
Documentation for theegpeirce LATEX package
For version1.0.0, 20/3 2023

Jukka Nikulainen1

1 I would like to extend my heartfelt
gratitude to Prof. Ahti-Veikko Pietari-
nen for his continued support and
for initiating and leading the projects
that led, among many other interesting
things, to the creation of this package.

I acknowledge with much apprecia-
tion Dr. Marc Champagne for insightful
critical comments on an earlier draft of
this documentation. I'm indebted to
Dr. Minghui Ma ( l � ‰) for helping
debug many eg commands and to
Prof. Francesco Bellucci for debugging
the commands for the linear notation.

jukka.nikulainen@iki.fi

7!

\usepackage{egpeirce}

...
\let\everygraphhook\Large

\definecolor{pale _red}{rgb}{0.86,0.51,0.42}
\renewcommand{\licolour}{pale _red}
\setlength{\ligaturewidth}{2.2pt}

{\it \color{pale _red} %
%
\ontop{ \strut \hk{x} \\ %
\vscroll{ \hk{y} }{ \hk{y} } \\ %
\strut \hk{z} } %
%
}

\reflexivel{1}{2}
\reflexiver{2}{3}
\reflexivel{3}{4}

\setcounter{rheme}{0} \renewcommand{\licolour}{black }

7!

x
y
y
z

...

7!

\renewcommand{\cutxfillcolour}{lightgray}

{\it \colouredcutstrue
%
\ontopl{ %
\ \ \,\hk{man}\strut\\ %
\vcut{ \ontopl{ \ \hk{owes} \ \ \ \,\hk{}\\ %
\vcut{\hk{will pay} }} }\\ %
\ \ \,\hk{man}\strut
}
%
\colouredcutsfalse}

\reflexivel{1}{2}
\li{2}{3}
\reflexiver{3}{4}
\reflexivel{4}{5}

\setcounter{rheme}{0}

7!

man

owes
will pay

man

...

7!

\debugmodetrue \notinlinetrue

{\it \vcut{
%
\hk{m} \ \ \ \hk{} \
\ontop{\hk{r}\strut\\\strut\\\hk{r}\strut} \ \
%
\ontopl{ %
\ \ \hk{}\\
\hk{}\\
\ \begin{inline}\cut{\hk{$\bullet$}}\end{inline}
}
%
}}

\li{1}{2} \upright{2}{3} \downright{2}{4}
\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,angleA=10,angleB=135]{3}{5}
\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,angleA=-10,angleB=225]{4}{7}
\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,angleA=315,angleB=45]{5}{6} =45]{-g}{5}{6}
\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,angleA=225,angleB=45]{6}{4} =45]{g-}{6}{4}
\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,angleA=315,angleB=135]{-b}{3}{6} 135]{3}{6}
\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,angleA=315,angleB=45]{b-}{6}{7} =45]{6}{7}

m
r

r �

B

B7! m1 2

r 3

r 4

5

�7

A song of the roll ing earth , and of words according,
Were you thinking that those were the words, those upright li nes?

those curves, angles, dots?
No, those are not the words, the substantial words are in the

ground and sea,
They are in the air, they are in you.

...
—Walt Whitman (1856)



Contents

How to read this document 2

Some preliminaries on using the package 3

Introduction to LATEX syntax 4

Some commands used in this document 5

Commands for drawing EGs 5

Thea-system and cuts 6

Theb-system and ligatures 9

Theg-system . . . 12

Examples of graphs 13

Simple cuts and ligatures 14

Nonstandard scrolls and complex graphs 16

Ugly hacks 19

Some dif�cult cases and their solutions 21

Mutable parameters of the package 21

Some handy PostScript commands 22

Peirce's logical symbols 23

Ideas on further development of the package26

Introduction to LATEX 28

What is it . . . 28

. . . and why use it? 29

Recommended further reading 30

References 30

Keyword & Command Index 30

Visual Index 31

How to read this document

To understand this documentation, no previous knowledge of LATEX2 2 Pronounced ["lA:tEX]/ ["le�tEX], roughly
l̀ay -tekh'. From the Greek word tèqnh.is strictly required. Its syntax is tersely explained in the beginning

and code examples later on are hopefully instructive. It is, however,
tacitly assumed that the reader is familiar with existential graphs. 3 3 Good sources to get up to speed with

egs are Roberts (1973) and Peirce (2023).If you've never used LATEX before, I highly suggest you read the
short history from page 28 and consult the recommended further
readings listed on page 30.

The commands the egpeirce package provides are introduced
from page 5 and a few examples are presented. The examples also
introduce general strategies on coping with complex graphs . Unless
you are transcribing graphs from manuscripts, you probably don't
need to delve into the inner workings of the code (page 16 onward). 4

4 Finally, if you are a TEXnician, we need
your help!

Please see e.g. pages7 and 19 and
help us �nd better solutions to these
nuisances or problematic cases.



3 egpeirce documentation

Some preliminaries on using the package

egpeirce is a LATEX package intended for drawing existential graphs5 5 As well as linear logical operators and
logical symbols (see page23 onvards).that were invented and developed by the philosopher and poly math

Charles S. Peirce (1839–1914).
The current version of egpeirce only supports drawing existential

graphs. Speci�cally, it does notcheck or assure that proper syntactic
rules are obeyed (see page6 for a crude error case).

This is because the package is primarily designed for transcrib-
ing graphs from Peirce's manuscripts. Many of these graphs h ave
unusual features and too much automation would have been a hi n-
drance. See page26 for ideas on further development of the package.

The packagedoesenable your document to include graphs without
having to resort to external image �les and it doesautomate many
of the more tedious aspects of vectorizing graphs. The graphs are
described in relatively simple and straightforward code an d when
you compile your document, LATEX does the actual drawing for you.

The package depends heavily on PostScript commands and
the PsTricks LATEX package that interfaces them. Therefore the stan-
dard dvi output �le is not capable of displaying the graphs, al-
though it does contain all the data. Furthermore most native pdf
compilers—such aspdfLaTeX —cannot directly process the source �le. on compatible compilers and

converters , LATEX, X ELATEXCompiling the source �le with L ATEX requires you to use a con-
verter like DVItoPS on the output �le as well (and PStoPDF on the
ensuing .ps �le if you want to produce pdf documents). For ex-
ample X ELATEX is able to process thePostScript commands natively
but can be quite slow and generally seems to produce slightly larger
pdf �les than the LATEX ! DVItoPS ! PStoPDF method.

There are packages that attempt to automatically and on-the-�y
wrap the PostScript commands so compilers like pdfLaTeX could
accept the source. At the time of writing this, these packages are still
experimental or at least quite unreliable or inconsistent.

At the time I began writing the code, pgf/ Tik Z was considered a on pgf / Tik Z

newish, un�nished project and I therefore opted to use the mo re ma-
ture and stable PostScript backend. Using pgf/ Tik Z as the draw-
ing backend would lift the restrictions on using e.g. pdfLaTeX men-
tioned above. The code does rely on PsTricks and some Ps-tricks,
refactoring around pgf/ Tik Z would be possible, though not trivial.

Throughout this document the following typographical con-

Input

Output

An {\it example} graph: \cut{ < space> }

An example graph:

ventions are adopted. All verbatim code snippets are typese t in
monospace typewriter text and all placeholder metasyntactic vari-
ables are typeset in <angle bracketed aurical>. The dotted lines point to
examples, the solid lines represent the path from the input t o output.



introduction to LATEX syntax 4

Introduction to LATEX syntax

Following is a very conciseintroduction to the syntax of L ATEX. The
aim is to enable someone without prior knowledge about it to f ollow
and understand this document.

Learning to write LATEX is well beyond the purview of this docu-
mentation. Find a list for further reading to that end on page 30.

In order to distinguish commands from text, LATEX includes reserved special characters

reserved special characters. They are:#, $, %, &, { , } , \ , ^ , _ and ~. If
you enter these directly as text they will not print and when m isused
will stop compilation and give error messages.

The most interesting special character is the backslash:\ . Among
other things it always denotes the start of a command followe d by
the command name and possibly some arguments.

The curly brackets serve a double-function either as delimi ting the
scopeof a command or enclosing its argumentsif it uses them. scope of a command

The commands \textit and \it for example italicize text. If a
scope is not speci�ed for \it all text after its invocation will be ef-
fected, whereas \textit{} accepts an argument. The above italiciza-
tion of a single word is done either by scoping, {\it italicize} , or
by using the brackets to de�ne the argument: \textit{italicize} .

It's important to understand and pay attention to proper sco ping
when you draw complexly and multiply nested graph elements.

M ore complex transformations in LATEX are handled with
environments, and the egpeirce package uses them too. They are
scoped and introduced with \begin{< environmentname>} which must
be matched with a closing \end{< environmentname>} . counters , Boolean switches ,

global scopeThe egpeirce package uses also counters and Boolean switches.
Commands set their values. These commands have a global scope in
the sense that (mostly) regardless of when or in which scope they are
set, their value will remain unchanged until they are explic itly reset.

Commands can have multiple, though at most eight, arguments.
The number of arguments a command does have is prede�ned and
generally cannot be changed, although it may be possible to l eave
some of them empty. If an argument can be left empty, this is al ways
speci�cally mentioned.

Some commands can acceptoptional arguments. They are enclosed, optional arguments , starred
commandscomma separated, in square brackets preceding the compulsory ones

and default to a prede�ned value if not used.
A starred commandis another common LATEX mechanism to have

alternative behaviour for a command. The package uses them too so
that the command namespace does not in�ate and that understa nd-
ably named commands can have alternative behaviour. Type in the
asterisk ( * ) after the command name to use the alternate versions.

Generally speaking, then, a full LATEX command follows the form:
\commandname[< opt. arg1>,< opt. arg2>, . . . ]{< arg1>}{< arg2>} . . . {< arg8>} .



5 egpeirce documentation

Some commands used in this document

A few other common LATEX commands are explained below as they
are used extensively in the code examples.

By default LATEX will ignore multiple, consecutive empty spaces
left in the source text. Also the space after a command name won't
print in the output. Backslash with a space ( \ ) creates the extra
empty space and backslash + comma (\, ) a smaller empty space.

Although \ is a font-speci�c length and you can create longer
stretches of empty space with it ( \ \ \ . . . ), there are better options
for creating long spaces. \ hphantom{< text>} and \ vphantom{< text>} extra spaces & alignment of

graph -elementsclear horizontal and vertical empty space, respectively, of the length
and height of the �nally typesetdimensions of <text>. They are ex-
tremely handy when you must align graph-elements.

Notice that \hphantom{} has no height and \vphantom{} no length.
Both match the dimensions of their argument exactly: \vphantom{}

differentiates e.g. between the height of descenders and ascenders,
that is, for example between p and d . \strut creates a vertical space
equal to that between two consecutive lines.

Double backslashes \\ end the paragraph and start a new line. l inebreaking

As is brie�y discussed below in the short history of the langu age,
LATEX has a very elegant and robust system for hyphenation and lin e-
breaking. However, it's often desirable to manually preven t a line-
break in a speci�c place and force LATEX to �nd another solution.

Notice that by default LATEX can choose to break the line even
in the middle of a graph. Particularly with inline b-graphs, an un-
planned linebreak will usually result in syntactically and semanti-
cally erroneous graphs.

The tilde character ( ~ ) creates a non-breaking space. It will dis-
able a linebreak between two characters or monosyllabic wor ds. If ~ is
used between two polysyllabic words, LATEX may decide to hyphen-
ate and break either of the words. In these cases you may use for ex-
ample the \mbox{} command since it prevents a linebreak in its entire
scope. A suf�ciently long argument for \mbox will �ood into the margin and beyond the page, so do use it with caution.

The linebreaking algorithm considers entire paragraphs an d pages
at a time. Therefore it can be dif�cult to estimate correctly the cas-
cading effects a change early in a page can have on the subsequent
paragraphs. Although you should enclose large inline graph s in an
mbox as a precaution, leave �ne-tuning the hyphenation last.

Commands for drawing EGs

There are relatively few basic commands needed for drawing e xis-
tential graphs. Even complex graphs can be constructed using these
elements and there are often multiple ways to create similar results.

I will �rst cover the syntax and basic usage of the commands
needed for the three systems.



the a-system and cuts 6

By default and for legibility the package gives extra vertical space
to graphs and an equal, smallest height for cuts. There are two ways
to remove these restrictions and blend graphs better inline with text. inline graphs

The inline environment is meant for sporadic use. It has an op -
tional argument for linestretch that defaults to 0.5 so lineheights are
halved unless you set it to another value, e.g. \begin{inline}[0.3] . . .
\end{inline} . You can also declare the Boolean\notinlinefalse for
reduced graph space all around and reset the lineheight if an d when
needed with the {{\setstretch{< fraction>}< text>} command.

Large graphs and multiply nested cuts will still look bad inl ine.

Thea-system and cuts

Cuts are made with the \cut{< text>} command. Notice that you
, , A B , A B C , A B C ,

Smoke Fire

should specify space even inside an empty cut: \cut{} , \cut{ \ \ } .
Cuts can be nested arbitrarily many times by simply nesting t he com-
mands: \cut{\cut{< text>}} .

Sometimes the cuts in Peirce's manuscripts are clearly more oval
shaped. To reproduce this effect, the package has a Boolean switch
called ellipsecut . If you declare \ellipsecuttrue , all the cuts made
with the \cut command will appear more ellipse-like (declaring \el

lipsecutfalse reverts the behaviour). Be aware that the elliptical
cuts do have limitations with b-graphs (see page11) and that they
are generally much harder to successfully blend inline with text.

, A B , A , A B ,

Smoke Fire

Peirce often places elements on top of each other to clarify the
graph or save space. The\ontop{< above>\\< below>} command does

A

B
,

A

B C
,

A

B

C

this. The normal linebreak command speci�es the break point .
Arbitrarily many elements can be placed on top of each other.

However if cuts are nested on topof eachother, a new \ontop{} must
be declared at every level. So: \ontop{\cut{A}\\ \cut{B}\\ \cut{C}}

A

B

C

A

B

C

I am

�ushed

left

I am

�ushed

right

but when nested: \cut{\ontop{A\\ \cut{\ontop{B\\ \cut{C}}}}}

Text or graphs put ontop are horizontally centered with resp ect to
surrounding text, and the contents of the \ontop command are also
vertically centered. Especially in more complex graphs it i s often
convenient to have the contents automatically �ushed left or right.
The commands \ontop l{} and \ontop r{} do this.

Cuts in Peirce ' s manuscripts are most often circular or ellip-
tically shaped (though boxlike cuts exist too). The arc of a c ut is de-
�ned as a fraction of its height and width and the \cut{} command

A B

C D
,

A B

C D

attempts to preserve the circularity as much as possible.
Therefore if a cut has a high and wide area, the arcs will be large

too. If such a cut has cuts in it, this can easily cause them to intersect! !
The current version of the package does not know that this is h ap-
pening and can't give you a warning. Be aware of the possibili ty.

In these cases you can either add space between the cuts using\
or use the otherwise similar \vcut{} and \vvcut{} commands that
have a more conservative arc and thus the more boxlike appearance.

A B

C D
,

A B

C D



7 egpeirce documentation

Self -intersecting cuts dofeature in Peirce's system in the form
of scrolls. The commands needed for them are unfortunately slightly
more complicated than for cuts.

Scrolls can be horizontally or vertically aligned and the in tersec-
tion can point up or down and left or right. None of this change s the
interpretation but since they all feature in Peirce's manus cripts, we'll
need at least four commands.

A B A
B

B

A
B A

Scrolls take two arguments but you can leave either one empty.
Remember to specify space for the empty argument. \scroll{A}{B}

draws a small scroll. For the vertically aligned, use: \vscroll{A}{B} .
These are by far the most common ones and therefore considered the
basic shapes. `Inverse' scrolls have their own and similarl y behaving
commands: \inversescroll{}{} and \inversevscroll{}{} .

Like cuts, scrolls try to match Peirce's smooth, circular sh ape. If

There's smoke Fire There's smoke
Fire

the usual scrolls have lots of text in them, they still try to p reserve !
this shape and the results will look awful.

A `long' versions of the scroll, \longscroll{There's smoke}{Fire}

should be used in these cases. A vertically aligned long version of
scroll exists as well: \longvscroll{Antecedent}{The consequent} .
These scrolls automatically adjust their length depending on the ar-
guments. The `long' scrolls also have `inverse' versions. Following
this convention, there's e.g. the command \longinversevscroll{}{} .

There's smoke Fire

Antecedent
The consequent

There's smoke
Fire

Mortal
Man

A longside one -placed or unary scrolls, Peirce's system—and his
nachlaß—has examples of binary, ternary, and more generally n-ary
scrolls too. The \nscroll{} command is used for these. Since it has
to handle an arbitrary number of elements, its syntax is unus ual. It
acceptsonenonempty argument and the inloops are fed as a comma-
separated list: \nscroll{A,B} , \nscroll{A,B,C} , \nscroll{A,B,C,D} .
A starred version exists and has two arguments \nscroll * {A,B,C}{D} .

A B , A
B

C
, A

B
C

D

. A

B

C

D .

It places the contents of the second argument to the middle.
\nscrolldistance{0.12}
\nscrollwidth{0.08}
\nscroll{„}

A

B

C D \nscrolldistance{0.45}
\nscrollwidth{0.35}
\nscroll{ {{ \cut{A} }}

,{{ \cut{B} }},{{ C D }} }

A
B

C D

\nscroll{A,B,[0.75][0.52]
{ \scroll{C}{D} } }

A
B

p
C

\nscroll{A,B,[0.67][0.42]
{ $\sqrt{C}$ } }

The command distributes the inloops evenly along the circum fer-
ence of the outermost cut, but the lobes are not automatically ad-
justed to accommodate their contents. Commands \nscrollwidth

and \nscrolldistance govern the diameters of the inloops and their
distances from the center. You can also change the dimensions of any
lobe(s) one at a time by adding these values, respectively, as optional
arguments before the element(s).

These dimensions are reset after everynscroll back to their de-
fault values, contained in commands \defaultnscrollwidth and \de

faultnscrolldistance . They are unitless scalars (R+
> 0) and you have

to �gure out the proper values primarily by trial and error.
Unfortunately, if the list elements contain ( 1) more than one char-

acter, (2) any commands or (3) math mode code, they must be re-
grouped twice: {{ . . . }} (see the code examples in the margin). This
is a highly frustrating requirement arising from \@ifnextchar and
\pgffor -loop interacting. To any TEXnicians reading this : it would
be great if this regrouping could be avoided, preferably wit hout hav-
ing to change the otherwise simple syntax of the command.



the a-system and cuts 8

By default the �rst inloop is placed to the leftmost side of th e main
cut and the rest are distributed anticlockwise. The initial alignment
can be changed to an arbitrary angle by resetting a counter called
\nscrollangle (the angle values follow those of the mathematical
unit circle). \defaultnscrollangle contains the default setting.

\setcounter{nscrollangle}{< z>}

180°

A B

90°

A

B

-15°

AB

\defaultnscrollangle{< z>} z2 Z

Although the name \ nscroll suggests that it could accept n ele-
ments such that n 2 N, this is not strictly speaking true. Firstly \cut

already covers a 0̀scroll ' and although the elements themselves can
be empty, the command does expect to receive alist of such elements.
A `1scroll ' is much more ef�ciently covered by the different \scroll

commands (for example, because of the need for long scrolls).6

6 Secondly, the current code for the com-
mand (due to the way LATEX implements
its counters) imposes a hard limit of 231,
or 2 147 483 647, individual inloops.

Scrolls can be nested or iterated just like cuts. With b-graphs,
iterated scrolls have an unexpected side-effect: see the `third point'
on page 11. Slightly more complicated cases for scrolls will be in-

Once
Twice

Nested

Nested

The �rst
longvscroll

First

Nes-
ted

a
b

c d

troduced when I discuss further intricacies of the b-system (`second
point' on page 11). Page17and onward contain general solutions for
drawing rarely appearing `nonstandard' scrolls.

Cuts in Peirce ' s manuscripts are sometimes de�ned by coloured
regions. This is supported with a Boolean switch \colouredcutstrue .

, A B C , A B C ,

A

B

C

, A B , A , A B ,

Smoke Fire

First

Nes-
ted

Nes-
ted

First

Nes-
ted

Nes-
ted

A
B
A
B

A

B

A

B

A

C

A

C
B

A

B

C

A

B

C

D

After this declaration every evenly-nested (or non-nested ) cut will
be automatically shaded. Declare \colouredcutsfalse to revert the
behaviour. Although the Boolean can be �ipped even inside a g raph,
forcingshading on anysingle cut is more easily done with the \cut x{}

commands. See page21 on changing the colour of the shading.
Notice that no line is drawn between the shaded cuts. Peirce em-

phasized that the idea of a cut should be taken literally. Unlike lines,
cuts have no dimension which is also true of the transition be tween
contiguous coloured and non-coloured regions.

Since scrolls are special types of cuts, also they are subject to the
\colouredcuts Boolean. The mechanism that colours the scroll s is
however quite complex and should still be considered experi mental.

A few manuscripts contain g-graphs that employ tinctures and
heraldic colouring. This, however, is an altogether differ ent idea from
shading discussed above. See page22. Reproducing a “blot”, an
emptied or blacked out inner cut of a scroll, is discussed on p age 20.

So, for the a-system, there are the following basic commands:

\ontop{} \cut{} \scroll{}{} \longscroll{}{}

\ontopl{} \vcut{} \vscroll{}{} \longvscroll{}{}

\ontopr{} \vvcut{} \inversescroll{}{} \longinversescro ll{}{}

\inversevscroll{}{} \longinversevscroll{}{}

\cutx{}

\colouredcuts (true|false) \vcutx{} \nscroll * {} {}

\ellipsecut (true|false) \vvcutx{}

\notinline (true|false) \begin [] {inline} ... \end{inline}



9 egpeirce documentation

Theb-system and ligatures

Drawing a line-of-identity or ligature is a two-step proces s.
First you must de�ne two end points, hooks, to the ligature with

the \hk{} command. You can leave the argument empty or put text
in it for a rheme. Each hook is automatically assigned a number (by
default starting from 1) following the order in which they appear in
the code. Ligatures are then drawn using these numbers as reference. This is a graph Man Animal

The \li{}{} command draws a simple straight line. So for exam-
ple the commands \hk{} \ \hk{This is a graph} \li{1}{2} and
\hk{Man} \ \hk{Animal} \li{3}{4} both complete a simple b-graph.

Curved lines are always drawn with the standard \nccurve{}{}

command. Unfortunately it requires always de�ning—for bot h end
points—angles at which the line meets them. Doing this would be
tedious and repetitive to the extreme (and explained on page 22).
Thus the package hasshorthandsfor the most usual recurring types.

Consider for example a stacked graph like the one in the margi n.
It has two hooks at both ends (a, d) and two hooks ( b, c) ontop each
other in the middle: \hk{A} \ontop{\hk{B}\\\hk{C}} \hk{D} .

up

right

A

B

C

D

The ligatures of the example graph are drawn with the command s:
\upright{1}{2}\downright{1}{3}\rightdown{2}{4}\righ tup{3}{4}

The mnemonic is that—proceeding from left to right—the liga tures
�rst travel up or down and then to the right after which they �rst
point right and then turn up or down.

Other constantly recurring curved ligatures that warrant a short-
hand are the hopefully self-explanatory \sligature{}{} , here drawn
from a to b, \hsligature{}{} , here from c to d and semicircle-
shaped \reflexivel{}{} and \reflexiver{}{} commands (e, f ).

B

A

B

A

C

D

C

D

E
F

E

F

Notice that the ligature's curvature, and its exactpath on the sheet
of assertion, depends also on the placement of the hooks. You may
also wonder whether some shorthands are missing. Why isn't t here
e. g. a z̀ligature ' ? It would be super�uous because this shape can

B

A

B

A
be drawn by reversing the order of the arguments for an sligature .7

7 Similar considerations apply e. g. for a
`downleft ' ligature.Recall that a ligature is always drawn between a pair of hooks.

Thus if a ligature bifurcates, the bifurcation point (or “te ridentity” as
Peirce called it) must be assigned its own, empty, hook.

A
B

C
D

More frustratingly, this is also true of most ligatures that have to
evade—or cross—speci�c cuts on their path. There's no easy way to
automaticallyensure that a ligature stays inside or outside a speci�c
area. Since the interpretation of the graph is altered if a li gature
accidentally touches or traverses a cut, you must specify the proper
route of the ligature by deploying `auxiliary' empty hooks.

A
B

CI haven't been able to �nd an easy way around this requirement
(see page26 for some ideas). For Peirce, an essential feature of lig-
atures is their continuity but the package handles most liga tures in
a decidedly discontinuous manner. Complex (and bifurcatin g) liga-
tures must, alas, always be constructed out of discrete line segments.



the b-system and ligatures 10

L igatures must be able to contain gaps. It is of course possible
to make a `gap' simply by adding more hooks. However, gaps are an
essential part of the transformation rules of b-graphs and frequent in
proofs. Therefore the shorthands accept an optional argument [-g] ,
[g-] or [g-g] that leaves a small gap before the hook. The placement
of g speci�es at which end(s) the gap appears. See the examples in
the margin ( marks the exact location of the hook).

\li [-] {1}{2} \li [-] {2}{3}

B \li [-g] {1}{2} \li [-] {2}{3}

B \li [-] {1}{2} \li [g-] {2}{3}

B B \li [-g] {1}{2} \li [g-] {2}{3}

B BB \li [-g] {1}{2} \li [g-g] {2}{3}

A special type of `gap' is the bridge. It is needed when a graph
cannotbe drawn without two ligatures traveling across each other.

This can happen in surprisingly simple cases. The last example
graph on the cover page is a very good example. Readers versedin
modern graph theory will recall that somewhat more generall y, sim-
ple K5 and the complete bipartite graph K3,3

8 are both also nonplanar.

8 Also known as the ` Thompson graph'
or the `utility graph'. It shows the
impossibility of connecting two sets of
three vertices, such that every vertex of
the �rst set is connected to every vertex
of the second set, without at least one
edge overlapping another.

Admittedly in usual egs a bridge can often be avoided.
Nevertheless, this is a routing problem and it must somehow b e

made clear that the two ligatures don't belong together, as i t would
alter the interpretation of the graph. Peirce solved this in two ways:
either he left a gap and a bar at ends of the crossing ligature, or
carets to denote the overlap point. The optional arguments [-b]

and [-xb] —which behave otherwise similarly to a gap—draw them.

Often in more complex graphs the numbering and placement
of hooks can become disorientating to the point that it's har d to draw
the ligatures. To forestall this, the package has a Boolean switch
called \debugmode . When set to true , each hook has next to it, by
default in dark green (rede�nable with ` debugcolour ') , the number
that is associated with it. Compile the source with this decl aration

\debugmodefalse

(the default)

a

b
c
d
e

g

f

\debugmodetrue

a1 2 3

b 4

c5

d 6

e7

8 g9

f10

\definecolor{debugcolour}{rgb}{0,0.45,0}

and consult the output when coding the ligatures.

In a few cases the ligatures in Peirce's manuscripts connect di-
rectly to the rhemes with a tapering line. LATEX can emulate this
effect with a parameter called variableLW that applies to all line and
curve methods available in PSTricks :

w v
w

v
w

B

B

v
w

w
l v

w
v

w
w

The problem is that the exact position on the glyphs where the liga-
ture end connects to or departs from, differs not only betwee n (most
of) the letters, but is also dependent on the typeface (Computer Mod-
ern 10pt in the example above), the speci�c font (e.g. upright , italic ,
slanted, smallcap ) and often even on the point-size in use. For the
italic letter ` l ' in CMR10above, commands that draw a tapered curve
from the letter to the ligature or to the letter from the ligature are:

\newcommand{\li tol} {\pscurve[variableLW,startLW=0.1pt,endLW=1.3pt] (0.16,0.17)(0.09,0.16)(0.05,0.092)(-0.01,0.075) \ }
\newcommand{\li froml}{\pscurve[variableLW,startLW=0.1pt,endLW=1.3p t](0.00,0.03)(0.023,0.065)(0.07,0.08)(0.11,0.075) \ }

For the reasons mentioned above, the package does not contain
similar commands for all the letters in different typefaces and fonts.



11 egpeirce documentation

You can, however, use the commands above as templates to create
them. It should also be possible to devise a command that woul d
automatically append these different to and from commands based
on the contents of the hooks as well. Feel free to contact the author
if you really need something like this.

Cuts and ligatures do not interfere with each other and can be
used together mostly as you'd expect. Save for three observations.

Firstly , ligatures should be able to stop at the boundaries of cuts. a b a b

a

b

a
b

For normal cuts in horizontal alignment, simply put the hook
right next to the cut (or scroll): \hk{}\cut{< text>} . To stop a liga-
ture at the top or bottom of a cut, �rst use the inline environm ent to
get rid of extra space that would otherwise show. Then simply place
the hooks in an ontop -construction. You may still have to adjust the
empty hook with a suitable, small, \vphantom{} too, e.g. by using a
glyph (`.' in the example) that has an ascender or a descenderto have
the ligature reach the boundary of the cut.

Notice also that elliptical cuts cannot (at the moment) be us ed if
you want ligatures to touch the boundaries of cuts.

\begin{inline}
\ontop {\hk{a} \\ \\
\cut {\ontop{ \hk{\vphantom{.}} \\ \\ \ \ \ \ \ \ \ \ }}\\
\hk{\vphantom{.}}\\ \\
\hk{b}}
\end{inline}
\li{1}{2}\li{3}{4}\setcounter{rheme}{0}

Secondly , you should be able to stop a ligature at any boundary
in a scroll as well. However the inner boundaries are inaccessible in
the usual scrolls. Therefore all the scroll commands have alternative
starred versions that take �ve arguments to complete.

The arguments de�ne the edges and text places a scroll has, e.g.
\longvscroll � {< width of top cut>}{< text>}{< width of middle cut>}

{< text>}{< width of bottom cut>} . You must give a suitable amount of
empty space to the arguments that de�ne the cut widths. By pla cing
a \hk{} in such an argument you can make ligatures stop at the inner
cuts of a scroll as well.

Human
Featherless biped

a

As an unintended side-effect, by giving different amounts o f space
for the edges, you can also easily create all kinds of bizarrely shaped
scrolls.

Thirdly , and lastly, an unexpected behaviour arises with the hook
numbers in nested or iterated scrolls. The values are guaranteed
to increase monotonically but in nested scrolls they contai n gaps.
Again, \debugmodetrue will reveal the eventual numbers.

A s mentioned earlier , hooks are assigned a reference number
automatically. This is done with a LATEX counter called rheme . It is
also automatically reset to 0 at every new page, since there's very
little advantage in having a unique (and ultimately very lar ge) iden-
ti�er for every single hook.

The counter can be manually reset by: \setcounter{rheme}{< z>} .
You can reset it at any time to any Z . See the example on page18
on how you can use resetting the rheme counter to your advantage
in very complex graphs.



the g-system . . . 12

A logical scheme for resetting the counter is to set it to 0 at the end
of each graph (so that the �rst hook of the next graph is always num-
ber 1 ). This is not done automatically because there are reasonable
uses for different conventions.

It is indeed possible to have multiple similarly numbered ho oks on
the same page. When you draw the ligature, LATEX simply references
the last instance of the hook number it can �nd.

For the b-system, there are thus the commands:

\hk{} \li{}{}

\setcounter{rheme}{} \upright{}{} \scroll � {}{}{}{}{}

\downright{}{} \vscroll � {}{}{}{}{}

\debugmode (true|false) \rightdown{}{} \inversescroll � {}{}{}{}{}

\rightup{}{} \inversevscroll � {}{}{}{}{}

\sligature{}{} \longscroll � {}{}{}{}{}

\hsligature{}{} \longvscroll � {}{}{}{}{}

\reflexivel{}{} \longinversescroll � {}{}{}{}{}

\reflexiver{}{} \longinversevscroll � {}{}{}{}{}

Theg-system . . .

. . . was not fully developed by Peirce. Therefore also this section will
offer only an extremely cursory examination of the subject.

There are relatively few reliably and faithfully recurring g-graphs
in Peirce's manuscripts, although there are copious amount s of sepa-
rate ideas about the g-system.

One of the few recurring types of g-graph present in the ma-
nuscripts is the dashed or `broken' cut. The `g' (for g) series of
cut-commands ( \gcut{ \ \ } , \gvcut{ \ \ } and \gvvcut{ \ \ } )
which otherwise behave similar to the normal \ cut s, is assigned to
draw them. In the manuscripts, sometimes the `broken' cuts h ave

( , and )

clearly different types of dashes or dots producing the peri meter.
Consult page 22 on how to faithfully reproduce the different types
of dashes or dots.

Useful shorthand commands for representing Peirce's modal -logic
part of g-graphs are the commands \dbcut{} : , \pcut{} : and
\ncut{} : as these de�ne the modalities of necessity (\ncut{} ), pos-
sibility ( \pcut{} ) and the double broken cuts, with single separate
commands.

Also a special type of hook, \shk{} , (example in the margin) ap-
pears in multiple places in the manuscripts. The command is o nly
typographically different from a normal hook (that is, the h ook in-
cludes the `hat' or “envelope” as Peirce called it).

1 2 3 . . .



13 egpeirce documentation

M ost ideas in g-graphs seem to concern the colouration of cuts
or ligatures. Doing this is discussed in the “Handy PostScript com-
mands” section (page 22).

A nother highly interesting idea involves the three-dimensio-
nality of graphs and the sheet of assertion. Peirce provided few
actual examples of such graphs, so speci�c ideas of representing
this are up for grabs. As food for thought there does exist a pa ck-
age, pst-3d , that handles actual transformations for projective 3d. It
could easily be employed here too. Please consultThe LATEX Graphics
Companion(Goossens,2008, pp. 388–410).

G-graphs thus have only the following separatecommands, though
LATEX is certainly able to reproduce the different ideas present in
Peirce's manuscripts:

\gcut{} \dbcut{} \shk{}

\gvcut{} \pcut{}

\gvvcut{} \ncut{}

Finally , there's a particular command called \everygraphhook that gets
executed inside every graph-element and every \hk{} command.

By default, the command does nothing and it's de�nition is:

\newcommand{\everygraphhook}[1]{#1}

The point is that in the package code, this command or `hook' i s au-
tomatically included in every graph-element and you can red e�ne it
yourself to whatever effect you'd like. If, for example, you would like
to have text inside every graph automatically italicized, you can sim-
ply rede�ne the \everygraphhook command rather than manually
add {\it . . . } or \textit{ . . . } to every single graph separately.

For simple transformations you can even use the TEX primitive
\let . For example, to italicize all graphs \let\everygraphhook\it

suf�ces. More complex ones require \ renewcommand available in LATEX.

Examples of graphs

Next I'll consider some example graphs from Peirce's manusc ripts
and their solutions with the package. The examples perhaps better
convey the look and feel of the graphs made by the package.

Although we are yet to come across a graph that the package
would have been unable to draw, some require considerable rumi-
nation to work out. Even complex-looking graphs are solvabl e with
some imagination and a good working knowledge of standard L ATEX
commands.



simple cuts and ligatures 14

Simple cuts and ligatures

The �rst example contains typical, simple inline a-graphs. The pic-
ture is taken from ms 430. Below it is a rendition of the excerpt by
the package. Only the famil-
iar and simple cut command is
used, but a few things are note-
worthy in this simple example too.
Here is a good example of the
Boolean \notinlinefalse which
is declared for reduced space in-
side the cuts

Notice that the cuts produced
by the package do not and cannot
immediately and exactly resem-
ble those that Peirce drew and
that there is obviously some ideal-
ization going on. The other note-

c in the ovals and then inserting n into the outer of these.
In the second sense, the propositions are

T c r n which is reducible to T c n T r n

T c r n which is reducible to T c T r n
from which the other is at once deducible by inserting w in the

worthy thing is that when there are lots of cuts right next to e ach
other, they can easily create a distracting moiré-like patt ern that is
starting to show in the thrice-cutted graph in the example. A dding
an empty space between the cuts can lessen this effect. This space

T c r n , T c r n , T c r n

\cut{T \cut{c \cut{\cut{r} \cut{n}}}} ,
\cut{T \cut{c \cut{ \cut{r} \cut{n} }}} ,
\cut{T \cut{c \cut{ \cut{r} \cut{n} } } }isn't added automatically since adding it is largely a matte r of taste.

Changing the de�nition of a cut to automatically and always i nclude
such a space would be trivial though.

The second example is of slightly nonstandard inline ligatu res also
from ms 430. Apologies for the bad image quality. Also the text in
the output example is forced to
follow the text �ow in the picture,
which makes it easier to compare
to the picture but look strange.

All graphs are drawn with
the inline -environment: chang-
ing lineheights is easy with its op-
tional argument. Recall that LATEX
cannot automatically route liga-
tures around obstacles but needs
hooks. Therefore lots of ontop -
constructions are being used.

indi�erent. Thus A B and A B will be the
same; but A B will be di�erent. So A B

will be di�erent from A
B ; because di�erent sides of

the letters are joined, but A B and A
B

will be

Consider the second graph in the example where B is encircled.

A 1

2

B3

4

#
A B

#
A B

Because the rheme just happens to be a single letter long, an alterna-
tive solution using two hooks and reflexive ligatures would suf�ce.

A smoother curve and a more general solution is de�ned with
four hooks around the B-rheme. Because there are three hooks ontop
and the graph is inline, \begin{inline}[0.33] is declared—the 0.33
makes lineheights 1/ 3 of the original. Empty hooks do not have any
intrinsic height or width and this can make them look awkward
when ontop. Therefore hooks number 3 and 5 have a \vphantom{a}

in them. In this example this isn't strictly speaking necess ary, but



15 egpeirce documentation

if it had cuts, you should give the empty hooks an explicit hei ght.
Finally, the second hook is slightly elevated from the basel ine with
the standard LATEX command \raisebox{< height>}{< text>} . Without
this the �nal downright curve would look strange:

A 1
2

3

B4

5

6

#
A B

#
A B

\begin{inline}[0.33]\hk{A} \ \,\raisebox{2pt}{\hk{}} \ ontop{

\hk{\vphantom{a}}\hk{B}\\\hk{\vphantom{a}}} \hk{}\en d{inline}

The ligature is drawn with:
\sligature{1}{5}\rightup{5}{6}\rightdown{3}{6}\upri ght{2}{3}

\downright{2}{4} . Finally \setcounter{rheme}{0} is declared.

The example graph in the margin from ms 493illustrates yet an-
other common point with ligatures. The ligature needs to be r outed
with two additional hooks between the rhemes. You must provi de
a suitable amount of empty space, most easily with \hphantom{} .
ontop l takes care of the alignment. Linestretch is set to 0.5.

\ontopl{\hk{Enoch}\\\hk{}\hphantom{Enoch}\hk{}\\\hk {is a man}}
Enoch
is a man

\reflexiver{1}{3}\li{2}{3}\reflexivel{2}{4}

The next graph is from ms 430. It is a stacked graph that has the
boxlike outer cut and two identical `subgraphs' inside it.

This example highlights a dif�culty: the code is necessaril y linear,
but the graphs are described by a two-dimensional �eld which in
this case is in vertical alignment. A helpful trick is to arra nge the

a
b

a
b

code in logical `blocks' with the reserved character %(see below). %is
used for comments in the code and when compiling the source, LATEX
simply discards everything that follows it—including the l inebreak.

Below the code is also indented and colour-coded in a hopeful ly
helpful way. Notice that you should never use indentations i n your
actual code. Although LATEX does ignore multiple consecutive spaces,
it will interpret them as a space which will appear in the output.

a
b

a
b

\vvcut{ \ontop{ %

\cut{ \hk{} \cut{ %

\hk{} \ontop{\cut{ \hk{a} }\\ \cut{ \hk{b} }} \hk{} %

}} %

\\ %

\cut{ \hk{} \cut{ %

\hk{} \ontop{\cut{ \hk{a} }\\ \cut{ \hk{b} }} \hk{} %

}} %

} \hk{} }

The rightmost ligature goes through a single hook. In this ca se,
a reflexiver ligature would have suf�ced since it's not at risk of
crossing the cut. In the original, this ligature appears per haps less
curved: the lone hook could have been replaced with two ontop . &c.

a b

The height difference in the cuts a and b is caused by \notinli

nefalse or by the inline -environment. Removing these forces all
cuts and hooks have an equal minimal—though quite large—hei ght.
Alternatively you could add a \vphantom{b} to the �rst cut: a b .



nonstandard scrolls and complex graphs 16

There are often multiple ways to create similar results as the
next example from ms 430shows. The dif�culty here is that the li s
meet at right angles and thus the hooks must somehow be aligned.

One could simply place four layers of three hooks ontop each
other. However, because the rhemes in the middle hooks diffe r in
length, you'd have to estimate the amount of empty space need ed to
align the terminating hooks between each layer.

An alternative, slightly more complex solution is offered b elow.
The hooks are arranged in pairs that are put ontop , so there's no
need to align them vertically by hand. Putting the two larger cuts
ontop r automatically aligns the rightmost hooks: benefactress of

rejects

�attered by
benefactress of

\vvcut{\,\ontopr{ %

\vvcut{\,\ontop{\hk{}\\\hk{}} %

\ \ontop{\hk{benefactress of}\\\hk{rejects}} \ %

\ontop{\hk{}\\\hk{}}\,}\\ %

\vvcut{\,\ontop{\hk{}\\\hk{}} %

\ \ontop{\cut{ \hk{flattered by} }\\\hk{benefactress of} } \ %

\ontop{\hk{}\\\hk{}}\,} %

}\,}

The ligatures are drawn in an obvious way. However, if you loo k
closely, the ends of the rightmost ligatures have a nasty dent. This
is because by default all ligatures end with a straight edge. The
leftmost li s are drawn with an alternative argument [c-] , which
creates ac-shaped semicircle to the end that removes the dent.

Lastly an example of a scroll is included before I venture into
the more dif�cult cases. The picture is from ms 277. This graph

\vscroll

d x
y

d x
y

\vscroll *

d x
y

d x
y

is examined in more detail in the next section. \vscroll could al-
most handle it (the inner cut touches the descender of the y-rheme).
\vscroll * does a better job, because empty space in the additional
arguments gives more precise control over the cut.

Luckily the long scrolls usually automatically resemble their drawn
counterparts. Their starred versions are needed only if you must
place a hook on the inner cut.

Nonstandard scrolls and complex graphs

The behaviour of scrolls may seem strange. Explaining the in ner
workings perhaps helps. Firstly, there is a mechanism that e nables
the four corners and middle points of a text area to be de�ned a s
referenceable coordinates. The �ve arguments of the starred scrolls
correspond to �ve such areas that are put ontop . Finally, a curve
drawn through the coordinates in the right order forms the cu t.

\DefNodes{A}{ W} : W
A-tl A-tr

A-ml A-mr

A-bl A-br

The \DefNodes{< ref>}{< text>} command does the referencing (the
huge W in the margin is an example). <ref> identi�es the text area,
and automatically identi�es the six points as: <ref>-tl , <ref>-tr ,
<ref>-ml , etc. If <text> has no length, the left and right sides coa-
lesce. If it has no height, the top, middle and bottom points c oalesce.
If it's empty, all the coordinates collapse to the same point .



17 egpeirce documentation

Recall the vscroll * example from the previous page. The �ve
arguments correspond to the �ve layers ontop each other.

d x
y

d x
y

A-tl

B-bl

C-bl
D-bl

\vscroll * { \ \ \ \ \ \ \ } % A

{ \hk{ d} \ontop{\hk{x}\\\hk{y}} } %

{ \ \ \ \ } % B

{ \hk{ d} \ontop{\hk{x}\\\hk{y}} } % C

{ \ \ \ \ \ \ \ } D

scroll s automatically assign coordinates with DefNodes to four of
the layers, with <ref>s A–D (and a reference for nestedness, see below).
The second layer is exempted since it automatically stays wi thin the
cut. Layers A, B and D—that is—arguments 1, 3 and 5 needn't any
height but can be assigned some to alter the appearance.

In a simple connect-the-dots kind of way, the cut is drawn wit h:

\psccurve[curvature=1 0 0](A-tl)(A-tr)(D-br)(C-bl)(B- bl)(B-br)(C-br)(D-bl)

Internally, the nodes also have a reference that tracks the level of
nestedness so that the scrolls can be iterated easily. This reference is
contained in \egatn . If you want to manipulate scrolls created by the
package, remember to add this command to the coordinate poin ts
mentioned above: (A-\egatn-tr)(D\egatn-br) . . . See e.g. page20.

longvscroll s are drawn with a pspolygon instead of the psccurve

for the more boxlike cut. The non-starredversions of longvscroll s
also automate the drawing somewhat. They �rst check which li ne is
longer, the premiss (layer 2 = the �rst argument) or the consequent
(layer 4 = the second argument) and then make the �rst and last
layers 6pt longer than the longest argument. This automation gives
the scroll straight edges and explains why the starred versi ons aren't
usually needed.

d x
y

d x
y

A-tl

B-bl

C-bl
D-bl

\longvscroll{ \hk{ d} \ontop{\hk{x}\\\hk{y}} } %

{ \hk{ d} \ontop{\hk{x}\\\hk{y}} }

A fter this introduction you are now armed to tackle all kinds
of nonstandard scrolls.

The �rst example is from ms 670of a twice self-intersecting cut.

A
B C

A
B C

Taking a cue from the explanations above, it's not dif�cult t o �gure
out how the graph might have been drawn. Although as usual, di f-
ferent and more complex solutions would have been equally po ssible.
Also, \nscroll * {B,C}{A} would draw a semantically identical graph,
but look a bit different. In this example Def ining Nodes for the three
letters suf�ces. Space inside them allows for some �ne-tuni ng. The
cut is drawn through the most convenient points.

In usual scrolls the point of intersection has no coordinate , which
makes it look very pronounced. In this example doing it would have
required additional noded areas. Instead the curvature -parameter is
altered to make the intersection points more distinct:

A
B C

\ontop{\DefNodes{A}{ \ \ A \ \ }\\\DefNodes{B}{ B } \DefNode s{C}{ C }}

\psccurve[curvature=1 0.5 0.5](A-mr)(C-br)(C-bl)(C-tl )(C-tr)(C-br)

(B-bl)(B-tl)(B-tr)(B-br)(B-bl)(A-ml)



nonstandard scrolls and complex graphs 18

A slightly different looking example of a twice self-intersect-
ing cut from ms 488is in the margin. The graph may appear simple

w
v

when drawn with a pencil, but writing its code does require so me
forethought.

In particular, keeping the leftmost portion of the ligature in the
singly cut area and having the rightmost cut protrude throug h the
two cuts are not obviously soluble. De�ning the areas and ali gn-
ing them is a simple matter of providing suf�cient empty spac e.
Linestretch is set to 0.5 , ontop l takes care of initial alignment:

\ontopl{ %

\DefNodes{A}{ \ \ \ \ \ \ \ }\\

\ \ \ \DefNodes{B}{ \ \ \ \vphantom{a}}\\

\ \ \ \DefNodes{C}{ \hk{w}\vphantom{pl} } \ \DefNodes{D}{\ vphantom{pl}}\\

\ \hk{}\strut\\

\ \ \ \DefNodes{E}{ \ \hk{v} \ \strut}\\

\DefNodes{F}{ \ \ \ \ \ \ \ \ } %

}

Notice the \strut s and different \vphantom s. Keeping the empty
hook in the right place, areas A and F are not indented, whereas the
rest have empty space before their introduction. Area D ensures that
the cut can protrude horizontally out of the graph.

The cut is de�ned by the sequence: (A-bl)(A-br)(E-br)(E-bl)

(B-tl)(B-tr)(C-br)(C-bl)(C-tl)(D-tr)(F-tr)(F-tl) . Notice that
this is a general solution and that the cut can be actually dra wn
with different lines or curves. In the margin the reference p oints are
marked and the different lines and curves are superimposed. The

w
v

\pspolygon[linearc=0.18]
\psccurve[curvature=1 0 0]
\psccurve[curvature=0.6 -1 -1]

green curve is already a bit too steep, since the ligature wou ld no
longer reach the singly cut area. Changes in the placement of areas
A, F and B, E could take care of this.

The next example is of a very complex graph from ms 493.

and in line with
and in line with
and in line with
and in line with
and in line with
and in line with
and in line with
and in line with
and in line with

and in line with

De�ning and placing each hook in such a complex graph sepa-
rately would be a stupendous task. Instead, a far more effort less
strategy is to take advantage of the repetitive structures a nd effec-
tively create a matrix of hooks.

A cursory glance of the graph suggests—taking into account a ll
the bifurcations—that no single line needs more than about f ourteen
hooks. Since some ligatures run or bifurcate under the text l ines, it is
sensible to double the number of lines. Every other line need s seven
empty hooks, then the words ` and in line with ' in separate hooks,
and �ve empty hooks still. In every other line, the words shou ld be
de�ned as \hphantom s, totaling a matrix of hooks 14� 26.

The number of hooks per line, 14, makes it dif�cult to calculate
their relative positions in the �nal matrix. It makes sense t o declare
e.g.\setcounter{rheme}{100} at the end of the �rst line, {200} at
the end of the second and so on. Thus the relative position of a hook
and the place of any bifurcation can be �gured out easily. Dra wing
the ligatures for the graph this way isn't trivial, but it is a lot easier
than placing each hook individually.



19 egpeirce documentation

PsTricks and thus the egpeirce -package allows one to de�ne
points on the plane with vectors in a polar coordinate system . By l l

l
l l

l l l l

l

placing hooks in such points, even graphs like the one in the m argin
are manageable. Because these kinds of graphs are rare, thismethod
isn't described in detail here. Please consult e.g. The LATEX graphics
companionfor more details.

Alternatively, the matrix method described previously wou ld work
almost equally well in these situations.

Ugly hacks

In Peirce's graph-system, there are unfortunately a few cases that
still escape an elegant solution. Drawing lines on paper aff ords a lot
of freedom. Describing the graphs in code makes them look mor e
uniform and makes their manipulation much easier. However, this
method is somewhat more limited than hand-drawing and must a t
times compromise. Below are two examples of such compromises.

The example in the margin is a g-graph, a scroll, that is wavy in
the inner cut. Perhaps surprisingly, this is very dif�cult t o solve.

PostScript does have a mechanism for drawing zigzag lines, but
the dif�culty here is that the cut is also curved. The zigzag lines can
be bent on the arc of a a circle, but the code does this in an idiosyn-
cratic way that's hard to generalize to an arbitrary curve. T here is
no algebraic solution to calculate a generalwavy curve that I would
be aware of. PostScript is an extremely powerful programming lan-
guage and it can even solve (certain types of) differential e quations
automatically. I do have a nagging feeling that I must have em bar-
rassingly overlooked something really obvious.

Of course—for our purposes—the zigzagging perimeter would n't
have to form an actual continuousline. Merely a visually convincing
semblance would suf�ce. And this is exactly what's done here . For
now, the package must resort to a crude approximation.

I use one of the methods that doallow us to put zigzagging elements
on an arbitrary curve. There is, however, a general problem i n this
approach with the discrete elements that form the ersatz zig zag-line.
They consists of a `zig' ( ), a `zag' ( ) or a `zigzag' ( ) repeated one
after another. Thus the line is—for lack of a better word— quantized
on the zigs or zags (& this is one of the reasons why it's so dif� cult
to come up with a simple algebraic solution). With this metho d one
has to always guess or estimate the number of elements needed.

One possibility would be to create a new zigzag arrow and �ll a
line with it: . This method applies also to Bézier curves of
arbitrary curvature. PostScript has a method of computing tangents
to a curve at different speci�ed points. The tangents could b e used
to compute control points for a Bézier curve approximating t he path
of the zigzag segment. This, however, is unnecessarily complex and
would involve alsoguesstimating the beginning and end points.



ugly hacks 20

The mechanism employed for now uses a command that makes
text follow a curved path. After the normal scroll has been drawn, an
additional line is drawn through the inner part of the cut. Th is line
has some text in it that draws the ersatz zigzag line. Here, th e zigzags

The roads are muddy

It has rained���������������������������� ����������������������������������������������������������� �� � �� ����������������������������

T he roads are muddy
It has
rained��������������������������

��������������������������������������������� ���������������������������

are repetitions of the caret ( ˆ ) whose background is �lled to hide the
line, that are lowered and kerned so that they can be made to fo rm
a continuous-looking line: �̂�̂�̂�̂�̂�̂�̂�̂�̂�̂�̂. Since this is a complex operation,
there's a command (\vv ) that does precisely that, one caret at a time.

The command for the zigzag curve in the longscroll is:

\pstextpath[c](0,0){\psline[linearc=.18,linestyle=n one]

(A\egatn-tr)(D\egatn-br)(C\egatn-bl)(B\egatn-ml)(B\ egatn-mr)

(C\egatn-br)(D\egatn-bl)(A\egatn-tl)}{\vv\vv\vv\vv\ vv\vv . . . }

For the normal scroll , replace the \psline with a \pscurve[curvatu

re=1 0 0,arcsep=10pt,linestyle=none] .
This places the carets onto the line de�ned by the usual scrol l

sequence. Only the inner cut should be zigzagged. Since the inter-
section point doesn't have a referenceable coordinate, the carets are
made to emanate from the middle of the line (with the [c] option).
By drawing just enough carets, they will stop at the intersec tion.

This is an ugly hack: it does the trick, albeit not very elegan tly.

Peirce ' s manuscripts include scrolls and cuts that have an
emptied or blackened inner cut (“blot” as Peirce called it). This ex-
presses thepseudographand is thus entirely and fundamentally dif-
ferent idea from shaded cuts made with \colouredcuts (page 8).

There are two special �llrules in PostScript , oefill and eofill

that �ll evenly or oddly self-intersecting areas. Introduc ing these
through \psset{} allows you to �ll the inner cut of any scroll.

\vscroll{A}{B}

A
B

{\psset{fillstyle= eofill,fillcolor=black}

\vscroll{A}{B}}

A
B

{\psset{fillstyle= oefill,fillcolor=black}

\vscroll{A}{B}}

A
B

Notice that any content in the singly cut area is painted over in
this method and would have to be reinserted through other mea ns.

An alternative way to �ll the inner cut of a scroll exists that does not
�ll the singly cut area. Here you specify a solid �llstyle and make it
traverse only the inner cut. This is a rather hacky way to achieve the
desired effect though, since you have to �gure out the inters ection
point manually by trial and error.

Recall that the points \DefNodes creates are internally simply ref-
erences to a pair of coordinate points. You can try to �nd the i nter-
section using raw coordinates. In the �rst scroll below, thi s happens
to be at -0.26,-0.32 , so \psccurve[curvature=1 0 0,linewidth=.2

pt,fillstyle=solid,fillcolor=black](-0.26,-0.32)(C\ egatn-bl)

(B\egatn-ml)(B\egatn-mr)(C\egatn-br)(-0.26,-0.32) �lls the cut:

A

B
A A A A .



21 egpeirce documentation

Some dif�cult cases and their solutions

Next I will discuss a few recurring general typesof problematic cases
that arise when transcribing graphs from manuscripts. Some of these
problems can be solved by changing mutable parameters of the pack-
age. Others require slightly more involved methods.

More speci�c cases of dif�cult graphs and their solutions ar e dealt
with in the examples.

Mutable parameters of the package

The egpeirce -package includes many prede�ned parameters and
dimensions that can be reset if needed. Change parameters with
\renewcommand{\< parametername>}{< value>} . Dimensions are reset by
\setlength{\< dimensionname>}{< value>} . You must specify all dimen-
sions with a unit . Parameters can be integers, fractions or strings.

These changes have a global scope and must be explicitly reset
even to get the default values back. You can of course change them
for only a small period, even inside or in the middle of a graph .

Below, the initial default value of the parameter or dimensi on is
written in the margin for easy and fast reference.

In most of Peirce's manuscripts, the cuts are drawn with a very
�ne black line (with a pointed nib or the narrow side) and the l iga-
tures with a distinctly heavier pen or wider nib. This is emul ated by
the package. Dimensions called cutwidth and ligaturewidth are in
charge of the width of the cut and ligature.

\setlength{\cutwidth}{0.2pt}

\setlength{\ligaturewidth}{1.2pt}

The colour of a coloured cut is de�ned with a parameter called
cutxfillcolour . As was mentioned earlier, when cuts are delimited \renewcommand{\cutxfillcolour}{gray}

with a coloured region by declaring \colouredcutstrue , there is no
line drawn to distinguish them. Sometimes, especially in g-graphs
there are however heavy lines around a coloured region to spe cify
a cut. To ease the use of this, you can increase the value of the
cutxwidth -dimension and set the cutxcolour parameter to a suitable
colour.

\setlength{\cutxwidth}{0.01pt}

\renewcommand{\cutxcolour}{white}

It is also possible to �ll a cut with a pattern instead of a soli d
colour. This is de�ned with the xfillstyle parameter. See the next \renewcommand{\xfillstyle}{solid}

section for more details.
Sometimes Peirce drew the cuts with a dark blue ink. Ligature s

are also drawn in colours other than black, at least bright re d and
brown ones exist too. The colour of a cut is de�ned with a param eter
called cutcolour and the colour of ligatures with licolour .

\renewcommand{\cutcolour}{black}

\renewcommand{\licolour}{black}

Finally, all vertical scrolls have reduced lineheight. Sin ce all verti-
cal scrolls have �ve layers, a logical choice would be 0.2 . For æsthetic \renewcommand{\scrollstretch}{0.3}

reasons the default is slightly higher. Very much smaller va lues will
look bad and can create problems with the arcs.



some handy postscript commands 22

Some handy PostScript commands

Some g-graphs have cuts whose lines are not solid or whose areas
are coloured. Since these cases are rare and not very consistent in ap-
pearance, there isn't a single parameter that governs this behaviour.

Whenever you want to draw a nonsolid cut, you must �rst declar e
\psset{linestyle=dashed,dash=< x>pt} before the cut. The value
of <x> determines the length of the dashes. Changing the linestyle

parameter to dotted draws dots instead of dashes.
Declare \psset{linestyle=solid} to get solid lines back in the

middle of a graph. Values of cutwidth and cutcolour hold for the
dashed or dotted cuts also.

To draw coloured cuts you just need to change the cutxfillcolour

parameter to a different colour and remember to draw all the c uts
with the \cutx{} command. To �ll a cut with a pattern, change
the xfillstyle -parameter to a suitable option and give a value to
options of hatchwidth , hatchsep and hatchangle with \psset{} . See
the PSTricks -documentation for more options and examples.

Notice that unlike the parameters discussed in the previous sec-
tion, \psset{} is sensitive to scoping, so you can also limit all the
effects by enclosing it in curly brackets.

A s was mentioned earlier , PostScript does handle drawing
arbitrarily curved lines but requires that the end angles be always
de�ned. The \nccurve[]{}{} command does this.

nccurve accepts line properties asoptional arguments, so give them
comma separated inside the square brackets. Specify linewidth and
colour as linewidth=\ligaturewidth,linecolor=\licolour so that
changes in these parameters also effect these ligatures. The entry
and exit angles are de�ned as angleA=< degrees> and angleB=< degrees>.
Angle directions follow those of the normal mathematical un it circle.

45°135°

225° 315°

0°/ 360°

90°

180°

270°That is, to the `right' it is 0° or 360°, for `up' it's 90° and so on. The
destination hook numbers are given in the usual way.

One situation where you may have to use nccurve is if the lines of
bridges do not meet at right angles. The example ligature in t he mar- 1

2

3

4

5

#

#

gin exempli�es this. The graph has �ve hooks. Using the short hands
makes the crossing looks strange, since they force it to be perpen-
dicular. nccurve enables the crossing to be effectively rotated by 45°.
The bridged parts of the example are drawn with the commands:

\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,

angleA=0,angleB=225]{-b}{2}{3}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolo ur,

angleA=45,angleB=180]{b-}{3}{4}

The entry and exit angles (225 and 45) de�ne a smooth curve through
the center hook. Notice that when you use nccurve , the bridge (or
the gap) declaration must be in curly brackets instead of squ are ones.



23 egpeirce documentation

Peirce's logical symbols

The package includes commands that print symbols Peirce devel-
oped for his logical system. Peirce was fastidious about the details
and appearance of these symbols and signs, and every effort has
been made to make the glyphs appear as close as possible to Peirce's
descriptions and examples. When needed, alternative variants of
symbols are also provided.

These symbols are not included in the package as new fonts but
rather as vectorized pictures. This substantially decreases work need-
ed to de�ne them and also means that you don't need to separate ly
install a new typeface to use them. All the symbols are contai ned
within the package.

This technique does have two setbacks, however.
First, a separate mechanism for scaling the symbols had to becre-

ated. The symbols respond to the sizing commands (\tiny . . . \Huge )
and they also scale whenever your .cls �le tells LATEX to change font
sizes (e.g. inside footnotes and headers). If the symbols appear to
be overall too small or too large compared to the typeface you use,
you can change their size relative to it by rede�ning a comman d
called commoncoefficient . Internally, the scaling mechanism tracks \renewcommand{

\commoncoefficient}{< r>} r 2 R+
> 0

As the name suggests, it is a scal-
ing coef�cient common for all the sizes.
The default is, obviously, 1.

the \f@size macro, which should be a reliable source for size infor-
mation. If it nevertheless causes problems, you can turn the scaling
off by setting the Boolean �ag \scaledsymbols to false . This won't
effect the commoncoefficient command, so you can use it to scale
the symbols independently.

Secondly, you might get error messages when you use the symbol
commands e.g. in places where LATEX needs to use external �les, such
as in the sectioning commands (which write to the .toc �le) and
indexing commands (that use the .idx �les). If this happens, you can \part{Part text

\protect\< symbolname>}

\section{Section text

\protect\< symbolname>}

\index{\protect\< symbolname>}

easily solve these errors simply by preceding the symbol com mands
with the standard LATEX command \protect . This is fundamentally
due to the symbol commands being `fragile' and LATEX forcing their
expansion too early. The concepts of command expansion, execution,
and `fragility' are too complex and low-level to be dealt wit h here. Be
aware that early expansion—whenever it happens—will invar iably
result in copious amounts of errors grave enough to stop comp ilation.
Use e.g. the\protect or \expandafter commands when needed.

� ¯ A ˆ B da b a  � b Õ
2 i

z }| {
a b c � � � k l m

Symbols that need to—at least in principle—interact with st andard
mathematical compositioning and typesetting commands ava ilable
in LATEX (\hat{} , \bar{} , \overline{} , etc.), do play nice with them.

N ext , l ists of the symbol commands and symbols are presented.
The lists do not give the de�nitions, semantics or explanati ons for
the symbols. References to manuscripts are provided to that end. As
was mentioned in the beginning, this documentation tacitly assumes
that the reader is familiar with existential graphs and Peir ce's logic.



peirce 's logical symbols 24

Some of these references are unique, but most symbols (and even
their de�nitions) exist in multiple manuscripts. Further n otes about
some symbols are presented in footnotes.

First , a list of simple symbol commands for the linear notation:

9 This variant exists only for use in the
\agoverline{} commands below, and
does not appear in Peirce's manuscripts
as such.

10 The capital `P' in the command
names denotes Peirce's variant of an
already existing LATEX command.

This is Peirce's preferred version for
the constellation symbol of Aries.

11 This is merely a typographical
variant of the \ implicates command.
Peirce's description for it (from a letter
to Paul Carus in Oct. 1898) was: “The
character [ . . . ] ought to have a some-
what Chinese effect. I have drawn the
longer line pointed at both ends. But
I don't know but it would look better
blunt at the left. If so cut that edge
must not be vertical but slanting”, and
a hand-drawn sketch of this variant is
also provided.

In almost all manuscripts though,
the symbol resembles more the `non-
cursive' variant.

12 These symbols are Peirce's own
modi�cations on his father's notation,
for the mathematical constants e and p
respectively (found e.g. in the Century
Dictionary under the entry ` Notation').

The identity = (–1)–p
–1 holds.

Command name Symbol From manuscript

\aggregate ms 293

\varaggregate 9

\Paries 10 ms 530

\dragonhead ms 501

\reversedragonhead ms 501

\flatinfty ms 530

\fsymbol ms l 224

\implicates ms 430

\cursiveimplicates 11 ms l 387

\varinclusion ms 530

\Ppropto ms 530

\Pinversepropto ms 530

\varwedge ms 530

\weirdone ms 530

\weirdtwo ms 530

\weirdthree ms 530

\weirdfour ms 530

\napierianbase 12

\Pratiocircdia 12

Peirce also studied and used in his manuscripts and correspon-
dence a system of binary connectives that Max Fisch coined the
“Box-X” notation. It consists of the `X', or center cross ( ) to which

\boxxoperator{}

\boxxoperator{t,b,l,r}

A B C D

a kind of `box' is constructed—piecemeal—with lines spanni ng the
topand/or bottom( , ) & the left and/or right sides ( , ) ultimately
giving the sixteen unique operators in the margin.

Having 16 new unique commandsfor such a simple system would
in my opinion be excessive. A single command, \boxxoperator{} ,
suf�ces that accepts the lines as a comma-separated list: t for the top
line, b for the bottom, r and l for the right and left sides.

Unlike with \nscroll , you can leave the argument empty. In this
case, only the central cross is drawn and this is a syntactically correct
connective, though semantically quite strange (Peirce, 2023, Vol. 1,
pp. 427–432). Notice that the order of the list elements doesn't matter.
For example \boxxoperator{t,l} equals \boxxoperator{l,t} &c.



25 egpeirce documentation

In a letter to T. J. McCormack, Assistant Editor at Open Court,
Peirce advised that instead of P and S (\Pi and \Sigma )—which he
uses copiously e.g. for quanti�ers—simpler typefaces that he encoun-
tered in European mathematical journals, should be used.

13 Peirce's ` ' and the usual, modern,
sans-serif P̀ ' differ also. In Peirce's
description and in his handwriting the
`bar' alwaysextends beyond the `legs'.

14 Internally, these symbols clear space
equal to P and S, so the commands
\let\Pi\PPi and \let\Sigma\PSigma

should be safe to use. Though in math-
ematical equations, even Peirce would
have suggested that the normal sym-
bols be used to denote product and
summation.

Peirce writes in the letter: “They should be upright, all of o ne
thickness, and devoid of the little �nishing lines (whose na me I for-
got.)” ms r s -64, referring to sans-serif typefaces.13 These have been
created as symbols:

Command name Symbol

\PPi 14

\PSigma 14

I n the `Logic N otebook ' (ms 339), Peirce introduced binary &
ternary symbols for existential graphs. These symbols diff er from
the ones above in that they must directly interact with ligat ures.

These symbols thus have hooks in precon�gured places. In the
third row they are highlighted with a and enumerated by setting
\debugmode to true . The last four symbols have arguments which
can be left empty.

X

Y

Z

Command name Symbol

\heartright
1 2

\heartleft
1 2

\heartleftnofill
1 2

15 This command name (as many oth-
ers) is descriptive of the shape of the
symbol rather than its function.

This name especially re�ects the quite
remarkable coincidence that this sym-
bol very closely resembles the modern
logical nor gate symbol. Entitative
graphs implement a kind of nor logic
and existential graphs, a nand logic.

Peirce was aware of the fundamental
importance—also in this respect—of his
discovery. In 1886 he wrote to Allan
Marquand that his logic would permit
relatively simple machines to be con-
structed that could solve even complex
mathematical problems piecemeal, and
furthermore suggested that electricity
be employed for the signalling.

\heartdown
1

2

\heartup
1

2

\norlike 15 1

2

3

\inversenorlike 15

1

2

3

\whiskers{}{}{}
1

2
3

\inversewhiskers{}{}{}

1

2

3

\whiskersdot{}{}{}
1

2

3

\inversewhiskersdot{}{}{}

1

2

3

These symbols (unlike all the others) are not subject to the automatic
scaling, since they belong to graph symbols and interact onl y indi-
rectly with text.



ideas on further development 26

In `Qualitative Logic ' (ms 736), Peirce introduced three new
notations for illation. A line or vinculum indicates the sco pe.

abc

abc def

abc def ghi j

abcdef

abcdef

abc

abc

abc def

abcdef

abcdef

abc

Commands \agoverline{} , \croverline{} and \cuoverline pro-
duce them. The \inlineagoverline{} variant blends better inline
with text. All the commands have a ` reverse ' variant. All have one
argument which can be left empty, and they can be nested.

Command name Symbol

\agoverline{},\reverseagoverline{} ,

\inlineagoverline{},\reverseinlineagoverline{} ,

\croverline{},\reversecroverline{} ,

\cuoverline{},\reversecuoverline{} ,

These symbols—and the argument—are automatically scaled. If the
argument contains text, it is typeset in \normalsize and also scaled
with the ad hocmethod created for the symbols. Because many type-
faces do have slightly different appearances for fonts in di fferent
point sizes, scaled text inside the argument may look ever so slightly
different from any surrounding text.

Ideas on further development of the package

As was mentioned in the beginning, the current version of the pack-
age is designed for drawing existential (and entitative!) g raphs from
Peirce's manuscripts. Many of these graphs have highly unus ual and
inconsistent features. The package is designed to cope with these
kinds of graphs as well and thus it doesn't make a lot of assump -
tions on the structure of the graphs. It is up to the coder to pr ovide
them with the necessary structure.

It could be possible to develop the package with much more au-
tomation. Below is some food for thought on these possibilit ies.

Perhaps the easiest case for automation would be John Sowa's
egif , which is a linear notation (or an `interchange format') for ex-
istential graphs. The problem is that graphs actually drawn on the
sheet of assertion have no intrinsic (linear) structure. An algorithm
for drawing the graphs based on egif could still be devised. The
algorithm could even draw the ligatures in b-graphs automatically!

However, the fundamental problem persists. Again—excepti ng
the simplest cases—there exists a multitude of possible permutations
for drawing the graph-elements described by the egif notation. The
algorithm would always have to choose arbitrary rules for th e compo-
sition as the graphs wouldn't readily resemble the user's wi shes. The
algorithm could be fed with compositional hints or the user c ould
perhaps e.g. choose from a set of the most common `normal forms'.

In our setting of transcribing graphs from manuscripts, thi s would
in my opinion be a fundamentally bad idea. It would hide compo -



27 egpeirce documentation

sitional principles behind layers of abstraction and thus m ost of the
advantage of having any automation in the �rst place, would b e lost.
You'd be �ghting against a fairly opaque algorithm. Though t he cur-
rent scheme can be laborious at times, it doespreserve a relatively
close homeomorphism between the code and the ensuing graph (as
the example on page 15 shows).

On the other hand, for a package that would need to just draw
monotonically similar existential graphs without needing to adhere
at all to their counterparts in e.g. manuscripts or to the vag aries of the
user, something like the egif approach would make a lot of sense!

There are some packages for LATEX, e.g. XyMTeX and ChemFig ,
that can draw complex structural formulas of chemical compo unds
and molecules. These packages can handle skeletal formulasand
even stereochemistry with an elegant and simple syntax, even for
horribly complex molecules in organic chemistry. The quest ion arises,
whether something similar could be done for existential gra phs too.

However, the laws of nature that govern chemical bonding alr eady
contain lots of structure and their usual representations i nclude lots
of conventions on how to draw these structures out. Again, th e lack
of obvious intrinsic structure in existential graphs thwar ts most pos-
sibilities for an elegant syntax for egs.

Taking a cue from XyMTeX, there are some ideas that could be de-
veloped further for graphs too. At least, it could be possibl e to create
an easier syntax especially for a-graphs.

We could devise a command, say, \graph{} that would re-interpret
some normal characters as control characters. The most obvious can-
didates would be ` ( ' for the beginning of a cut and ` ) ' for the end.
Since the normal space character could take care of alignment and
positioning, and the linebreak character for linebreaks, t he syntax
would be considerably simpler and also quite natural and int uitive.

So:
\graph{ (( A )

( B )) }
would be interpreted as \cut{\ontop{\cut{ A }\\\cut{ B }}} , or

A

B
.

Clearly a simpler syntax than the current one.
Unfortunately, simplifying the drawing of ligatures in a si milar

way still eludes a solution. It would not be a problem to creat e a
new control character to the \graph command for the end points of
ligatures but routing and drawing them would still need to be done
in the current, piecemeal, way.



introduction to LATEX 28

Introduction to LATEX

What is it . . .

LATEX is a programming language for typesetting documents and
books. It is based on the TEX language created by Donald Knuth
in the late 1970s.

LATEX uses highly portable and standardized �le types. It pro-
duces high-quality publication ready materials that have o utstanding
dimensional accuracy and excellent consistency.

Because LATEX is fundamentally a programming language, its use
may seem abstruse at �rst sight. This may especially be the case
if you are accustomed to What-You-See-Is-What-You-Get programs
such as Microsoft Word or the like. This obscurity soon disso lves
when few fundamental concepts are introduced and explained .

L ike all programming languages LATEX relies on a source �le.
It contains the text and its typesetting instructions calle d commands.
A program then compilesthis source �le and produces some output. source files , compilers and

outputsThe source �le is invariably a plaintext �le whose commands must
adhere to a speci�c syntax. If they fail to do so the compilati on will
also fail and the program won't be able to produce any output.

There are quite a few programs that can compile and process LATEX
�les and the outputs range from structured plaintext �les an d html
documents to a variety of vector and raster graphics formats . Most
commonly though LATEX is used to produce a wholly self-contained
PostScript or pdf �le that is ready for printing, such as this one.

There are various Integrated Development Environments desig-
ned for LATEX that automate or help with many of the tedious tasks
of codewriting and compilation. Some ides even come close to re-
sembling wysiwyg programs.

There are however fundamental differences between the two. The
most important being a strict separation of form and content . separation of form and con -

tentA decent analogy is a web-page. The browser, though, is both
the compiler and the output viewer for the html source �le. The
Hypertext Markup Language also uses its commands to describ e the
logical content of the page and the browser does the formatti ng.

Much like html 's Document Type Declaration de�nes a gram-
mar and vocabulary, in LATEX a class �le gives the structuring com-
mands. So-called package �les introduce new commands or ove rride
old ones—not entirely unlike what css modules do with html .

Often when using wysiwyg programs the author is constantly
distracted by appearances and formatting issues. When writ ing LATEX,
the key point is to write and describe the content of the docum ent
in a logical manner and let the program do all the formatting. It is
especially important to understand this mindset when writi ng exis-
tential graphs with the egpeirce package. The graphs are described
in text, and LATEX then takes care of actually drawing them.



29 egpeirce documentation

. . . and why use it?

Even though TEX was created in the 1970s, LATEX is still actively de-
veloped and new technologies are added to it. It is widely use d in
academia and the publishing industry.

One of Donald Knuths original reasons for creating T EX was the For a challenge, try typesetting these
formulæ with anything other than T EX:

A =
¥

Õ
k= 2

�
f k

k � 1

�

Z + 1

� 1

f (x)
p

1 � x2
dx �

p
n

n

å
i= 1

f
�

cos
�

2i � 1
2n

��
abysmal state of mathematics typesetting. LATEX is still unparalleled
in this respect.

Another singular feature in LATEX is its versatile and eloquent line-
breaking system. A good introduction to its manipulation an d use
is e.g. in Knuth ( 1984), and a detailed account of its development
is presented in Knuth ( 1999, ch.3). LATEX searches through all possi-
ble linebreaking places. A simple but ingenious algorithm c hooses a
combination of them that creates the least inter-word space stretches
and hyphenations one paragraph at a time for the entire page.

Some people may view the fact that LATEX is a programming lan-
guage as a hindrance. Arguably it does create a small learning curve.
But it is this very background that also sets LATEX apart from other
desktop publishing systems in many positive ways.

Firstly, LATEX documents are extremely portable because they are portability

simple plaintext �les. Practically any computer can be used to edit
them and the �les are human readable as such. This is in contra st to
the binary or xml �les that most document editors use.

As mentioned earlier, compilation is not dependent on a sing le
program and nearly all compilers are free and open source sof tware.
They are ported to practically all operating systems.

LATEX also has an excellent track record on backwards compatibil - backwards compatibility

ity. The �rst version of T EX was made available in 1977. By 1982the
typesetting features were changed so that reproducibility across dif-
ferent hardware was guaranteed. The language features were frozen
in 1989when a few seldom used commands were deprecated.

Most TEX documents that were written in 1977will compile �ne
even today. Any documents written after 1982will even hyphenate
and look exactly the same. Not many other typesetting system s can
claim to be able to reliably process and reproduce, at the tim e of
writing this, almost four decades old documents.

Lastly, the unit that ties LATEX dimensions and lengths to real-life dimensional accuracy

measurements is the TEX point ( pt ). It is de�ned to be 1/ 72.27 inches
or about 0,3515millimeters. The fundamental smallest unit in T EX
is called a scaled point (sp ) and all other length types are internally
represented as integer multiples of it. TEX uses 16 bits to represent
the fractional part of a point, so 1sp = 1/ 216 pt . This is a staggeringly
small quantity—roughly a hundredth of the average waveleng th of
visible light. LATEX dimensions are thus two orders of magnitude
more accurate than any normal physical manifestations of th em.

Because only so many bits can be reserved for multiples of sp , the
biggest single page an unadulterated version of LATEX can handle is
about 5m2 in size. Well within the needs of ordinary typesetting.



references 30

Recommended further reading

This introduction has hardly scratched the surface to T EX and LATEX.
The internet is full of guides to LATEX. The not so Short Introduction

to LATEX 2#by Tobias Oetiker et alii (originally from 1995and updated
continuously) is considered a classic. The Wikibook for LATEX is also Click me #

The not so short. . .as a PDF file at CTAN
well organized, quite thorough on basic commands and perhap s also
a good place to start. It's very handy as a quick-'n-dirty ref erence. http://en.wikibooks.org/wiki/LaTeX

The quintessential tome is The TEXbookby Donald Knuth himself.
Although required reading for any T EXnician, it is also quite arcane
and as the name suggests, deals exclusively with TEX. A famous
reference book is The LATEX companionby Mittelbach et al. ( 2004). It
isn't (and cannot be) a complete listing of all packages for LATEX but
offers a decent idea of the kinds of things it is capable of.

Lastly, The LATEX graphics companionGoossens (2008) is de�nitely a
very important reference, especially chapters 5 and 6 on PostScript .

References

Goossens, M. (2008). The LATEX Graphics Companion. Addison-
Wesley series on tools and techniques for computer typesetting.
Addison-Wesley.

Knuth, D. E. (1984). The TEXbook. Addison-Wesley, 1 edition.

Knuth, D. E. (1999). Digital typography. clsi lecture notes. Stanford,
Calif. clsi Publ. cop.

Mittelbach, F., Goossens, M., Braams, J., Carlisle, D., andRowley, C.
(2004). The LATEX Companion. Pearson Education.

Oetiker, T. (2021). The Not So Short Introduction to LATEX 2#.

Peirce, C. S. (2019–2023). Logic of the Future, volume 1–3 of Peirceana.
De Gruyter, Berlin.

Roberts, D. D. (1973). The Existential Graphs of Charles S. Peirce. De
Gruyter Mouton, Berlin, Boston.



Keyword & Command Index

Page numbers typeset in bold contain the command de�nition or its introduction. Entires marked with `(boolean)'
indicate a Boolean switch that can be set true or false . Entries with `(counter)' receive integers: Z . `(rational)' receive
rational numbers greater than zero: R+

> 0. `(dim)' receive R+
> 0 with a valid unit. Entries with `(param)' valid strings.

%, 1, 4, 15, 16, 17
\\ , 5, 6

\aggregate , 24
\agoverline , 26

bifurcation, 9, 18
blot, 8, 20
\boxxoperator , 24
bridge, 1, 10, 22

\colouredcuts (boolean), 1, 8
\commoncoefficient (rational),

23
\croverline , 26
\cuoverline , 26
\cursiveimplicates , 24
\cut , 1, 6, 7–9, 11, 14, 18, 27

and ligatures, 9, 11
\cutcolour (param), 21
\cutwidth (dim), 21
\cutxfillcolour (param), 1, 8,

21

\dbcut , 12
\debugmode (boolean), 1, 10, 11,

14, 22, 25
defaultnscrollangle (counter),

8
\DefNodes , 16–18, 20, see also

\egatn

\downright , 1, 9
\dragonhead , 24

\egatn , 17, 20
egif , 26, 27
\ellipsecut (boolean), 6, 11
\everygraphhook , 1, 13

\flatinfty , 24
\fsymbol , 24

gap, 1, 10
\gcut , 12
\graph , 27
\gvcut , 12

\gvvcut , 12

\heartdown , 25
\heartleft , 25
\heartleftnofill , 25
\heartright , 25
\heartup , 25
\hk , 1, 9, 10–12, see also

\debugmode

\hphantom , 5, 15, 18
\hsligature , 9

\implicates , 24
inline (environment), 1, 6, 11,

14, 15, see also\notinline

\inlineagoverline , 26
\inversenorlike , 25
\inversescroll , 7
\inversevscroll , 7
\inversewhiskers , 25
\inversewhiskersdot , 25

\li , 1, 9, 16
\licolour (param), 1, 21
\ligaturewidth (dim), 1, 21
\longinversescroll , 7
\longinversevscroll , 7
\longscroll , 7
\longvscroll , 7, 17

\mbox , 5

\napierianbase , 24
\nccurve , 1, 9, 22
\ncut , 12
\norlike , 25
\notinline (boolean), 6, 14, 15,

see alsoinline

\nscroll , 7, 17
nscrollangle (counter), 8
\nscrolldistance (rational), 7
\nscrollwidth (rational), 7

\ontop , 1, 6, 9, 15, 27
\ontopl , 1, 6, 15
\ontopr , 6, 16

\Paries , 24
\pcut , 12
\Pinversepropto , 24
\PPi , 25
\Ppropto , 24
\Pratiocircdia , 24
\protect , 23
\PSigma , 25

\reflexivel , 1, 9
\reflexiver , 1, 9, 14, 15
\reverseagoverline , 26
\reversecroverline , 26
\reversecuoverline , 26
\reversedragonhead , 24
\reverseinlineagoverline , 26
rheme (counter), 1, 11, 18
\rightdown , 9
\rightup , 9

\scaledsymbols (boolean), 23
\scroll , 7, 16
\scrollstretch (rational), 21
\setstretch (rational), 6, 15
\shk , 12
\sligature , 9
\strut , 1, 5, 8, 15

\upright , 1, 9

\varinclusion , 24
\varwedge , 24
\vcut , 1, 6
\vphantom , 5, 11, 14, 15
\vscroll , 1, 7, 16, 17, 19
\vv , 20
\vvcut , 6, 15, 16

\weirdfour , 24
\weirdone , 24
\weirdthree , 24
\weirdtwo , 24
\whiskers , 25
\whiskersdot , 25

\xfillstyle (param), 21



Visual index

The visual (or graphical) index contains a visual reference of the most important typesof existential graphs and all the
logical symbols. Refer to the the Keyword and Command Index a bove for all the commands the package provides.

. . . , 6
. . . . . . , 6

. . . , 12

. . . , 6

, 7

, 7

. . . , 7

. . . . . . , 8

, 20

�ˆ�̂�̂�ˆ�̂�̂�̂�ˆ�̂�̂�ˆ�̂ , 20

. . . , 9

, 9

B , 10
, 10
, 10

1 , 12

, 24

, 24

, 24

, 24

, 24

, 24

, 24

, 24

, 25

, 24

, 24

, 24

. . . , 24

, 26

, 25

, 25

, 25


	How to read this document
	Some preliminaries on using the package
	Commands for drawing EGs
	Examples of graphs
	Some difficult cases and their solutions
	Peirce's logical symbols
	Ideas on further development of the package
	Introduction to LaTeX
	References
	Keyword & Command Index

