whitebackground,
\lightbackground, \darkbackground, \blackbackground which execute
\usecolorset and additionally set the background color to its current value.

When one of the following options is given, the respective command is executed au-
tomatically at the beginning of the document.

21

option: whitebackground (default) Set standard colors to match a white background

color.

option: lightbackground Set standard colors to match a light (but not white) back-
ground color.

option: darkbackground Set standard colors to match a dark (but not black) back-
ground color.

option: blackbackground Set standard colors to match a black background color.

5.4 Color variants

In addition to color sets, TEXPower implements a concept of color variant. Currently,
every color has three variants: normal, dimmed, and enhanced. The normal variant
is what is usually seen, text written in the dimmed variant appears “faded into the
background” and text written in the enhanced variant appears to “stick out”.

When switching variants, for every color one of two cases can occur:

1. A designated color for this variant has been defined.

For color 〈color〉 the designated name of the dimmed variant is d〈color〉, the
designated name of the enhanced variant is e〈color〉.
If a color by that name exists at the time the variant is switched to, then variant
switching is executed by replacing color 〈color〉 with the designated color.

2. A designated color for this variant has not been defined.

If a color by the designated name does not exist at the time a color variant is
switched to, then variant switching is executed by automatically calculating the
color variant from the original color.

The method for calculation depends on the variant:

dimmed. The dimmed variant is calculated by interpolating between pagecolor

and the color to be dimmed, using the \colorbetween command (see 5.5).

There is a command \dimlevel which contains the parameter 〈weight〉
given to \colorbetween (default: 0.7). This default can be overridden by
either redefining \dimlevel or giving an alternative 〈weight〉 as an optional
argument to the color dimming command (see below).

enhanced. The enhanced variant is calculated by extrapolating the color to be
enhanced (relative to pagecolor).

There is a command \enhancelevel which gives the extent of the extrap-
olation (default: 0.5). The same holds for overriding this default as for
\dimlevel.

The following commands switch color variants:

22

\dimcolor[〈level〉]{〈color〉} switches color 〈color〉 to the dimmed variant. If

given, 〈level〉 replaces the value of \dimlevel in automatic calculation of the
dimmed variant (see above).

\dimcolors[〈level〉] switches all standard colors to the dimmed variant. The op-

tional argument 〈level〉 acts as for \dimcolor.

\enhancecolor[〈level〉]{〈color〉} switches color 〈color〉 to the enhanced variant.

If given, 〈level〉 replaces the value of \enhancelevel in automatic calculation of
the enhanced variant (see above).

\enhancecolors[〈level〉] switches all standard colors to the enhanceed variant.

The optional argument 〈level〉 acts as for \enhancecolor.

Things to pay attention to
1. While automatic calculation of a dimmed color will almost always yield the de-

sired result (interpolating between colors by calculating a weighted average is triv-
ial), automatic calculation of an enhanced color by ‘extrapolating’ is tricky at
best and will often lead to unsatisfactory results. This is because the idea of
making a color ‘stronger’ is very hard to formulate numerically.

The following effects of the current algorithm should be kept in mind:

� if the background color is light, enhancing a color will make it darker;

� if the background color is dark, enhancing a color will make it lighter;

� sometimes, the numerical values describing an enhanced color have to be
bounded to avoid exceeding the allowed range, diminishing the enhancing
effect. For instance, if the background color is black and the color to be
enhanced is a ‘full-powered’ yellow, there is no way of enhancing it by simple
numeric calculation.

As a conclusion, for best results it is recommended to provide custom e variants of
colors to be enhanced. By default, TEXPower does not provide dedicated enhanced
colors, but the file tpsettings.cfg contains complete sets of enhanced variants
for the standard colors in the different color sets, which you can uncomment and
experiment with as convenient.

2. Currently, switching to a different color variant is done by simply overwriting the
current definitions of all standard colors. This means

� there is no way of ‘undimming’ a color once it has been dimmed,

� a dimmed color can not be enhanced and vice versa.

Maybe this will be solved in a slightly more clever way in subsequent releases of
TEXPower.

Hence, it is recommended to

23

� restrict the scope of a global variant switching command like \dimcolors,
\enhancecolors or \dstep by enlcosing it into a LATEX group (like {...})
or

� use \dumpcolorset before the command to save the current definitions of all
colors, to be restored with \usecolorset.

At the very beginning of a \stepwise command, TEXPower executes
\dumpcolorset{stwcolors}, so you can restore the colors anywhere in the
argument of \stepwise by saying \usecolorset{stwcolors}.

3. Some rudimentary attempts are made to keep track of which color is in what
variant, to the effect that

� a color which is not in the normal variant will neither be dimmed nor en-
hanced;

� when \usecolorset overwrites a color with its normal variant, this is regis-
tered.

Still, it is easy to get in trouble by mixing variant changes with color set changes
(say, if not all standard colors are defined in a color set, or if a color set is dumped
when not all colors are in normal variant), so it is recommended not to use or
dump color sets when outside the normal variant (unless for special applications
like undoing a variant change by \usecolorset{stwcolors}).

5.5 Miscellaneous color management commands

\replacecolor[〈tset〉]{〈tcolor〉}[〈sset〉]{〈scolor〉} makes 〈tcolor〉 have the

same definition as 〈scolor〉 (if 〈scolor〉 is defined at all), where 〈tcolor〉 and
〈scolor〉 are color names as given in the first argument of \definecolor. If (one
of) 〈tset〉 and 〈sset〉 are given, the respective color is taken from the respective
color set, otherwise from the current color set.

If 〈scolor〉 is not defined (in color set 〈sset〉), 〈tcolor〉 is left alone.

\colorbetween[〈weight〉]{〈src1〉}{〈src2〉}{〈target〉} calculates a ‘weighted aver-

age’ between two colors. 〈src1〉 and 〈src2〉 are the names of the two colors.
〈weight〉 (default: 0.5) is a fixed-point number between 0 and 1 giving the ‘weight’
for the interpolation between 〈src1〉 and 〈src2〉. 〈target〉 is the name to be given
to the resulting mixed color.

If 〈weight〉 is 1, then 〈target〉 will be identical to 〈src1〉 (up to color model
conversions, see below), if 〈weight〉 is 0, then 〈target〉 will be identical to 〈src2〉,
if 〈weight〉 is 0.5 (default), then 〈target〉 will be exactly in the middle between
〈src1〉 and 〈src2〉.
\colorbetween supports the following color models: rgb, RGB, gray, cmyk, hsb.
If both colors are of the same model, the resulting color is also of the respective

24

model. If 〈src1〉 and 〈src2〉 are from different models, then 〈target〉 will always
be an rgb color. The only exception is the hsb color model: As I don’t know how
to convert hsb to rgb, mixing hsb with another color model will always raise an
error.

\mkfactor{〈expr〉}{〈macroname〉} is a helper command for automatically gener-

ating the fixed point numbers between 0 and 1 which are employed by
the color calculation commands. 〈expr〉 can be any expression which can
stand behind * in expressions allowed by the calc package (for instance:
\value{counter}/\value{maxcounter} or \ratio or whatever). 〈macroname〉
should be a valid macro name. 〈expr〉 is converted into a fixed-point representa-
tion which is then assigned to 〈macroname〉.

\vanishcolors[〈color〉] is similar to the color variant command \dimcolors, but

instead of dimming colors, all standard colors are replaced by a single color given
by the new command \vanishcolor (default: pagecolor). Hence, the result
of calling \vanishcolors should be that all text vanishes, as it is written in the
background color (this doesn’t work with structured backgrounds, of course).

For getting a color different from the default pagecolor, you can either redefi-
nine \vanishcolor or give an alternative 〈color〉 as an optional argument to
\vanishcolors.

There is no dedicated command for making a single color vanish. To achieve this,
use \replacecolor{〈color〉}{\vanishcolor}.

5.6 Color Emphasis and Highlighting

texpower offers some support for text emphasis and highlighting with colors (instead
of, say, font changes). These features are enabled by the following options:

option: coloremph Make \em and \emph switch colors instead of fonts.

option: colormath Color all mathematical formulae.

option: colorhighlight Make new highlighting and emphasis commands defined by
texpower use colors.

Things to pay attention to
1. You need the color package to use any of the color features.

2. To implement the options coloremph and colormath, it is neccessary to redefine
some LATEX internals. This can lead to problems and incompatibilities with other
packages. Use with caution.

25

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/calc.html

3. If the colorhighlight option is not given, new highlighting and emphasis com-
mands defined by texpower are realized otherwise. Sometimes, however, there is
no good alternative to colors, so different emphasis commands can become disabled
or indistinguishable.

4. Because of font changes, emphasized or highlighted text can have different dimen-
sions whether or not the options coloremph, colormath, and colorhighlight are
set. Prepare for different line and page breaks when changing one of these options.

5. Color emphasis and highlighting makes use of the predefined standard colors de-
scribed in section 5.8. See sections 5.1 to 5.3 for further information on standard
colors, color sets, and customization.

5.7 New commands for emphasis and highlighting elements

Some things like setting the page or text color, making emphasised text or math colored
are done automatically when the respective options are set. There are some additional
new commands for creating emphasis and highlighting elements.

Concerning math:
\origmath When the colormath option is given, everything which appears in math

mode is colored accordingly. Sometimes, however, math mode is used for some-
thing besides mathematical formulae. Some LATEX commands which internally use
math mode (like tabular or \textsuperscript) are redefined accordingly when
the colormath option is given (this is a potential source of trouble; beware of
problems. . .).

If you need to use math mode for something which is not to be colored (like a
symbol for itemize), you can use the \origmath command which works exactly
like \ensuremath but doesn’t color its argument. If a nested use of math mode
should occur in the argument of \origmath, it will again be colored.

Documenting TEX code:
\code Simple command for typesetting code (like shell commands).

\macroname For \macro names. Like \code, but with a \ in front.

\commandapp[〈opt arg〉]{〈command〉}{〈arg〉} For TEX commands. 〈arg〉 stands for

the command argument, 〈opt arg〉 for an optional argument.

\carg For 〈macro arguments〉.

Additional emphasis commands:
\underl Additional emphasis command. Can be used like \emph. Defaults to bold

face if the colorhighlight option is not given.

26

\concept Additional emphasis command, especially for new concepts. Can be aug-
mented by things like automatic index entry creation. Also defaults to bold face
if the colorhighlight option is not given.

\inactive Additional emphasis command, this time for ‘de-emphasising’. There
is no sensible default if the colorhighlight option is not given, as base
LATEX doesn’t offer an appropriate font. In this case, \inactive defaults to
\monochromeinactive, which does nothing.

You can (re-)define \monochromeinactive to provide some sensible behaviour in
the absence of colors, for instance striking out if you’re using the soul package.

Color Highlighting:
\present Highlighting command which puts its argument into a

box with colored background . Defaults to an \fbox if the colorhighlight

option is not given.

See section 3.6 for some further highlighting commands.

5.8 Predefined standard colors

In previous subsections, it has been mentioned that TEXPower predefines some standard
colors which have appropriate values in the predefined color sets whitebg, lightbg,
darkbg, and blackbg (see sections 5.1 to 5.3 for further information on standard colors,
color sets, and customization).

color: pagecolor Background color of the page. Is set automatically at the beginning
of the document if color management is active.

color: textcolor Color of normal text. Is set automatically at the beginning of the
document if color management is active.

color: emcolor Color used for emphasis if the coloremph option is set.

color: altemcolor Color used for double emphasis if the coloremph option is set.

color: mathcolor Color used for math a2 + b2 = c2 if the colormath option is set.

color: codecolor Color used by the \code command if the colorhighlight option
is set.

color: underlcolor Color used by the \underl command if the colorhighlight

option is set.

color: conceptcolor Color used by the \concept command if the colorhighlight

option is set.

27

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html

color: inactivecolor Color used by the \inactive command if the colorhighlight
option is set.

color: presentcolor Color used as background color by the \present command if
the colorhighlight option is set.

color: highlightcolor Color used as background color by the \highlightboxed and

\highlighttext commands (see section 3.6) if the colorhighlight option is set.

6 Structured page backgrounds and panels

6.1 Structured page backgrounds

\backgroundstyle[〈options〉]{〈style〉} is the central command for structured page

backgrounds. It works like \pagestyle and other commands of this type. This means
〈style〉 is a symbolic name specifying the general method by which the page background
is constructed.

The detailed construction is influenced by parameters which can be set in 〈options〉.
If given, the optional parameter 〈options〉 should contain a list of settings in “keyval”
manner. The keyval method is based on associating a symbolic name with every pa-
rameter. 〈options〉 is then a comma-separated list of parameter settings of the form
〈name〉=〈value〉, where 〈name〉 is the symbolic name of the parameter to be set and
〈value〉 is the value it is to be set to.

Not every 〈style〉 evaluates every parameter. In the following, a description of all
styles, together with lists of the parameters employed, is given. It is followed by a list of
all parameters. Note that some parameter names internally access the same parameter.
For instance, parameters startcolor and startcolordef both set the start color of a
color gradient. In case of conflict, the last setting in the list 〈options〉 will prevail. It
is noted in the list of parameters which other parameters are overwritten.

〈style〉 may have one of the following values:

Style: none No background. This means the page background is whatever it would

be if \backgroundstyle wasn’t used at all (for instance, a plain area of color
pagecolor if one of the color options has been given).

Parameters used: none.

Style: plain Plain background. This means the page background is whatever it would

be if \backgroundstyle wasn’t used at all (as for no background). In addition
to background style none, the background style plain does produce panel back-
grounds. The colors and dimensions of a top panel, bottom panel, left panel,
and right panel can be specified.

Parameters used: hpanels, autopanels, toppanelcolor, bottompanelcolor,
leftpanelcolor, rightpanelcolor, toppanelcolordef,

28

bottompanelcolordef, leftpanelcolordef, rightpanelcolordef,
toppanelheight, bottompanelheight, leftpanelwidth, rightpanelwidth.

Style: vgradient Vertical gradient. The page background is constructed using the
\vgradrule command. In addition to the usual parameters of gradient rules, the
vgradient background style allows to leave space for headers, footers, or panels.
The colors and dimensions of a top panel, bottom panel, left panel, and right

panel can be specified. The gradient rule fills the rectangular space left between
the specified panels.

Parameters used: stripes, firstgradprogression, startcolor,
startcolordef, endcolor, endcolordef in addition to the parameters used for
style plain.

Style: hgradient Horizontal gradient. The page background is constructed using the
\hgradrule command. See the description of \vgradient concerning panels.

Parameters used: See list for style vgradient.

Style: doublevgradient Double vertical gradient. The page background is con-
structed using the \dblvgradrule command. See the description of \vgradient
concerning panels.

Parameters used: gradmidpoint, secondgradprogression, midcolor,
midcolordef in addition to the parameters used for style vgradient (and
plain).

Style: doublehgradient Double horizontal gradient. The page background is con-
structed using the \dblhgradrule command. See the description of \vgradient
concerning panels.

Parameters used: See list for doublevgradient.

Now, a list of all parameters and their meaning. In the following,

〈n〉 denotes a (calc expression for a) nonnegative integer

〈i〉 denotes a (calc expression for an) integer

〈r〉 denotes a fixed-point number

〈l〉 denotes a (calc expression for a) length

〈c〉 denotes the name of a defined color

〈cm〉 denotes a valid color model name (in the sense of the color package)

〈cd〉 denotes a valid color definition (in the sense of the color package) wrt a given 〈cm〉
parameter

29

〈t〉 denotes a ‘truth value’ in the sense of the ifthen package: either true or false. As
usual for keyval, if =〈t〉 is omitted, the default true is assumed.

Option: stripes=〈n〉 Set the 〈stripes〉 parameter of gradient rules to 〈n〉.
Default: \bgndstripes.
Used by: vgradient, hgradient, doublevgradient, doublehgradient.

Option: gradmidpoint=〈r〉 Set the 〈midpoint〉 parameter of double gradient rules to

〈r〉.
Default: \bgndgradmidpoint
Used by: doublevgradient, doublehgradient

Option: firstgradprogression=〈i〉 Set the first gradient progression of gradient

rules to 〈i〉.
Default: \bgndfirstgradprogression
Used by: vgradient, hgradient, doublevgradient, doublehgradient

Option: secondgradprogression=〈i〉 Set the second gradient progression of double

gradient rules to 〈i〉.
Default: \bgndsecondgradprogression
Used by: doublevgradient, doublehgradient

Option: startcolor=〈c〉 Set the 〈startcolor〉 parameter of gradient rules to 〈c〉.
Default: If neither startcolor nor startcolordef is given, the color bgndstartcolor is
used as startcolor.
Used by: vgradient, hgradient, doublevgradient, doublehgradient
Overwrites: startcolordef

Option: startcolordef={〈cm〉}{〈cd〉} Set the 〈startcolor〉 parameter of gradient

rules to color foo, which is obtained by \definecolor{foo}{〈cm〉}{〈cd〉}. Note
that the two pairs of curly braces are mandatory.
Default: If neither startcolor nor startcolordef is given, the color bgndstartcolor is
used as startcolor.
Used by: vgradient, hgradient, doublevgradient, doublehgradient
Overwrites: startcolor

Option: endcolor=〈c〉 Set the 〈endcolor〉 parameter of gradient rules to 〈c〉.
Default: If neither endcolor nor endcolordef is given, the color bgndendcolor is
used as endcolor.
Used by: vgradient, hgradient, doublevgradient, doublehgradient
Overwrites: endcolordef

Option: endcolordef={〈cm〉}{〈cd〉} Set the 〈endcolor〉 parameter of gradient rules

to color foo, which is obtained by \definecolor{foo}{〈cm〉}{〈cd〉}. Note that
the two pairs of curly braces are mandatory.

30

Default: If neither endcolor nor endcolordef is given, the color bgndendcolor is
used as endcolor.
Used by: vgradient, hgradient, doublevgradient, doublehgradient
Overwrites: endcolor

Option: midcolor=〈c〉 Set the 〈midcolor〉 parameter of double gradient rules to 〈c〉.
Default: If neither midcolor nor midcolordef is given, the color bgndmidcolor is
used as midcolor.
Used by: doublevgradient, doublehgradient
Overwrites: midcolordef

Option: midcolordef={〈cm〉}{〈cd〉} Set the 〈midcolor〉 parameter of double gradient

rules to color foo, which is obtained by \definecolor{foo}{〈cm〉}{〈cd〉}. Note
that the two pairs of curly braces are mandatory.
Default: If neither midcolor nor midcolordef is given, the color bgndmidcolor is
used as midcolor.
Used by: doublevgradient, doublehgradient
Overwrites: midcolor

Option: hpanels=〈t〉 Specifies the ‘direction’ of panels produced. hpanels=true

means the top and bottom panel span the full width of the screen. In the space
left in the middle, the left panel, the background itself, and the right panel are
displayed. hpanels=false means the left and right panel span the full height of the
screen. In the space left in the middle, the top panel, the background itself, and
the bottom panel are displayed.
Default: hpanels=true is the default for plain, hgradient and doublehgradient.
hpanels=false is the default for vgradient and doublevgradient.
Used by: plain, vgradient, hgradient, doublevgradient, doublehgradient

Option: autopanels=〈t〉 Specifies whether the default values of the parameters top-

panelheight, bottompanelheight, leftpanelwidth, rightpanelwidth should be calcu-
lated automatically from the contents of declared panels. The automatism used is
analogous to that of \DeclarePanel*. Note that for panel arrangement, both the
width and the height of all declared panels are overwritten. If you don’t want this,
calculate the panel parameters yourself and set autopanels=false. In this case, the
current panel dimensions of declared panels are used as defaults for toppanelheight,
bottompanelheight, leftpanelwidth, rightpanelwidth.
Default: true.
Used by: plain, vgradient, hgradient, doublevgradient, doublehgradient

Option: 〈pos〉panelheight=〈l〉 Set the height/width of the space left for the top /

bottom / left / right panel to 〈l〉. Note that the remaining dimensions of panels,
for instance the width of the top panel, are always calculated automatically, de-
pending on the setting of the hpanels parameter.

31

Default: If a respective panel has been defined using \DeclarePanel, the de-
fault used depends on the setting of the autopanels parameter. If autopan-
els=true, the correct dimension is calculated from the contents of the panel. The
respective one of \toppanelheight, \bottompanelheight, \leftpanelwidth,
\rightpanelwidth is overwritten with the result. If autopanels=false, then the
respective setting of \toppanelheight, \bottompanelheight, \leftpanelwidth,
\rightpanelwidth is taken as the default. If a panel has not been de-
clared, the appropriate one of \bgndtoppanelheight, \bgndbottompanelheight,
\bgndleftpanelwidth, \bgndrightpanelwidth is used as default.
Used by: plain, vgradient, hgradient, doublevgradient, doublehgradient

Option: 〈pos〉panelcolor=〈c〉 Set the color of the space left for the top / bottom /

left / right panel to 〈c〉.
Default: The standard colors toppanelcolor, bottompanelcolor, leftpanelcolor,
rightpanelcolor are used as defaults.
Used by: plain, vgradient, hgradient, doublevgradient, doublehgradient
Overwrites: toppanelcolordef bottompanelcolordef leftpanelcolordef rightpanelcol-
ordef

Option: 〈pos〉panelcolordef={〈cm〉}{〈cd〉} Set the color of the space left for the

top / bottom / left / right panel to color foo, which is obtained by
\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the two pairs of curly braces are
mandatory.
Default: See the description of top/bottom/left/rightpanelcolor.
Used by: plain, vgradient, hgradient, doublevgradient, doublehgradient
Overwrites: toppanelcolor bottompanelcolor leftpanelcolor rightpanelcolor

6.2 Panel-specific user level commands

If you’re using a package that has it own panel (as pdfscreen) don’t even consider using
the following.

\DeclarePanel[〈name〉]{〈pos〉}{〈contents〉} declares the contents 〈contents〉 of

the panel at position 〈pos〉. Afterwards, on every page the panel contents are set in
a parbox of dimensions and position specified by 〈pos〉panelwidth, 〈pos〉panelheight,
\panelmargin and 〈pos〉panelshift for top and bottom panels and 〈pos〉panelraise for
left and right panels. The parbox is constructed anew on every page, so all changes
influencing panel contents or parameters (like a \thepage in the panel contents) are
respected.

The panel contents are set in color 〈pos〉paneltextcolor. There is another standard
color 〈pos〉panelcolor, which is however not activated by \DeclarePanel but by selecting
an appropriate background style.

Note that \backgroundstyle must be called after the panel declaration.
Pages are constructed as follows: first the page background, then the panels, and

then the page contents. Hence, panels overwrite the background and the page contents

32

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfscreen.html

overwrite the panels. The user is supposed to make sure themselves that there is enough
space left on the page for the panels (document class specific settings). The panel
declaration is global. A panel can be ‘undeclared’ by using \DeclarePanel{〈pos〉}{}.

If the optional argument 〈name〉 is given, the panel contents and (calculated) size will
also be stored under the given name, to be restored later with \restorepanels. This
is nice for switching between different sets of panels.

For an example look at the files simplepanel.tex and panelexample.tex. A very
simple example follows:

\DeclarePanel{left}{%

\textsf{Your Name}

\vfill

\button{\Acrobatmenu{PrevPage}}{Back}

\button{\Acrobatmenu{NextPage}}{Next} }

There is a starred version which will (try to) automatically calculate the ‘flexible’
dimension of each panel. For top and bottom panels this is the height, for left and
right panels this is the width. Make sure the panel contents are ‘valid’ at the time
\DeclarePanel* is called so the calculation can be carried out in a meaningful way.

While the automatic calculation of the height of top and bottom panels is trivial
(using \settoheight), there is a sophisticated procedure for calculating a ‘good’ width
for the parbox containing the panel. Owing to limitations set by TeX, there are certain
limits to the sophistication of the procedure.

For instance, any ‘whatsits’ (specials (like color changes), file accesses (like \label),
or hyper anchors) or rules which are inserted directly in the vertical list of the parbox
‘block’ the analysis, so the procedure can’t ‘see’ past them (starting at the bottom of
the box) when analysing the contents of the parbox.

The user should make sure such items are set in horizontal mode (by using
\leavevmode or enclosing stuff in boxes). Furthermore, only overfull and underfull
hboxes which occur while setting the parbox are considered when judging which width
is ‘best’. This will reliably make the width large enough to contain ‘wide’ objects like
tabulars, logos and buttons, but might not give optimal results for justified text. vboxes
occurring directly in the vbox are ignored.

Note further that hboxes with fixed width (made by \hbox to...) which occur directly
in the vbox may disturb the procedure, because the fixed width cannot be recovered.
These hboxes will be reformatted with the width of the vbox, generating an extremely
large badness, unsettling the calculation of maximum badness. To avoid this such hboxes
should be either contained in a vbox or set in horizontal mode with appropriate glue at
the end.

33

6.3 Navigation buttons

The following provides only the very basics for navigation buttons. If you’re using a
package that has it’s own naviagtion buttons (as pdfscreen) don’t even consider using
the following.

\button{〈navcommand〉}{〈text〉} creates a button labelled 〈text〉 which executes

〈navcommand〉 when pressed. The command takes four optional arguments (left out
above): 〈width〉, 〈height〉, 〈depth〉 and 〈alignment〉 in that order. 〈navcommand〉
can be for instance \Acrobatmenu{〈command〉} or \hyperlink{〈target〉} (note that
〈navcommand〉 should take one (more) argument specifying the sensitive area which is
provided by \button). If given, the optional parameters 〈width〉, 〈height〉, and 〈depth〉
give the width, height and depth, respectively, of the framed area comprising the button
(excluding the shadow, but including the frame). Default are the ‘real’ width, height
and depth, respectively, of 〈text〉, plus allowance for the frame. If given, the optional
parameter 〈alignment〉 (one of l,c,r) gives the alignment of 〈text〉 inside the button
box (makes sense only if 〈width〉 is given).

The button appearence is defined by some configurable button parameters:

\buttonsep Space between button label and border. (Default: \fboxsep)

\buttonrule Width of button frame. (Default: 0pt)

\buttonshadowhshift Horizontal displacement of button shadow. (Default:
0.3\fboxsep)

\buttonshadowvshift Vertical displacement of button shadow. (Default:
0.3\fboxsep)

A list of predefined buttons follows:

\backpagebutton[〈width〉] Last subpage of previous page.

\backstepbutton[〈width〉] Previous step.

\gobackbutton[〈width〉] ‘Undo action’ (go back to whatever was before last action).

\nextstepbutton[〈width〉] Next step.

\nextpagebutton[〈width〉] First subpage of next page.

\nextfullpagebutton[〈width〉] Last subpage of next page.

\fullscreenbutton[〈width〉] Toggle fullscreen mode.

34

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfscreen.html

Index

\activatestep, 12
active, see \stepwise

\addTPcolor, 20
\afterstep, 17
altemcolor, 27
automata package, 8

\backgroundstyle, 28
\backgroundstyle macro options

doublehgradient, 29
doublevgradient, 29
hgradient, 29
none, 28
plain, 28
vgradient, 29

\backpagebutton, 34
\backstepbutton, 34
\blackbackground, 21
blackbackground, see texpower package

options
blackbg, 21
bookclass, see powersem package options
\boxedsteps, 11
\bstep, 14
\button, 34
\buttonrule, 34
\buttonsep, 34
\buttonshadowhshift, 34
\buttonshadowvshift, 34

calcdimensions, see powersem package
options

\carg, 26
\code, 26
codecolor, 27
\colorbetween, 24
coloremph, see texpower package options
colorhighlight, see texpower package

options
colormath, see texpower package options
\commandapp, 26
\concept, 27
conceptcolor, 27

\currentpagevalue, 5

\darkbackground, 21
darkbackground, see texpower package

options
darkbg, 21
\dblhgradrule, 29
\dblvgradrule, 29
\DeclarePanel, 32
\DeclarePanel*, 33
\defineTPcolor, 20
\dimcolor, 23
\dimcolors, 23
\dimlevel, 22
dimmed color variant, 22
display, see texpower package options,

see texpower package switches, see
powersem package options

\displayboxed, 13
\displayidentical, 13
\displaystepcontents, 12
doublehgradient, see \backgroundstyle

macro options
doublevgradient, see \backgroundstyle

macro options
\dstep, 15
\dumpcolorset, 21

emcolor, 27
\enhancecolor, 23
\enhancecolors, 23
enhanced color variant, 22
\enhancelevel, 22

firstactivation, see \stepwise

firstpage.n, 6
firststep, see \stepwise

fixcolorstack, see texpower package op-
tions

fixseminar package, 8
fragilesteps, 11
\fullscreenbutton, 34

\gobackbutton, 34

35

hgradient, see \backgroundstyle macro
options

\hgradrule, 29
\hidedimmed, 14
\hideignore, 13
\hidephantom, 13
\hidestepcontents, 12
\hidetext, 13
\hidevanish, 13
\highlightboxed, 14
\highlightboxsep, 14
highlightcolor, 28
\highlightenhanced, 14
\highlighttext, 14
hyperref package, 6

\inactive, 27
inactivecolor, 28

KOMA, see powersem package options

\lightbackground, 21
lightbackground, see texpower package

options
lightbg, 21
\liststepwise, 12

\macroname, 26
mathcolor, 27
\mkfactor, 25
\movie, 15
\multistep, 15

\nextfullpagebutton, 34
\nextpagebutton, 34
\nextstepbutton, 34
\nonboxedsteps, 11
none, see \backgroundstyle macro op-

tions

oldfiltering, see texpower package op-
tions

\oldfilteringoff, 5
\oldfilteringon, 5
\origmath, 26
\overlays, 15

page.n, 6
pagecolor, 27
\pageDuration, 19
\pageTransitionBlindsH, 18
\pageTransitionBlindsV, 18
\pageTransitionBoxI, 18
\pageTransitionBoxO, 18
\pageTransitionDissolve, 18
\pageTransitionGlitter, 19
\pageTransitionReplace, 19
\pageTransitionSplitHI, 18
\pageTransitionSplitHO, 18
\pageTransitionSplitVI, 18
\pageTransitionSplitVO, 18
\pageTransitionWipe, 18
\parstepwise, 12
\pause, 9
\pausesafecounter, 6
plain, see \backgroundstyle macro op-

tions
powersem class, 7
powersem package options

bookclass, 7
calcdimensions, 7
display, 7
KOMA, 7
reportclass, 7
truepagenumbers, 7
UseBaseClass, 7

\present, 27
presentcolor, 28
printout, see texpower package options
psspecialsallowed, see texpower pack-

age switches

\rebstep, 16
\redstep, 16
reportclass, see powersem package op-

tions
\restep, 16
\reswitch, 16
\revstep, 16

soul package, 6

36

\step, 10
step, see \stepwise

stepcommand, see \stepwise

\steponce, 15
\stepwise, 9

active (boolean), 17
firstactivation (boolean), 17
firststep (counter), 17
step (counter), 17
stepcommand (counter), 17
totalsteps (counter), 17

\stopAdvancing, 15, 19
\switch, 14

texpower package options
blackbackground, 22
coloremph, 25
colorhighlight, 25
colormath, 25
darkbackground, 22
display, 3
fixcolorstack, 4
lightbackground, 22
oldfiltering, 4
printout, 3
verbose, 3
whitebackground, 22

texpower package switches
display, 5
psspecialsallowed, 4
TPcolor, 5

textcolor, 27
totalsteps, see \stepwise

TPcolor, see texpower package switches
tpcolors.cfg, 5
tplists package, 8
tpoptions.cfg, 5
tpsettings.cfg, 5
tpslifonts package, 8
truepagenumbers, see powersem package

options

\underl, 26
underlcolor, 27

UseBaseClass, see powersem package op-
tions

\usecolorset, 21

\vanishcolors, 25
verbose, see texpower package options
vgradient, see \backgroundstyle macro

options
\vgradrule, 29
\vstep, 15

\whitebackground, 21
whitebackground, see texpower package

options
whitebg, 21

37

	Usage and general options
	General options
	Side effects of page contents duplication
	Setting the base font
	Switches
	Configuration files
	Miscellaneous commands
	Page Anchors
	Dependencies on other packages
	What else is part of the TeXPower bundle?

	The \pause command
	The \stepwise command
	fragilesteps environment
	\boxedsteps and \nonboxedsteps
	Custom versions of \stepwise
	Starred versions of \stepwise commands
	The optional argument of \stepwise
	Customizing the way <stepcontents> is diplayed
	Variants of \step
	Optional arguments of \step
	Finding out what's going on
	\afterstep

	Page transitions and automatic advancing
	Page transitions
	Automatic advancing of pages

	Color management, color emphasis and highlighting
	Standard colors
	Color sets
	Color Background Options
	Color variants
	Miscellaneous color management commands
	Color Emphasis and Highlighting
	New commands for emphasis and highlighting elements
	Predefined standard colors

	Structured page backgrounds and panels
	Structured page backgrounds
	Panel-specific user level commands
	Navigation buttons

