Abstract

The purpose of this package is to draw the spectrum of elements in a simple way. It’s based on the package \textit{pst-spectra}, but with some extra options. It relies on \textgls{pgf/TikZ} to draw the desired spectrum, continuous or discrete. As in \textit{pst-spectra} there is data available for the spectra of \textit{98} elements and their ions. It also allows the user to draw a spectrum with their own custom data.

The lines data extends from Extreme UV to Near IR ($10 \text{ nm} \leq \lambda \leq 4000 \text{ nm}$). See section \textit{The lines data} below for more information.

It is possible to redshift the lines of a spectrum, by directly entering the redshift value or the velocity and the angle to compute the redshift value (Doppler Redshift).

Spectral lines data can be presented in a table or exported to a file.
This package also provides color conversion (correlated color temperature), shadings for use with \textgls{TikZ} and/or \textgls{PGFPLOTS} and color maps for use with \textgls{PGFPLOTS}.

\begin{verbatim}
\pgfspectra[element=Hg,\textit{axis,\textit{axis step}=90,\textit{begin}=100,\textit{end}=1100,\textit{back=visible40,\textit{gamma}=0.6,\textit{line width}=0.5pt}]
\end{verbatim}
Contents

Installation and usage

1

What's new

2

- In version 3.0.1
- In version 3.0.0
- In version 2.2.0
- In version 2.1.1
- In version 2.1.0
- In version 2.0.0

The lines data

5

- Data based on pst-spectra
- Data based on NIST

Commands overview

6

- `\pgfspectra`
- `\wlcolor{wavelength}`
- `\pgfspectraStyle[options]`
- `\pgfspectraStyleReset`
- `\pgfspectrashade[<h|v>](start,end){name}`
- `\usepgfspectralibrary{name(s)}`

The options for `\pgfspectra`

9

- use visible shading
- width
- height
- element
- charge
- Imin
- relative intensity
- relative intensity threshold
- line intensity
- gamma
- brightness
- back
- backIRUV
- IRcolor
- UVcolor
- lines
- line width
- begin
- end
- absorption
- axis
- axis step
- axis ticks
- axis unit
- axis unit precision
- axis label
- axis label text
- axis label position
- axis color
- axis font
- axis font color
Libraries
\pgfspectradata\{name of data set\}\{keys\} .. 23
The options for \pgfspectradata
 \~ name of data set ... 23
 \~ precision ... 23
 \~ unit ... 24
\pgfspectratable\{table options\}\{name(s) of data set(s)\} 24
The options for \pgfspectratable
 \~ title ... 24
 \~ back color ... 26
 \~ data back color ... 26
 \~ text color .. 26
 \~ width .. 27
 \~ elements column width 27
\pgfspectrawrite\{filename\}\{name(s) of data set(s)\} 27
\pgfplots ... 29
\pgfplotsmap\{h\}\{name\} 29
\pgfplotsplotshade\{options\}\{name\} 30
The options for \pgfplotsplotshade
 \~ shade begin .. 31
 \~ shade end ... 31
 \~ shade opacity .. 32
 \~ shade opacity color 33
 \~ logarithmic .. 33
\tempercolor ... 35
\tempercolor\{Kelvin\} ... 35
\pgfplotsrainbow\{tikz options\}\{rainbow options\}\{radius\} 36
The options for \pgfplotsrainbow
 \~ rainbow start ... 37
 \~ rainbow knock out 37
 \~ rainbow fade .. 38
 \~ rainbow transparency 38
 \~ rainbow background 38

Examples .. 40
Using \pgfspectra .. 40
Using \pgfplotsnode in TikZ 43
Using \pgfplotsplotshade and \pgfplotsmap with PGFPlots 44
Using \pgfplotsrainbow ... 61

Alphabetical list of available options 63

Recommendations and known issues 66

Index .. 67
Installation and usage

\texttt{pgf-spectra} is placed under the terms of the \LaTeX\ Project Public License, version 1.3 or later (http://www.latex-project.org/lppl.txt). \texttt{pgf-spectra} loads and only requires the package \texttt{TikZ}.

You need to put the style file (\texttt{pgf-spectra.sty}) in a location where \LaTeX\ can find them. According to the TDS conventions this may be a subdirectory named \texttt{tex/latex/pgf-spectra/} or \texttt{tex/latex/misc/} in your (site specific) installation tree (insert your appropriate directory delimiter instead of /, if needed).

If you are using \LaTeX, just can simply include the style file without any option via the \texttt{\usepackage} command, \texttt{\usepackage\{pgf-spectra\}}

It can also be loaded with \texttt{one option} to select the data source: \texttt{\usepackage[option]\{pgf-spectra\} }

\textbf{For more detailed information see section The lines data.}
What’s new

In version 3.0.1
- Fixed a small bug dealing with the axis label/axis label text background color, which occurred when setting a visible background with the back key, e.g.: \pgfspectra[element=H,axis label text={wavenumber in nanometer},back=visible50]

In version 3.0.0
- In the \pgfspectra command, syntax for the key lines has been updated: it is now possible to specify a continuous range using start wavelength to end wavelength, for instance, lines={380 to 500} or lines={380 to 500,633} or lines={633,555,380 to 500}.
- New keys for \pgfspectra:
 - axis label
 - axis label text
 - axis label position
- New command \usepgfspectralibrary for loading pgf-spectra libraries.
- New library data to load spectral lines data, display it in a table or export it to a file. This library provides the commands:
 - \pgfspectradata to load the desired data.
 - \pgfspectratable displays loaded data in a table.
 - \pgfspectrawrite writes loaded data to a file.
- Some commands from previous versions have been moved to new libraries:
 - \pgfspectraplotshade and \pgfspectraplotmap moved to new library pgfplots.
 - \tempercolor moved to new library tempercolor.
 - \pgfspectrarainbow moved to new library rainbow.

In version 2.2.0
- LSE data renormalized to lower values within \TeX capabilities. This prevents Dimension too large errors and subsequent errors in spectrum drawing when using the relative intensity key.

- Added maximum intensities in IR, visible an UV ranges for both data sources (NIST and LSE). Now, when using the relative intensity key, the interval of wavelengths is detected and the respective maximum intensity is used. For example, if the spectrum is within the visible range, say between 400 and 700 nanometers, the maximum visible intensity will be used. The same is true for ranges only in IR or UV ranges. But, if the spectrum to be drawn is in more than one region – for example, from 300 to 1000 or from 400 to 1000 or from 300 to 700 nanometers – the maximum intensity that will be used is defined as the maximum intensity of all data.
- Fixed some typos in the manual.
▷ **In version 2.1.1**

- Code rewrote for the command `\pgfspectraplotshade`, supporting two new keys:
 - shade begin
 - logarithmic

▷ **In version 2.1.0**

- The continuous visible region is now drawn via Ti\textit{k}Z shading, improving a little bit the speed of the whole process.
- Minor fix: the width of the emission/absorption lines are now correctly drawn.
- New keys for `\pgfspectra`:
 - use visible shading
 - backVIS
 - axis unit
 - axis unit precision
- New color conversion command, which converts a temperature in Kelvin to the correspondent rgb color, based on correlated color temperature:
 - \texttt{\tempercolor{temperature in Kelvin}}
- New commands that provides shadings to use in Ti\textit{k}Z:
 - `\pgfspectrashade[<h|v>](start,end){name}`
 - `\pgfspectrarainbow[tikz options](rainbow options){radius}`

 The Ti\textit{k}Z keys that affect the rainbow are:
 - color
 - opacity
 - scope fading

 The specific rainbow options are:
 - rainbow fade
 - rainbow start
 - rainbow knock out
 - rainbow background
 - rainbow transparency

- New command that provides a shading to use in PGFPLOTS:
 - `\pgfspectraplotshade[options]{name}` with the following specific keys
 - shade end
 - shade opacity
 - shade opacity color

- New command that builds a color map to use in PGFPLOTS:
 - `\pgfspectraplotmap[<l|h>]{name}`
In version 2.0.0

- The package can now be loaded with one of the following options:
 - \usepackage[NIST]{pgf-spectra} (default)
 - \usepackage[LSE]{pgf-spectra}

- Range of spectral window from 10 nm to 4000 nm (previous version from 380 nm to 780 nm).

- Added the lines data outside the visible range for the 98 elements.

- No more dependency on the package ifthen (code rewritten with the \ifx \TeX primitive).

- Setting/disabling global options to draw the spectra’s with the new commands:
 - \pgfspectraStyle[options]
 - \pgfspectraStyleReset

- New keys:
 - axis ticks
 - backIRUV (only for emission spectrum)
 - IRcolor (for emission lines and for background in absorption spectrum)
 - UVcolor (for emission lines and for background in absorption spectrum)
 - redshift
 - show redshift value

- The issues with the zooming of the pdf viewer sometimes introducing blank lines in the spectra have been fixed:

![spectra image]

The rendition should now be working for every zoom (I hope!):

Many thanks to Daniel García’s suggestion to solve this problem!

- Fixed the problem when putting the spectra inside any horizontal \TeX box, like \makebox, \mbox or \hbox.
 For instance, the code \makebox[textwidth][c]{\pgfspectra[element=He]}:
 - had as a result in the previous version (version 1.0):
 ![result of version 1.0]
 - and will result in version 2.0.0 at:
 ![result of version 2.0.0]
The lines data

There are two data sets available for drawing the spectra: one based in the previous version, whose data was initially obtained from the package `pst-spectra` and the other obtained from NIST.

In both cases are included the lines for 98 elements, from hydrogen \((Z = 1)\) to einsteinium \((Z = 99)\), except for francium \((Z = 87)\). For each element there are lines between 10 nm and 4000 nm (obtained from the referred pages at February 2021).

Data based on pst-spectra

This set was obtained from http://cdsarc.u-strasbg.fr/viz-bin/Cat?VI/16

According to the information on the page the listed lines are based on "Line Spectra of the Elements", Joseph Reader and Charles H. Corliss CRC Handbook of Chemistry and Physics. This book refers that «The table contains the outstanding spectral lines of neutral (I) and singly ionized (II) atoms of the elements from hydrogen through plutonium \((Z = 1−94)\); selected strong lines from doubly ionized (III), triply ionized (IV), and quadruply ionized (V) atoms are also included.»

Note: `pst-spectra` documentation refers "Line Spectra of the Elements from the Astronomical Data Center of NASA" as the source material, but I'm assuming the original source is "Line Spectra of the Elements", Joseph Reader and Charles H. Corliss CRC Handbook of Chemistry and Physics, obtained from http://cdsarc.u-strasbg.fr/viz-bin/Cat?VI/16.

To use this data set load the package `pgf-spectra` with the option `LSE` (acronym to Line Spectra of the Elements):

\usepackage[LSE]{pgf-spectra}

Number of lines provided: 46065 (see file pgf-spectraDataLSE.pdf)

Data based on NIST

This set was obtained from https://physics.nist.gov/PhysRefData/Handbook/Tables/findinglist.htm

According to the information on the page the listed lines «includes data for the neutral and singly-ionized atoms».

Note: **This set is loaded by default.** Because the data to search is slightly smaller (only neutral and singly-ionized atoms) the time consumption when building the spectra could be a bit lower.

To use this data set load the package `pgf-spectra` without options:

\usepackage{pgf-spectra}

Number of lines provided: 11980 (see file pgf-spectraDataNIST.pdf)
Commands overview

The main commands, those always available, are:

- \pgfspectra or \pgfspectra[options list]
- \wlcolor{wavelength}
- \pgfspectrastyle[options]
- \pgfspectrastylereset
- \pgfspectrashade[<h|v>](start,end){name}
- \usepgfspectralibrary{name(s)}

The commands available after loading libraries are:

- \pgfspectradata[name of data set]{keys} (data library)
- \pgfspectratable[table options]{name(s) of data set(s)} (data library)
- \pgfspectrawrite[filename]{name(s) of data set(s)} (data library)
- \pgfspectrashadethread[options]{name} (pgfplots library)
- \pgfspectrashadetable[<l|h>]{name} (pgfplots library)
- \tempercolor{Kelvin} (tempercolor library)
- and finally just for fun a command that draws a rainbow,
 \pgfspectrarainbow[tikz options](rainbow options){radius} (rainbow library)

⚠️ Utilization of \pgfspectra

This command is used without options to draw the visible continuous spectrum:

\pgfspectra

When using options, a continuous or discrete spectra in the visible region can be drawn, for instance:

\pgfspectra[width=.5\textwidth,height=1.25cm]

\pgfspectra[width=\textwidth,element=Ne]

The options available for \pgfspectra are described in section The options for \pgfspectra.
Utilization of \texttt{\textcolor{wavelength}{wavelength}}

A command to convert a wavelength from 380 to 780 nanometres (or other value in the range $10\,\text{nm} \leq \lambda \leq 4000\,\text{nm}$) to the respective color available as `\textcolor{wavelength}`:

\begin{verbatim}
\tikz{\foreach \x in {380,400,...,780}{\textcolor{\x}{\draw[fill=\x] (.03*\x,0) rectangle ++(.6,.5)
node[midway,font=\tiny\bfseries,text=black!50] {\x};}}}
\end{verbatim}

Utilization of \texttt{\pgfspectraStyle[options]}

Use this command to set the global style of all the subsequent drawn spectra:

\begin{verbatim}
\pgfspectra[element=Ne]
\end{verbatim}

(before defining the global style)

\begin{verbatim}
\pgfspectraStyle[width=.75\textwidth,axis,begin=100,end=1000,axis step=50]
\pgfspectra[element=Ne]
\end{verbatim}

(after defining the global style)

\begin{verbatim}
\pgfspectra[element=Ne,back=visible40,gamma=.6]
\end{verbatim}

(adding other options)

Note you can locally override the settings defined in the global style:

\begin{verbatim}
\pgfspectra[element=Ne,axis step=100]
\end{verbatim}

(overriding a global option)
Utilization of `\pgfspectraStyleReset`

Used to reset all the options of the spectra to their default values:

```latex
\pgfspectraStyleReset
\pgfspectra[element=Ne]
```

Utilization of `\pgfspectrashade[<h|v>](start,end){name}`

This command builds and makes available a horizontal or a vertical shading, between the ‘start’ and ‘end’ wavelengths (in nanometres), to use in TikZ pictures with the provided ‘name’.

Note that, in this command, the ‘start’ wavelength needs to be smaller than the ‘end’ wavelength and is in the visible region: $\lambda_{\text{start}} < \lambda_{\text{end}}$ and $380 \leq \lambda \leq 780$. The optional parameter takes the value h or v and has the default value of h.

```latex
\pgfspectrashade(380,780){myShadeA}
\pgfspectrashade(500,700){myShadeB}
\pgfspectrashade[v](380,780){myShadeC}
```

Utilization of `\usepgfspectralibrary{name(s)}`

Use this command to load pgf-spectra libraries anywhere in the document. The name(s) is a single library name or a comma separated list of library names. As of now, available libraries are data, pgfplots, tempercolor and rainbow.

```latex
% Loading data library
\usepgfspectralibrary{data}
% Loading data and tempercolor libraries
\usepgfspectralibrary{data,tempercolor}
```
The options for `\pgfspectra`

For the commands `\pgfspectra` and `\pgfspectraStyle` there are a set of options available to draw the spectrum as described below.

The list of options is of the form `key` or `key=value` separated by commas.

use visible shading

default: true

The visible region of the spectra is drawn using a TikZ shading instead of line by line, resulting in a faster drawing of that region. When set to 'false' the visible region is drawn line by line: this value could be useful for printers that tend to be problematic when printing the shadings. *(new in v2.1.0)*

```latex
\pgfspectra[use visible shading=false]
```

width

default: 0.9\textwidth

Sets the width of the spectrum.

```latex
\pgfspectra[width=10cm]
```

height

default: 1cm

Sets the height of the spectrum.

```latex
\pgfspectra[height=40pt]
```

element

default: NONE

A single chemical symbol of an element or a list of chemical symbols.

```latex
\pgfspectra[element=H]
```

```latex
\pgfspectra[element={H,He}]
```
The options for `\pgfspectra`

charge

The charge of the particle to draw the spectrum. Use ‘all’ to get all available lines for the element, i.e., for the atom and all the positive ions that exist in the database. For LSE data: a value between 0 and 4; all other values are processed as ‘all’. For NIST data: 0 or 1. All other values are processed as ‘all’.

```latex
\pgfspectra[element=He]
```

```latex
\pgfspectra[element=He,charge=1]
```

```latex
\pgfspectra[element=He,charge=2]
```

Element “He” with charge “2” have no lines to display.

```latex
\pgfspectra[element=He,charge=all]
```

Imin

The minimum intensity of the lines to put in the spectrum. Value from 0 to 1.

```latex
\pgfspectra[element=He,Imin=.5]
```

```latex
\pgfspectra[element=He,Imin=.05]
```

relative intensity

Draws the lines respecting the intensity of the observed spectrum.

```latex
\pgfspectra[element=He,relative intensity]
```

relative intensity threshold

Sets the minimum intensity for the lines in the spectrum when using relative intensities. When set to 0.25 a line with real intensity 0 will have a spectral intensity of 0.25 and a line with intensity equal to the max intensity observed in that spectrum will have an intensity in the computed spectrum of 1, assuming of course, an overall intensity in the range between 0 and 1.
The options for \texttt{pgfspectra}:

<table>
<thead>
<tr>
<th>Element</th>
<th>Relative Intensity</th>
<th>Relative Intensity Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{element=He,relative intensity,relative intensity threshold=0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,relative intensity,relative intensity threshold=.25}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,relative intensity,relative intensity threshold=.5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,relative intensity,relative intensity threshold=.75}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,relative intensity,relative intensity threshold=1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In fact, setting the relative intensity threshold to 1 is equivalent to the spectrum without relative intensities:

<table>
<thead>
<tr>
<th>Element</th>
<th>Line Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{element=He}</td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,line intensity=0}</td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,line intensity=50}</td>
<td></td>
</tr>
<tr>
<td>\texttt{element=He,line intensity=100}</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Line Intensity} \hspace{5cm} \textit{default: 100}

Draws all the lines with the specified intensity between 0 and 100 (as a percentage of the maximum intensity).
The options for `\pgfspectra`

gamma
Gamma color correction: any positive value.

- \pgfspectra[gamma=.1]
- \pgfspectra[gamma=.8]
- \pgfspectra[gamma=1]
- \pgfspectra[gamma=2]
- \pgfspectra[gamma=5]
- \pgfspectra[gamma=10]

brightness
Brightness color correction as in the CMYK color model. Value between 0 and 1. Zero stands for black and one for the maximum bright. *This option only works for the continuous component of the spectra, to change the “brightness” of spectral lines use the option 'line intensity'.*

- \pgfspectra[brightness=.1]
- \pgfspectra[brightness=.5]
- \pgfspectra[brightness=1]
The options for `\pgfspectra`

back

default: black

Sets the background color of the spectrum. Only useful when there are spectral lines. Some shorthand are defined to put the visible region in the background: `visible5`, `visible10`, `visible15`, ..., `visible100`.

Note: this labels combined with the 'brightness' option makes it possible to achieve other values on the background, since the visible amount (5%, 10%, ...) is multiplied by the value of brightness.

\begin{verbatim}
\pgfspectra[element=He,back=white]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,back=black!50]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,back=visible50]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,back=visible50,brightness=.26]
\end{verbatim}

backIRUV

default: black

Sets the background color, *only for the emission spectrum*, outside the visible region ($10nm \leq \lambda < 380nm$ and $780nm < \lambda \leq 4000nm$) *(new in v2.0.0)*

\begin{verbatim}
\pgfspectra[element=He,back=visible50,begin=100,end=1000,backIRUV=white]
\end{verbatim}

IRcolor

default: rgb(0.3157, 0.2373, 0.2373)

Sets the color for emission lines and for background in absorption spectrum in the IR region ($780nm < \lambda \leq 4000nm$) *(new in v2.0.0)*

\begin{verbatim}
\pgfspectra[element=He,back=visible50,begin=100,end=1000,IRcolor=white]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,begin=100,end=1000,IRcolor=white,absorption]
\end{verbatim}
The options for `\pgfspectra`

UVcolor

default: \texttt{rgb(0.3,0.2568,0.3)}

Sets the color for emission lines and for background in absorption spectrum in the UV region \((10\text{nm} \leq \lambda < 380\text{nm})\)

\texttt{\pgfspectra[element=\text{He},back=\text{visible50},begin=100,end=1000,UVcolor=\text{white}]}

\texttt{\pgfspectra[element=\text{He},begin=100,end=1000,UVcolor=\text{white},absorption]}

lines

default: \{\}

A comma separated list of wavelengths and/or a range of wavelengths – start to end – in the interval \([10; 4000]\text{ nm}\)

\texttt{\pgfspectra[lines={400,500,550,700}]}

\texttt{\pgfspectra[lines={200,205,400,500,550,700,850,950,980},begin=100,end=1000]}

\texttt{\pgfspectra[lines={380 to 500}]}

\texttt{\pgfspectra[lines={420 to 500, 550, 600 to 630, 700, 720}]}

line width

default: \texttt{1pt}

The width of each individual line in the spectrum.

\texttt{\pgfspectra[line\ width=2pt]}

\texttt{\pgfspectra[line\ width=2pt,element=\text{He}]}

14 of 67
The options for \texttt{\textbackslash pgfspectra}

\begin{itemize}
\item \texttt{begin} \\
\hspace*{10pt} The starting wavelength in nanometres of the spectrum (10 \leq \lambda \leq 4000). \\
\hspace*{10pt} \texttt{\pgfspectra[begin=500]} \\
\hspace*{0pt} \texttt{\pgfspectra[begin=700,end=500]} \\
\hspace*{0pt} \texttt{\pgfspectra[begin=780,end=380]} \\
\hspace*{0pt} \texttt{\pgfspectra[begin=780,end=380,element=He]} \hspace*{5pt} \texttt{(Interval updated in v2.2.0)}
\item \texttt{end} \\
\hspace*{10pt} The finishing wavelength in nanometres of the spectrum (10 \leq \lambda \leq 4000). \\
\hspace*{10pt} \texttt{\pgfspectra[end=500]} \\
\hspace*{0pt} \texttt{\pgfspectra[begin=500,end=700]} \\
\hspace*{0pt} \texttt{\pgfspectra[begin=700,end=500]} \\
\hspace*{0pt} \texttt{\pgfspectra[begin=780,end=380]} \hspace*{5pt} \texttt{(Interval updated in v2.2.0)}
\item \texttt{absorption} \\
\hspace*{10pt} Draws the absorption spectrum instead of the emission one. \\
\hspace*{10pt} \texttt{\pgfspectra[element=H,absorption]} \\
\hspace*{0pt} \texttt{\pgfspectra[element={H,He},absorption]} \hspace*{5pt} \texttt{(Interval updated in v2.2.0)}
\end{itemize}

\textbf{Remark:} \textit{it’s obviously possible to set ‘begin’ and ‘end’ at the same time and if desired change the order of the wavelengths.}
axis

By default draws a nanometric axis below the spectrum. In v2.1.0 is now possible to change the unit of the axis.

\[\text{\textbackslash pgfspectra[axis]\%}\]

axis step

The increment (in nanometres) to use in the axis scale.

\[\text{\textbackslash pgfspectra[axis, axis step=50]\%}\]

\[\text{\textbackslash pgfspectra[axis, axis step=50, begin=100, end=1500]\%}\]

axis ticks

The number of minor ticks between two consecutive ticks in the axis.

\[\text{\textbackslash pgfspectra[axis, axis ticks=4]\%}\]

Keep in mind, if you desire to divide two consecutive ticks into 10 equal parts set `axis ticks=9`:

\[\text{\textbackslash pgfspectra[axis, axis ticks=9]\%}\]

axis unit

Sets the unit to use in the displayed values of wavelengths in the axis below the spectrum. Available units are:
- nanometre (nm): \texttt{axis unit=nm}
- micrometre (\(\mu\)m): \texttt{axis unit=micron}
- angstrom (Å): \texttt{axis unit=A}

(new in v2.1.0)
The options for `\pgfspectra`

\pgfspectra{element=H,begin=200,end=1000,axis,axis step=50,axis ticks=4,back=visible40}
\pgfspectra{element=H,begin=200,end=1000,axis,axis step=50,axis ticks=4,axis unit=micron,back=visible40}
\pgfspectra{element=H,begin=200,end=1000,axis,axis step=50,axis ticks=4,axis unit=A,back=visible40}
\pgfspectra{element=Hg,begin=1000,end=200,axis,axis step=50,axis ticks=4,back=visible40}
\pgfspectra{element=Hg,begin=2000,end=200,axis,axis step=100,axis ticks=4,axis unit=A,back=visible40}
\pgfspectra{element=Hg,begin=4000,end=250,axis,axis step=250,axis ticks=4,axis unit=A,back=visible40}
\pgfspectra{element=Hg,begin=4000,end=250,axis,axis step=250,axis ticks=4,axis unit=micron,back=visible40}

axis unit precision

Sets the precision of the displayed wavelengths in the axis below the spectrum. *(new in v2.1.0)*

\pgfspectra{element=H,begin=200,end=1000,axis,axis step=50,axis ticks=4,axis unit=micron,back=visible40}
\pgfspectra{element=H,begin=200,end=1000,axis,axis step=50,axis ticks=4,axis unit=micron,axis unit precision=2,back=visible40}
axis label
Shows or hides (default) the axis label below it. When this key is set to `true`, the `axis` key is also set to `true`.

\[\text{\texttt{axis label=true}}\]

axis label text
If not empty, shows the axis label with the given text below it. In this case, the `axis label` key is set to `true`.

\[\text{\texttt{axis label text=\{Wavelength in nanometers\}}}\]

axis label position
Sets the position of the axis label to `left` or `center` or `right`.

\[\text{\texttt{axis label=true,axis label position=right}}\]

axis color
The color of the axis.

\[\text{\texttt{axis,axis color=red!50!green!50!blue!50}}\]
axis font

The font specs to use in the axis.

\texttt{\textbackslash pgfspectra[axis,axis font=\textbackslash fontsize\{3\}\textbackslash itshape\textbackslash selectfont]}

axis font color

The color of the font used in the axis.

\texttt{\textbackslash pgfspectra[axis,axis font color=blue!50!white]}

label

Puts a label for the spectrum.

\texttt{\textbackslash pgfspectra[label]}

\texttt{\textbackslash pgfspectra[label,element=He]}

label position

Sets the position of the label according to:

- north west
- north
- north east
- west
- spectrum
- east
- south west
- south
- south east

\texttt{\textbackslash pgfspectra[label,label position=east,element=He]}

label font

The font specs for the label.

\texttt{\textbackslash pgfspectra[label,label font=\textbackslash footnotesize\textbackslash itshape,element=He]}
label font color
The color of the font used in the label.

\texttt{\pgfspectra[label, label font color=blue!50!white, element=He]}

\begin{lstlisting}[language=latex]
He
\end{lstlisting}

label before text
Inserts text before the value stored in the label: if chemical symbols were provided, the label has them stored, otherwise it is empty.

\texttt{\pgfspectra[label, label before text=text, element=He]}

\begin{lstlisting}[language=latex]
text He
\end{lstlisting}

Remark: The `_` is to insert a space between the text entered by user and the text stored in label.

label after text
Inserts text after the value stored in the label: if chemical symbols were provided, the label has them stored, otherwise it is empty.

\texttt{\pgfspectra[label, label after text=text, element=He]}

\begin{lstlisting}[language=latex]
He text
\end{lstlisting}

redshift
Redshift (or blueshift) the spectral lines:
The redshift value (z) is defined as $1 + z = \frac{\lambda_{\text{obs}}}{\lambda_E}$ which leaves the observed wavelength to $\lambda_{\text{obs}} = (1 + z) \lambda_E$, given the emitted wavelength of the source (λ_E).

- Use `redshift=<numeric value>` to directly enter the redshift value
- or use `redshift={D=<numeric value 1>/<numeric value 2>}` to compute the Relativistic Doppler redshift with $\pi = <\text{numeric value 1}>$ and $\theta = <\text{numeric value 2}>$.

The Relativistic Doppler redshift $(1 + z)$ is calculated accordingly:

$$1 + z = \frac{1 + \pi \cos \theta}{\sqrt{1 - \pi^2}} \quad \pi = \frac{v}{c}$$

where π is the normalized velocity (in units of the speed of light in vacuum, c) of the emitter and θ is the angle between the direction of relative motion and the direction of emission in the observer’s frame (zero angle is directly away from the observer).

So, if the source of light is moving away from an observer, then redshift occurs ($z > 0$), but, if the source moves towards the observer, then blueshift occurs ($z < 0$).

\begin{itemize}
 \item $\theta=0^\circ$
 \item $\theta=180^\circ$
\end{itemize}

(new in v2.0.0)
The options for \texttt{\pgfspectra}

\begin{verbatim}
\pgfspectra[element=He,back=visible40,gamma=.6,axis,axis step=50,axis
ticks=4,begin=100,end=1000,redshift={D=.001/0}]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,back=visible40,gamma=.6,axis,axis step=50,axis
ticks=4,begin=100,end=1000,redshift={D=.001/180}]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,back=visible40,gamma=.6,axis,axis step=50,axis
ticks=4,begin=100,end=1000,redshift=.5]
\end{verbatim}

\begin{verbatim}
\pgfspectra[element=He,absorption,gamma=.6,axis,axis step=50,axis
ticks=4,begin=100,end=1000,redshift=-.5]
\end{verbatim}

\textbf{show redshift value} \hspace{1cm} \textit{default: false} \hspace{1cm} \textit{(new in v2.0.0)}

\begin{verbatim}
\pgfspectra[element=He,back=visible40,gamma=.6,axis,axis step=50,axis
ticks=4,begin=100,end=1000,redshift={D=.001/0},show redshift value]
\end{verbatim}

Relativistic Doppler redshift: $z=0.001$ ($v=0.001c$; $\theta=0^\circ$)

\begin{verbatim}
\pgfspectra[element=He,back=visible40,gamma=.6,axis,axis step=50,axis
ticks=4,begin=100,end=1000,redshift=.5,show redshift value]
\end{verbatim}

redshift: $z=.5$
Libraries

In this part the library packages are documented. They provide additional commands to extend the capabilities provided by this package out of the box. The libraries are not loaded by default since many users will not need them.

The available libraries are:

- **data** library:
 - provides the commands to display and/or export to a file the spectral lines of selected elements.

- **pgfplots** library:
 - provides the commands to create a plot shade or a plot map to use with PGFPLOTS.

- **tempercolor** library:
 - provides the command to converts a temperature (in Kelvin) into its correlated color.

- **rainbow** library:
 - provides the command to draw a rainbow.
data Library

pgf-spectra Library data

Usage: \usepgfspectralibrary{data}

This library implements a command that allows the user to extract the spectral lines data used by \pgfspectra. After that using one of the other two commands provided it is possible do display the data in a table or export it to a file. The commands are:

- \pgfspectradata[name of data set]{keys}
- \pgfspectratable[table options]{name(s) of data set(s)}
- \pgfspectrawrite[filename]{name(s) of data set(s)}

Utilization of \pgfspectradata[name of data set]{keys}

This command loads spectral lines data of the element or elements specified with the `element` key. Note that this key is exactly the same as the one used in \pgfspectra. This command also shares the `charge`, `Imin`, `redshift`, `begin` and `end` keys with \pgfspectra, but has its own `precision` and `unit` keys. \pgfspectradata does not produce any visible output, but it does the work needed by \pgfspectratable and \pgfspectrawrite commands. The optional `name of data set` argument makes that name available for use with \pgfspectratable or \pgfspectrawrite. See utilization of \pgfspectratable and utilization of \pgfspectrawrite for examples of the application of this command.

The options for \pgfspectradata

<table>
<thead>
<tr>
<th>name of data set</th>
<th>default: <code>{}</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>\pgfspectradata[\texttt{dataH}]{element=H}</code></td>
<td></td>
</tr>
</tbody>
</table>

This command does not generate any visible output, but internally stores the following data:

\[
H(+0):383.5,388.9,397.0,410.2,434.0,486.1,656.3;
\]

<table>
<thead>
<tr>
<th>precision</th>
<th>default: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>\pgfspectradata{element=H,\texttt{precision}=2}</code></td>
<td></td>
</tr>
</tbody>
</table>

This command does not generate any visible output, but internally stores the following data:

\[
H(+0):383.5,388.9,397.0,410.2,434.0,486.13,656.27,656.29;
\]
The \texttt{pgfspectraStyle} command does not generate any visible output, but internally stores the following data:

\begin{verbatim}
H(0):0.1026,0.1216,0.3835,0.3889,0.3970,0.4102,0.4340,0.4861,0.6563;
\end{verbatim}

This command does not generate any visible output, but internally stores the following data:

\begin{verbatim}
H(0)
\end{verbatim}

The table \texttt{pgfspectratable} \texttt{table options} \texttt{name(s) of data set(s)} command displays the loaded data in a table. Both arguments are optional.

When used without arguments, the last \texttt{unnamed} data loaded is used:

\begin{verbatim}
\texttt{pgfspectratable}\texttt{\{name\}}\texttt{\{element\}}% loads the spectral lines of neon
\texttt{pgfspectratable}% displays the table...
\end{verbatim}

The table \texttt{pgfspectratable} \texttt{table options} keys are \texttt{title}, \texttt{back color}, \texttt{data back color}, \texttt{text color}, \texttt{width} and \texttt{elements column width}.

The optional \texttt{name(s) of data set(s)} argument is either a single name or a comma separated list of names previously defined via \texttt{pgfspectradata}.

\begin{verbatim}
title \texttt{default: <REDSHIFTED >SPECTRAL LINES OF ELEMENT(S) \<\| redshift value> \| wavelength in unit <relative intensity> \(new in v3.0.0\)

Sets the title in the table header.
\end{verbatim}
\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{SPECTRAL LINES OF ELEMENT} & \textbf{wavelength in nm} \\
\hline
H & 383.5 388.9 397.0 410.2 434.0 486.1 656.3 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{SPECTRAL LINES OF ELEMENTS} & \textbf{wavelength in nm} \\
\hline
H & 383.5 388.9 397.0 410.2 434.0 486.1 656.3 \\
He & 382.0 388.9 396.5 400.9 402.6 412.1 414.4 438.8 443.8 447.1 447.2 471.3 492.2 501.6 504.8 587.6 667.8 686.7 706.5 706.6 728.1 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{REDSHIFTED SPECTRAL LINES OF ELEMENT} & \textbf{Relativistic Doppler redshift: } z=-0.01 (v=0.01c ; \theta=180^\circ) \\
\textbf{wavelength in nm} & \\
\hline
H & 379.7 385.0 393.0 406.1 429.7 481.2 649.7 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{SPECTRAL LINES OF ELEMENT} & \textbf{wavelength in nm/relative intensity} \\
\hline
H & 383.5/0.27 388.9/0.28 397.0/0.28 410.2/0.31 434.0/0.38 486.1/0.58 656.3/0.75 656.3/1.00 \\
\hline
\end{tabular}
\end{table}

% this example requires the LSE data loaded
% use \usepackage[LSE]{pgf-spectra} in the document preamble
\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Oxygen spectral lines in the visible region} & \textbf{Wavelength in nanometers} $\lambda\,(nm)$ \\
\hline
O & 382.3 394.7 394.8 395.5 423.3 436.8 532.9 533.0 533.1 543.5 543.6 543.7 557.7 595.8 595.9 599.5 604.6 610.6 615.6 615.7 615.8 625.7 626.2 636.6 637.4 645.4 645.6 660.5 665.4 700.2 715.7 725.4 725.5 747.6 747.7 747.9 748.1 770.7 777.2 777.4 777.5 \\
\hline
\end{tabular}
\end{table}
Spectral lines of oxygen and its ions in the visible region

Wavelength in nanometers

O	382.3 394.7 394.8 395.5 423.3 436.8 532.9 533.0 533.1 543.5 543.6 543.7 557.7 595.8 595.9 599.5 604.6 610.6 615.6 615.7 615.8 625.7 626.2 636.6 637.4 645.4 645.6 660.5 665.4 700.2 715.7 725.4 725.5 747.6 747.7 747.9 748.1 770.7 777.2 777.4 777.5
O⁺	380.3 391.2 391.9 395.4 397.3 398.2 407.0 407.2 407.6 408.4 408.7 408.9 409.7 410.5 411.9 413.3 414.6 415.3 418.5 419.0 425.4 427.5 430.4 431.7 433.7 434.6 434.9 436.7 439.6 441.5 441.7 444.8 445.2 446.5 446.6 446.8 446.9 459.1 459.6 460.9 463.9 464.2 464.9 465.1 466.2 467.6 469.9 470.5 492.5 494.3
O²⁻	396.2 559.2
O³⁻	no lines!

back color

Sets the background color of the table header, of the element(s) column, of the table border lines and of the lines between rows.

default: black!10
(new in v3.0.0)

\[\text{\texttt{pgfspectratable}}[\text{back color}=\text{blue}!10] \]

SPECTRAL LINES OF ELEMENT

wavelength in nm/relative intensity

| H | 383.5/0.27 388.9/0.28 397.0/0.28 410.2/0.31 434.0/0.38 486.1/0.58 656.3/0.75 656.3/1.00 |

data back color

Sets the background color of each data row.

default: white
(new in v3.0.0)

\[\text{\texttt{pgfspectratable}}[\text{data back color}=\text{black}!5] \]

SPECTRAL LINES OF ELEMENT

wavelength in nm/relative intensity

| H | 383.5/0.27 388.9/0.28 397.0/0.28 410.2/0.31 434.0/0.38 486.1/0.58 656.3/0.75 656.3/1.00 |

text color

Sets the color of all text in the table.

default: black
(new in v3.0.0)

\[\text{\texttt{pgfspectratable}}[\text{text color}=\text{blue}!50!\text{black}] \]

SPECTRAL LINES OF ELEMENT

wavelength in nm/relative intensity

| H | 383.5/0.27 388.9/0.28 397.0/0.28 410.2/0.31 434.0/0.38 486.1/0.58 656.3/0.75 656.3/1.00 |
width
Sets the total width of the table.

\begin{center}\pgfspectratable[width=.75\linewidth]\end{center}

SPECTRAL LINES OF ELEMENT
wavelength in nm/relative intensity

<table>
<thead>
<tr>
<th>Element</th>
<th>Wavelength (nm)</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>383.5</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>388.9</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>397.0</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>410.2</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>434.0</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>486.1</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>656.3</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>656.3</td>
<td>1.00</td>
</tr>
</tbody>
</table>

elements column width
Sets the width of the element(s) column.

\pgfspectratable[elements column width=.1\linewidth]

SPECTRAL LINES OF ELEMENT
wavelength in nm/relative intensity

<table>
<thead>
<tr>
<th>Element</th>
<th>Wavelength (nm)</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>383.5</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>388.9</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>397.0</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>410.2</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>434.0</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>486.1</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>656.3</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>656.3</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(Utilization of \pgfspectrawrite)

This command writes the provided data set(s) to a file making the data available for use at any time, and in any context. Both arguments are optional:

- if no filename is given, the name `spectradata.tex` is used, otherwise the filename is formed by any character recognized by the operating system (this means, for instance, that `_` character can be used), followed by an optional extension – `tex`, `csv`, `txt` or `dat`. If the extension is not present, the `tex` extension is appended to the given name.

- if no name(s) of data set(s) is given, the last `unnamed` data loaded will be used.

For example, using just \pgfspectrawrite writes, in the current working directory, the file `spectradata.tex` with the following contents, which were the last `unnamed` data loaded:

```plaintext
% Generated by pgf-spectra @ 27 April 2023
% Spectral lines of element(s) and/or their ion(s) from 380 to 780 nanometers
% Data structure: chemical symbol,charge,lines/relative intensity
H,0.383.5/0.27,388.9/0.28,397.0/0.28,410.2/0.31,434.0/0.38,486.1/0.58,656.3/0.75,656.3/1.00
```

\pgfspectrawrite[myfile.csv] writes, in the current working directory, the file `myfile.csv` with the following contents, which were the last `unnamed` data loaded:

```plaintext
# Generated by pgf-spectra @ 27 April 2023
# Spectral lines of element(s) and/or their ion(s) from 380 to 780 nanometers
# Data structure: chemical symbol,charge,lines/relative intensity
H,0.383.5/0.27,388.9/0.28,397.0/0.28,410.2/0.31,434.0/0.38,486.1/0.58,656.3/0.75,656.3/1.00
```
\texttt{\textbackslash pgfspectrawrite [oxygen.dat}\{dataOI,dataOII,dataOIII,dataOIV\} writes, in the current working directory, the file oxygen.dat with the following contents:

\begin{table}
\centering
\begin{tabular}{l}
\hline
% Generated by pgf-spectra @ 27 April 2023 \\
% Spectral lines of element(s) and/or their ion(s) from 380 to 780 nanometers \\
% Data structure: \\
% chemical symbol,charge,lines \\
0,0,382.3,394.7,394.8,395.5,423.3,436.8,532.9,533.0,533.1,543.5,543.6,543.7,557.7,557.8,595.8,595.9,599.5,604.6,610.6,615.6,615.7, \\
615.8,625.7,626.2,636.6,637.7,645.4,645.6,660.5,665.4,700.2,715.7,725.4,725.5,747.8,747.9,748.1,770.1,777.2,777.3,777.4,777.5 \\
0,+1,380.3,391.2,391.9,395.4,397.3,398.2,407.0,407.2,407.6,408.4,408.7,408.9,409.7,410.6,411.9,413.3,414.6,415.3,415.8, \\
425.4,427.5,430.4,431.7,433.7,434.6,434.9,436.7,439.6,441.7,444.8,445.2,446.5,446.6,446.8,446.9,459.1,459.6,460.9,463.9, \\
464.2,464.9,465.1,466.2,467.6,469.9,470.5,492.5,493.3 \\
0,+2,396.2,559.2 \\
0,+3, no lines! \\
\hline
\end{tabular}
\end{table}

\texttt{\textbackslash pgfspectrawrite [Hredshift.txt]\{Hrs\} writes, in the current working directory, the file Hredshift.txt with the following contents:

\begin{table}
\centering
\begin{tabular}{l}
\hline
% Generated by pgf-spectra @ 27 April 2023 \\
% Redshifted spectral lines of element(s) and/or their ion(s) from 380 to 780 nanometers \\
% Relativistic Doppler redshift: z=-0.01 (v=0.01c ; theta=180 degrees) \\
% Data structure: \\
% chemical symbol,charge,lines \\
H,0,379.7,385.0,393.0,406.1,429.7,481.2,649.7 \\
\hline
\end{tabular}
\end{table}
This library implements two commands that define the necessary material needed to be used with the PGFPLOTS package, referring to the colors provided by `\pgfspectra`. The commands are:

- `\pgfspectraplotmap[<l|h>]{name}`
- `\pgfspectraplotshade[options]{name}`

The commands – `\pgfspectrashade`, `\pgfspectraplotshade` and `\pgfspectraplotmap` – were inspired in the TeX - LaTeX Stack Exchange questions, Filling optical spectrum curve with color gradient and How to create a electromagnetic spectrum using pgfplots package (together with colormaps), which were referred by Stefan Pinnow, as examples, in a features request for the `pgf-spectra` package.

Utilization of `\pgfspectraplotmap[<l|h>]{name}`

This command builds and makes available a low or high resolution color map in the wavelength range from 380 nm to 780 nm to use in PGFPLOTS with the provided `name`:

```latex
\begin{tikzpicture}
\begin{axis}[colormap name=myColorMap]
\addplot+[scatter,only marks,domain=0:8,samples=200] {exp(x)};
\end{axis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{axis}[colormap name=myColorMap]
\addplot+[scatter,only marks,domain=0:4*pi,samples=200] {sin(deg(x))};
\end{axis}
\end{tikzpicture}
```
Actually using high or low resolution produces the same effect on plot. The difference resides on the number of colors available to the `color of colormap' feature. For more information see Using \texttt{\pgfspectraplotshade} and \texttt{\pgfspectraplotmap} with \texttt{PGFPLOTS}.

\begin{itemize}
\item Utilization of \texttt{\pgfspectraplotshade[options]{name}}
\end{itemize}

This command, without any options, builds and makes available a shading in the wavelength range from 380 nm to 780 nm to use in PGFPLOTS with the provided `name'.

\begin{itemize}
\item \texttt{\pgfspectraplotshade{myPlotShadeA}}
\end{itemize}

The optional argument can receive specific options for the shade or \texttt{\pgfspectra} options:

\begin{itemize}
\item \texttt{\pgfspectraplotshade[shade begin=0,shade end=4000,IRcolor=white,UVcolor=white,shade opacity=.2,gamma=.6]{myPlotShadeB}}
\end{itemize}

The specific options available are \texttt{shade end}, \texttt{shade opacity} and \texttt{shade opacity color}. See The options for \texttt{\pgfspectraplotshade} for detailed information on using these options. When used in PGFPLOTS it’s possible to do plots like:
For these plots and other ones see Using \texttt{\pgfspectraplotshade} and \texttt{\pgfspectraplotmap} with \texttt{PGFPLOTS}.

The options for \texttt{\pgfspectraplotshade}

The command \texttt{\pgfspectraplotshade} creates a shade to use with the \texttt{\addplot} command provided by the PGFPLOTS package. The shade starts at \texttt{shade begin} and finishes at \texttt{shade end}. The shading could be adjusted using the following options:

- \texttt{shade begin}
- \texttt{shade end}
- \texttt{shade opacity}
- \texttt{shade opacity color}
- \texttt{logarithmic}

\textbf{shade begin} \hspace{1cm} \texttt{default: 380}

This value determines the start wavelength of the computed shading. It should be set equal to the minimum value of the plotted data. It could be different from the inferior limit of the domain provided to the plot (see the PGFPLOTS package documentation for more information). The range of accepted values goes from 0 nm to (\texttt{shade end}-1). \textit{(new in v2.1.1)}

\textbf{shade end} \hspace{1cm} \texttt{default: 780}

This value determines the end wavelength of the computed shading. It should be set equal to the maximum value of the plotted data and could be different from the superior limit of the domain provided to the plot. The range of accepted values goes from (\texttt{shade begin}+1) to 16000 nm. \textit{(new in v2.1.0)}

\begin{verbatim}
\pgfspectraplotshade\{shadeDefault\}
\fbox{\tikz{\fill[shading=shadeDefault] (0,0) rectangle (7.5,.75);}}
\end{verbatim}

\begin{verbatim}
\pgfspectraplotshade[shade begin=600]{shadeBegin600}
\fbox{\tikz{\fill[shading=shadeBegin600] (0,0) rectangle (7.5,.75);}}
\end{verbatim}
\pgfspectraplotshade[shade begin=300,shade end=600]\{shade300to600\}
\fbox{\tikz{\fill[shading=shade300to600] (0,0) rectangle (7.5,.75);}}

\pgfspectraplotshade[shade begin=600,shade end=900]\{shade600to900\}
\fbox{\tikz{\fill[shading=shade600to900] (0,0) rectangle (7.5,.75);}}

shade opacity
The opacity of the computed shade. ‘0’ stands for 0% and the shading is totally transparent; ‘1’ stands for 100% and the shading isn’t transparent at all.

\pgfspectraplotshade[shade opacity=.5]\{shadeOpacity50\}
\fbox{\tikz{\fill[shading=shadeOpacity50] (0,0) rectangle (7.5,.75);}}

\pgfspectraplotshade[shade opacity=0]\{shadeOpacity0\}
\fbox{\tikz{\fill[shading=shadeOpacity0] (0,0) rectangle (7.5,.75);}}
Shade Opacity Color

The background color of the computed shading. Only visible when `shade opacity` is lesser than 1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\pgfspectraplotshade{shadeDefault}</td>
<td>The default color.</td>
</tr>
<tr>
<td>\pgfspectraplotshade[shade opacity color=black]{shadeOpacityBlack}</td>
<td>Black color.</td>
</tr>
<tr>
<td>\pgfspectraplotshade[shade opacity color=black, shade opacity=.5]{shadeOpacityBlack50}</td>
<td>Black with 50% opacity.</td>
</tr>
</tbody>
</table>

Logarithmic

When set to true, the shading is built in a logarithmic scale. The smaller wavelengths are widened and the longer ones are shortened in the displayed region.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\pgfspectraplotshade[logarithmic]{logshadeDefault}</td>
<td>The default logarithmic option.</td>
</tr>
<tr>
<td>\pgfspectraplotshade[logarithmic, shade begin=300, shade end=600]{logshade300to600}</td>
<td>Logarithmic shading from 300 to 600.</td>
</tr>
<tr>
<td>\pgfspectraplotshade[logarithmic, shade begin=600, shade end=900]{logshade600to900}</td>
<td>Logarithmic shading from 600 to 900.</td>
</tr>
</tbody>
</table>
\pgfspectraplotshade[logarithmic,shade begin=300,shade end=900]\{logshade300to900\}

\fbox{\tikz{\fill[shading=shade300to900] (0,0) rectangle (7.5,.75);}}
\\fbox{\tikz{\fill[shading=logshade300to900] (0,0) rectangle (7.5,.75);}}

\pgfspectraplotshade[logarithmic,shade begin=10,shade end=10000]\{logshade10to10000\}

\fbox{\tikz{\fill[shading=shade10to10000] (0,0) rectangle (7.5,.75);}}
\\fbox{\tikz{\fill[shading=logshade300to900] (0,0) rectangle (7.5,.75);}}
\textbf{tempercolor Library}

\texttt{pgf-spectra Library tempercolor}

\texttt{\textbf{USAGE:} \usepgfspectralibrary{tempercolor}}

This library provides the command \texttt{\tempercolor{Kelvin}} that uses the CIE 1964 10-degree color matching function to convert a given temperature, in Kelvin ($1000 \, K \leq T \leq 40000 \, K$), to the respective correlated color. For more information on the implemented algorithm, please see:

- https://www.zombieprototypes.com/?p=210
- https://github.com/neilbartlett/color-temperature

\textbf{Utilization of \texttt{\tempercolor{Kelvin}}}
** rainbow Library **

\begin{itemize}
\item pgf-spectra Library rainbow
\end{itemize}

USAGE: \texttt{\usepgfspectralibrary{rainbow}}

This library provides the command \texttt{\pgfspectrarainbow[tikz options](rainbow options){radius}} that allows you to draw a rainbow with or without options.

Utilization of \texttt{\pgfspectrarainbow[tikz options](rainbow options){radius}}

Without options this command draws a rainbow with the specified radius:
\texttt{\pgfspectrarainbow{2cm}}

The rainbow is designed with the following schema resulting in a clipped and shown region:

The options available could be specific options for the rainbow or common TikZ options:

- the rainbow specific options:
 - rainbow start
 - rainbow knock out
 - rainbow fade
 - rainbow transparency
 - rainbow background
- the TikZ options: any option known by TikZ and/or TikZ libraries.
The options for \pgfspectrarainbow

For the command \pgfspectrarainbow there are a set of options that control the rainbow drawn.

The specific rainbow options are:
- rainbow start
- rainbow knock out
- rainbow fade
- rainbow transparency
- rainbow background

Some Ti\LaTeX{} keys that affect the rainbow are:
- `color'
- opacity
- scope fading

The default rainbow drawn is:
\pgfspectrarainbow{2cm}

\begin{itemize}
\item \textbf{rainbow start} \hspace{1cm} \textbf{default:} .6
\end{itemize}

The fraction from which the rainbow colors begin, relative to the center of a circle with radius 1. This value should be in the interval [0,1]. (new in v2.1.0)

\pgfspectrarainbow(rainbow start=.8){2cm} \% the rainbow colors starts at 1.6cm
\hspace{1cm} \pgfspectrarainbow(rainbow start=.4){2cm} \% the rainbow colors starts at .8cm

\begin{itemize}
\item \textbf{rainbow knock out} \hspace{1cm} \textbf{default:} .4
\end{itemize}

The relative distance from the half-circle base to perform the clip. This value should be in the interval [-1,1]. (new in v2.1.0)

\pgfspectrarainbow(rainbow knock out=0){2cm} \% the full half circle
\pgfspectrarainbow(rainbow knock out=.4){2cm} \% the default value
\pgfspectrarainbow(rainbow knock out=.8){2cm}\% only 80% of the half circle is shown

\pgfspectrarainbow(rainbow knock out=-.4){2cm}\% «extending» the half-circle

\pgfspectrarainbow(rainbow fade=south){2cm}
\hspace{1cm} \pgfspectrarainbow(rainbow fade=west){2cm}

rainbow fade \hfill \textbf{default: }\{\}

Applies a scope fading in the clipped region (requires loading the Ti\textit{k}Z fadings library). For more information about the fadings see the Ti\textit{k}Z manual.

\%\usetikzlibrary{fadings}
\dots
\pgfspectrarainbow(rainbow fade=south){2cm}
\hspace{1cm}\pgfspectrarainbow(rainbow fade=west){2cm}

\pgfspectrarainbow(rainbow transparency=.5){2cm}

rainbow transparency \hfill \textbf{default: }0

The overall transparency of the rainbow. ‘0’ (0\%) stands for the fill colors in the rainbow without transparency; ‘1’ (100\%) represents a totally transparent rainbow.

\pgfspectrarainbow(rainbow transparency=.5){2cm}

\pgfspectrarainbow(rainbow background=blue){2cm}
\hspace{1cm}\pgfspectrarainbow(rainbow background=blue,rainbow transparency=.5){2cm}

\hline

Some of the Ti\textit{k}Z keys that affect the rainbow:

\pgfspectrarainbow[blue]{2cm}\% Setting only the fill color only takes no effect
More examples in Using \pgfspectrarainbow.
Examples

▶ Using `\pgfspectra`

Here are some examples for drawing some *eventually useful* spectra:

```
\pgfspectra [element=He, axis, label, label position=north west, label after text=\ emission spectrum: ]
```

He emission spectrum:

```
\pgfspectra [element=He, axis, label, label position=north west, label after text=\ emission spectrum:, relative intensity, relative intensity threshold=.5 ]
```

He emission spectrum:

```
\pgfspectra [element=He, charge=all, line intensity=50, Imin=.05]
```

```
\pgfspectra [element=He, absorption, axis, label, label position=north west, label after text=\ absorption spectrum:, relative intensity, relative intensity threshold=.5]
```

He absorption spectrum:

```
\pgfspectra [element=He, charge=all, absorption, line intensity=50]
```

```
\pgfspectra [element=He, charge=all, relative intensity, back=visible75, gamma=2]
```

When the lines are manually inserted it’s possible to use ‘label before text’ only with personalized text. In the next three examples ‘label before text’ is used to make labels for a multiple choice problem, omitting evidently the type of luminous font.

✓ Laser He-Ne

```
\pgfspectra [height=.7cm, end=740, lines={633}, line width=1.25pt, width=.75\linewidth, label, axis, label before text=(A), axis font=\fontsize{4pt}{6pt}\selectfont]
```

(A)
✓ Fluorescent lamp
\pgfplots[height=.7cm,end=740,lines={380,425,450,525,550,600,625,640,705},
 line width=1.25pt,width=.75\linewidth,label,axis,label before text=(B),
 axis font=\fontsize{4pt}{6pt}\selectfont]

✓ Blue LED
\pgfplots[height=.7cm,end=740,lines={450 to 510},
 line width=1.25pt,width=.75\linewidth,label,axis,label before text=(C),
 axis font=\fontsize{4pt}{6pt}\selectfont]

✓ Sun like spectrum
\pgfplots[element={H,Fe,Mg,Na},absorption,line intensity=40,Imin=.05]

✓ Sirius like spectrum
\pgfplots[element={H,He},absorption,line intensity=40,Imin=.05]

✓ “Classical” emission spectra of elements:
\pgfplots[element=H,back=visible40,gamma=.6,label,axis,Imin=.05]
\pgfplots[element=He,back=visible40,gamma=.6,label,axis,Imin=.05]
\pgfplots[element=Ne,back=visible40,gamma=.6,label,axis,Imin=.05]
✓ Series of hydrogen:

\begin{verbatim}
\pgfspectra[element=H,line width=.5pt,begin=50,end=1950,axis,axis step=100,axis ticks=4,back=visible40,gamma=.6,brightness=.5,label,label position=north,label font=\footnotesize,label after text={hydrogen Lyman, Balmer and Paschen series (wavelengths in nm)}]
\end{verbatim}

Hydrogen Lyman, Balmer and Paschen series (wavelengths in nm)

✓ Redshifted & Blueshifted lines of hydrogen using the \foreach statement:

\begin{verbatim}
\pgfspectraStyle[axis,axis ticks=4,back=visible40,gamma=.6,line width=.5pt]
\pgfspectra[element=H,label,label position=north west,label font=\footnotesize,label before text={spectra of\ }]
\foreach \SQ/\z/\shift in {H/0.01/redshifted,H/-0.01/blueshifted}{\pgfspectra[element=\SQ,label,label position=north west,label font=\footnotesize,label before text={\shift\ spectra of\ },label after text={\ (z=\z)},redshift=\z]}
\foreach \SQ/\z/\shift in {H/{D=0.01/0}/redshifted,H/{D=0.01/180}/blueshifted}{\pgfspectra[element=\SQ,label,label position=north west,label font=\footnotesize,label before text={\shift\ spectra of\ },redshift=\z,show redshift value]}
\end{verbatim}

spectra of H

\begin{verbatim}
\pgfspectra[element=H,line width=.5pt,begin=50,end=1950,axis,axis step=100,axis ticks=4,back=visible40,gamma=.6,brightness=.5,label,label position=north,label font=\footnotesize,label after text={hydrogen Lyman, Balmer and Paschen series (wavelengths in nm)}]
\end{verbatim}

Hydrogen Lyman, Balmer and Paschen series (wavelengths in nm)
Using `\pgfspectrashade` in TikZ

Obviously, the *normal* TikZ keys used to control the shadings apply to the shading generated via `\pgfspectrashade`:

```
\pgfspectrashade(380,780){myShadeA}
\tikz{\fill[shading=myShadeA,shading angle=180] (0,0) rectangle (10,.5);}
\tikz{\fill[shading=myShadeA,shading angle=90] (0,0) rectangle (10,.5);}
\tikz{\fill[shading=myShadeA,shading angle=45] (0,0) rectangle (10,.5);}
```

Providing an opacity to the drawing and applying a shade works well too:

```
\pgfspectrashade(380,780){myShadeA}
\begin{itemize}
\item on black background:
  \tikz{\fill[shading=myShadeA,opacity=.5] (0,0) rectangle (10,.5);}
\item on white background:
  \tikz{\fill[white,shading=myShadeA,opacity=.5] (0,0) rectangle (10,.5);}
\item on red background:
  \tikz{\fill[red,shading=myShadeA,opacity=.5] (0,0) rectangle (10,.5);}
\end{itemize}
```

The gamma in the generated shade (via `\pgfspectrashade`) could be modified using the `gamma` key of `\pgfspectra` set by the command `\pgfspectraStyle`:

```
\pgfspectrashade(380,780){myShadeA}
\tikz{\fill[myShadeA] (0,0) rectangle (10,.5);}
\pgfspectraStyle[gamma=2]
\pgfspectrashade(380,780){myShadeGammaII}
\tikz{\fill[myShadeGammaII] (0,0) rectangle (10,.5);}
\pgfspectraStyle[gamma=10]
\pgfspectrashade(380,780){myShadeGammaX}
\tikz{\fill[myShadeGammaX] (0,0) rectangle (10,.5);}
\pgfspectraStyleReset
```
Using `\pgfspectraplotshade` and `\pgfspectraplotmap` with PGFPLOTS

The command `\pgfspectraplotshade` is designed to build a shading to use with PGFPLOTS. Next examples show a few possibilities of how it could be used regarding two sources: a source of light and their photon flux and the blackbody spectral radiance.

In order to correctly make the filling between the path at axis and the plotted curve, the path should begin at 'shade begin' and end at 'shade end':

\[\text{path}[\text{name path}=\text{axis}](\text{shade begin},0) – (\text{shade end},0)\]

\[\pgfspectraplotshade\{\text{visiblespectrum}\}\% \text{default shading [380;780]nm}\]

\[\begin{tikzpicture}\begin{axis}[\text{title= Photon Flux,}\
\text{xlabel=\text{Wavelength [nm],}}\
\text{ylabel=\text{Photon Flux [a.u.],}}\]
\text{xmin=300,}\
\text{xmax=800,}\]
\end{axis}\end{tikzpicture}\]
The above example could be obtained with the following *improved* code, based on a suggestion made by Stefan Pinnow:

```latex
\begin{tikzpicture}
\pgfmathsetmacro{\xmin}{300}
\pgfmathsetmacro{\xmax}{800}
\pgfmathsetmacro{\shbegin}{380}
\pgfmathsetmacro{\shend}{780}
\pgfspectraplotshade[shade begin=\shbegin,shade end=\shend]{visiblespectrum}
\begin{axis}[
  title=Photon Flux,
  xlabel={Wavelength in nm},
  ylabel={Photon Flux in a.u.},
  xmin=\xmin,
  xmax=\xmax,
]
  \addplot [smooth, name path=spectrum,white] coordinates {
    (380,0) (400,5) (500,1) (520,3) (525,8) (530,25)
    (535,23) (640,28) (545,34) (550,20) (555,13)
    (560,8) (580,9) (600,18) (620,7) (680,1) (780,0)
  };
  \path [name path=axis] (\shbegin,0) -- (\shend,0);
  \addplot+ [thick,shading=visiblespectrum] fill between [of=spectrum and axis];
\end{axis}
\end{tikzpicture}
```

![Graph of Photon Flux vs. Wavelength](image-url)
\texttt{\textbackslash pgfspectraplotshade[shade end=1000]\{visiblespectrum\}}

\begin{tikzpicture}
\begin{axis}[
 title= Photon Flux,\
 xlabel={Wavelength [nm]},\
 ylabel={Photon Flux [a.u.]},\
 xmin=0,\
 xmax=1000,\
]
\addplot[smooth, name path=spectrum,white] plot[] coordinates{\
(380, 0) (400,5) (500, 1) (520, 3) (525, 8) (530, 25) (535, 23) (540, 28) (545, 34) (550, 20) (555, 13) (560, 8) (580, 9) (600, 18) (620, 7) (680, 1) (780, 0) (800, 0) (900, 0) (1000, 0)};
\path[name path=axis] (380,0) -- (1000,0);
\addplot+ [thick,shading=visiblespectrum] \fill between[of=spectrum and axis];
\end{axis}
\end{tikzpicture}
\pgfspectraplotshade[shade end=600]{visiblespectrum}

\makebox[\linewidth][c]{%\fbox{\tikz{\fill[shading=visiblespectrum] (0,0) rectangle (7.5,.75);}}}%
\\[10pt]\begin{tikzpicture}
\begin{axis}[%
title= Photon Flux,\
xlabel={Wavelength [nm]},\
ylabel={Photon Flux [a.u.]},%
xmin=300,\%
xmax=600,\%
]\
\addplot[smooth, name path=spectrum,draw=none] plot[] coordinates{%
(380, 0) (400,5) (500, 1) (520, 3) (525, 8) (530, 25)
(535, 23) (540, 28) (545, 34) (550, 20) (555, 13)
(560, 8) (580, 9) (600, 18)
};
\path[name path=axis] (380,0) -- (600,0);
\addplot+ [thick,shading=visiblespectrum]
fill between[of=spectrum and axis];
\end{axis}
\end{tikzpicture}
\begin{example}
\texttt{\pgfspectraplotshade[gamma=10]\{visiblespectrumGammaX\}}
\begin{verbatim}
\makebox[\linewidth][c]{%
\fbox{\tikz{\fill[shading=visiblespectrumGammaX] (0,0) rectangle (7.5,.75);}}}%
\end{verbatim}
\begin{tikzpicture}
\begin{axis}[
 title= Photon Flux,\
 xlabel={Wavelength [nm]},\
 ylabel={Photon Flux [a.u.]},\
 xmin=300,\
 xmax=800,\]
\addplot[smooth, name path=spectrum,white] plot[] coordinates{\n (380, 0) (400,5) (500, 1) (520, 3) (525, 8) (530, 25) \n (535, 23) (540, 28) (545, 34) (550, 20) (555, 13) \n (560, 8) (580, 9) (600, 18) (620, 7) (680, 1) (780, 0) \n};
\path[name path=axis] (380,0) -- (780,0);
\addplot+ [thick,shading=visiblespectrumGammaX]
 fill between[of=spectrum and axis];
\end{axis}
\end{tikzpicture}
\end{example}
Note: when setting the color for IR or UV within `\pgfspectraplotshade` make sure it doesn’t end with ‘!<number>’ like ‘black!40’; use ‘black!40!white’ instead.

\pgfspectraplotshade[IRcolor=black!40!white,UVcolor=black!60!white,shade begin=300,shade end=900]{visiblespectrumIRUV}

\makebox[\linewidth][c]{\fbox{\tikz{\fill[shading=visiblespectrumIRUV] (0,0) rectangle (7.5,.75);}}}

\begin{tikzpicture}
\begin{axis}[
 title= Photon Flux,\
 xlabel={Wavelength [nm]},\
 ylabel={Photon Flux [a.u.]},\
 xmin=300,\
 xmax=900,\
]
\addplot[smooth, name path=spectrum,white] plot coordinates{
 (300,0) (320,15) (340,1) (365,1)
 (380,2.5) (400,5) (500,1) (520,3) (525,8) (530,25)
 (535,23) (540,28) (545,34) (550,20) (555,13)
 (560,8) (580,9) (600,18) (620,7) (680,1) (700,0)
 (800,2) (825,12) (850,3) (900,0)
};
\path[name path=axis] (300,0) -- (900,0);
\addplot+[thick,shading=visiblespectrumIRUV]
 fill between[of=spectrum and axis];
\end{axis}
\end{tikzpicture}
For the blackbody spectral radiance, the Planck’s distribution is used with the values:

- \(c = 3 \times 10^{14} \) microns \(\cdot \) s\(^{-1} \) – speed of light
- \(h = 6.626 \times 10^{-34} \) kg \(\cdot \) microns\(^2 \) \(\cdot \) s\(^{-1} \) – Planck constant
- \(k_B = 1.38 \times 10^{-23} \) kg \(\cdot \) microns\(^2 \) \(\cdot \) s\(^{-2} \) \cdot K^{-1} – Boltzmann constant
- \(\lambda \) – wavelength (microns)
- \(T \) – temperature (K)
- Planck distribution: \(B_\lambda = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_BT}} - 1} \) (kW \(\cdot \) sr\(^{-1} \cdot m\(^{-2} \cdot \) nm\(^{-1} \))

The legend of the plots is created with the following definition:

\[
\text{\texttt{\def\myentry#1{\tempercolor{#1}\%}}}
\text{\texttt{\tikz{\fill[tempercolor] (0,-.5pt) rectangle (40pt,.5pt) node[midway,font=\footnotesize,anchor=mid]{\color{black} T=#1\hspace{.1ex}K};}}}\%
\]

\[
\text{\texttt{\pgfspectraplotshade[shade begin=0,shade end=4000,IRcolor=white,UVcolor=white,}
\texttt{gamma=.6,shade opacity=.2]{BBbody}}}
\]

\[
\text{\texttt{\makelinewidth[\linewidth][c]%}}
\text{\texttt{\fbox{\tikz{\fill[shading=BBbody] (0,0) rectangle (7.5,.75);}}}%}
\]
\[
\text{\texttt{\begin{axis}[title=Blackbody,xlabel={Wavelength ($\times 10^3\text{\,nm}$)},%}
\texttt{ylabel={Spectral radiance\,\,(kW\cdot\text{sr}^{-1}\cdot\text{m}^{-2}\cdot\text{nm}^{-1})}$},%}
\texttt{ylabel style={align=center},ymax=80,domain=0:4]}%}
\texttt{\addplot[smooth, name path=spectrum,black,samples=50,thick] plot[]%}
\texttt{\{119.268/(x^-5*(exp(14404/(x*7000))-1))\};\addlegendentry{\texttt{\myentry{7000}}}%}
\texttt{\addplot[smooth,black,samples=50,densely dashed,thick] plot[]%}
\texttt{\{119.268/(x^-5*(exp(14404/(x*5500))-1))\};\addlegendentry{\texttt{\myentry{5500}}}%}
\texttt{\addplot[smooth,black,samples=50,densely dotted,thick] plot[]%}
\texttt{\{119.268/(x^-5*(exp(14404/(x*4000))-1))\};\addlegendentry{\texttt{\myentry{4000}}}%}
\texttt{\path[name path=axis] (axis cs:0,0) -- (axis cs:1,0);%}
\texttt{\addplot+ [white,shading=BBbody] fill between[of=spectrum and axis];%}
\texttt{\end{axis}}\end{tikzpicture}%}
\begin{tikzpicture}
\begin{axis}[
 title=Blackbody,
 xlabel={Wavelength ($\times 10^3\,\text{nm}$)},
 ylabel={Spectral radiance $\mathsf{(kW\cdot\text{sr}^{-1}\cdot m^{-2}\cdot nm^{-1})}$},
 ylabel style={align=center},
 ymax=80,
 domain=0:4
]
 \addplot[smooth, name path=spectrum, black, samples=50, thick] plot[
 \mathsf{$119.268/(x^5*(exp(14404/(x*7000))-1))$}];
 \addlegendentry{$\text{T}=7000K$}
 \addplot[smooth, black, samples=50, densely dashed, thick] plot[
 \mathsf{$119.268/(x^5*(exp(14404/(x*5500))-1))$}];
 \addlegendentry{$\text{T}=5500K$}
 \addplot[smooth, black, samples=50, densely dotted, thick] plot[
 \mathsf{$119.268/(x^5*(exp(14404/(x*4000))-1))$}];
 \addlegendentry{$\text{T}=4000K$}
\path[name path=axis] (axis cs:0,0) -- (axis cs:1,0);
\addplot+[white, shading=\text{BBbody}] fill between[of=spectrum and axis];
\end{axis}
\end{tikzpicture}
\pgfspectraplotshade[shade begin=0,shade end=4000,IRcolor=black,UVcolor=black, gamma=.6,shade opacity=.5,shade opacity color=black]{BBody}

\makebox[\linewidth][c]{%\
\fbox{\tikz{\fill[shading=BBody] (0,0) rectangle (7.5,.75);}}}%
\begin{tikzpicture}
\begin{axis}[
axis background/.style={fill=black},\%
legend style={fill=black,draw=white},\%
title=Blackbody,xlabel={Wavelength ($\times10^3\,\text{nm}$)},\%
ylabel style={align=center},ymax=80,domain=0:4]\%
\addplot[smooth, name path=spectrum,black,samples=50,thick] plot[]
{119.268/(x^5*(exp(14404/(x*7000))-1))};\addlegendentry{T=7000}\%
\addplot[smooth,black,samples=50,densely dashed,thick] plot[]
{119.268/(x^5*(exp(14404/(x*5500))-1))};\addlegendentry{T=5500}\%
\addplot[smooth,black,samples=50,densely dotted,thick] plot[]
{119.268/(x^5*(exp(14404/(x*4000))-1))};\addlegendentry{T=4000}\%
\path[name path=axis] (axis cs:0,0) -- (axis cs:1,0);\%
\addplot+ [black,shading=BBody] fill between[of=spectrum and axis];\%
\end{axis}\end{tikzpicture}%
\pgfspectraplotshade[shade begin=0, shade end=4000, shade opacity=.5, gamma=.6, shade opacity color=black]{BBody}

\begin{tikzpicture}
\begin{axis}[
axis background/.style={fill=black},
legend style={fill=black, draw=white},
title=Blackbody, xlabel={Wavelength ($\times 10^3$ nm)},
ylabel={Spectral radiance ($\text{kHz}\cdot \text{sr}\cdot \text{m}^{-2}\cdot \text{nm}^{-1}$)},
ylabel style={align=center}, ymax=80, domain=0:4]
\addplot[smooth, name path=spectrum, thick] plot
{119.268/(x^5*(exp(14404/(x*7000))-1))};\addlegendentry{T=7000K}
\addplot[smooth, densely dashed, thick] plot
{119.268/(x^5*(exp(14404/(x*5500))-1))};\addlegendentry{T=5500K}
\addplot[smooth, densely dotted, thick] plot
{119.268/(x^5*(exp(14404/(x*4000))-1))};\addlegendentry{T=4000K}
\path[name path=axis] (axis cs:0,0) -- (axis cs:1,0);
\addplot+ [black, shading=BBody] fill between[of=spectrum and axis];
\end{axis}
\end{tikzpicture}
The above examples could be obtained with a much functional and prettier code, also proposed by Stefan Pinnow:

```latex
\begin{tikzpicture}
  \pgf/declare function={
  BlackBodySpectralRadiance(x,T) = 119.268/(x^5*(exp(14404/(x*T))-1));}
\pgfspectraplotshade[
  shade begin=0,
  shade end=4000,
  IRcolor=white,
  UVcolor=white,
  gamma=.6,
  shade opacity=.2,
]{BBody}
\def\myentry#1{
  \textcolor{#1}{\text{\footnotesize $T = #1\text{\,K}$}}
}
\begin{axis}[
  title=Blackbody,
  xlabel={Wavelength in $\text{10}^3\text{\,nm}$},
  ylabel={Spectral radiance in $\text{kW} \cdot \text{sr}^{-1} \cdot \text{m}^{-2} \cdot \text{nm}^{-1}$},
  ylabel style={align=center},
  ymax=80,
  cycle list name=linestyles,
  domain=0:4,
  samples=51,
  smooth,
] \pgfplotsinvokeforeach{7000,5500,4000}{
  \addplot+[thick,name path=spectrum-#1] {BlackBodySpectralRadiance(x,#1)};
  \addlegendentry{$T = #1\text{\,K}$}
}\path [name path=axis] (axis cs:0,0) -- (axis cs:4,0);
\addplot [shading=BBody] fill between [of=spectrum-7000 and axis];\end{axis}\end{tikzpicture}
```
The `logarithmic` option of the \texttt{\textit{pgfspectraplotshade}} command could be used as a possible solution for the TeX - LaTeX Stack Exchange question, How to create a electromagnetic spectrum using pgfplots package (together with colormaps).

Filling optical spectrum curve with color gradient (first answer)

The original code lines that was replaced, in this possible answer, are commented.

```latex
\documentclass[10pt]{article}
\usepackage[dvipsnames,table]{xcolor}
\usepackage{siunitx} % SI-units
\usepackage{pgf-spectra}
\usepackage{pgfplots}
\usepgfplotslibrary{units} % to add units easily to axis
\usepgfplotslibrary{fillbetween} % to fill inbetween curves
\usepgfplotslibrary{colormaps} % to create colormaps
\pgfplotsset{width=12.2cm, height=7cm}
\pgfplotsset{compat=newest} %(making it only compatalbe with
\%\pgfdeclarehorizontalshading{visiblelight}{50bp}{
% color(0.00000000000000bp)=(violet);
% color(8.33333333333333bp)=(blue);
% color(16.66666666666667bp)=(cyan);
% color(25.00000000000000bp)=(green);
% color(33.33333333333330bp)=(yellow);
% color(41.66666666666667bp)=(orange);
% color(50.00000000000000bp)=(red)
%}
% make the horizontal shading and set the UV and IR colors -->
% \pgfspectraStyle[gamma=.6]
% %\pgfspectraplotshade[logarithmic, UVcolor=UV]{logvisiblelight}
% %\pgfspectraplotshade[logarithmic, IRcolor=IR]{logvisiblelight}
% \pgfspectraplotshade[logarithmic, UVcolor=UV]{logvisiblelight}
% \pgfspectraplotshade[logarithmic, IRcolor=IR]{logvisiblelight}
% \pgfspectraStyleReset% uncomment to reset the style
% \begin{document}
% \begin{tikzpicture}[fill between/on layer={axis grid}]
% \begin{axis}[
% xlabel={Wavelength},
% xticklabel style = {font=\tiny,yshift=0.2ex},
% xmin=10^-5, xmax=10^5, x unit=\si{\micro\meter}, xmode=log, xmax=10^5, x unit=\si{\micro\meter}, xmode=log, ymin=0, ymax=1, height=3cm, yticklabels={}, ytick={empty}, legend cell align=left, legend style={at={(0.85,-0.77)},anchor=north}
% ]
% \end{axis}
% \end{tikzpicture}
% \end{document}
```
\addplot[draw=none, name path=start, forget plot] coordinates{(10^{-5},0)(10^{-5},1)};\addplot[draw=none, name path=gamma, forget plot] coordinates{(10^{-3},0)(10^{-3},1)};\addplot[draw=none, name path=xrays, forget plot] coordinates{(10^{-2},0)(10^{-2},1)};\addplot[draw=none, name path=uv, forget plot] coordinates{(0.38,0)(0.38,1)};\addplot[draw=none, name path=visible, forget plot] coordinates{(0.78,0)(0.78,1)};\addplot[draw=none, name path=ir, forget plot] coordinates{(10^{-5},0)(10^{-5},1)};\addplot[draw=none, name path=microwave, forget plot] coordinates{(10^{-9},0)(10^{-9},1)};\addplot[violet!20, area legend] fill between[of=start and gamma];\addplot[violet!60, area legend] fill between[of=gamma and xrays];\addplot[UV!50,area legend] fill between[of=xrays and uv];\addplot[violet, area legend] fill between[of=xrays and uv];\addplot[shading=visiblelight, area legend] fill between[of=uv and visible];\addplot[shading=logvisiblelight,forget plot] fill between[of=uv and visible];\addplot[red, area legend] fill between[of=visible and ir];\addplot[IR!50,area legend] fill between[of=visible and ir];\addplot[IR!50!brown, area legend] fill between[of=ir and microwave];\addplot[IR!50!Bittersweet, area legend] fill between[of=ir and microwave];\addplot[shading=Infrared,forget plot] fill between[of=ir and microwave];\addplot[Bittersweet, area legend] fill between[of=ir and microwave];\addplot[Brown, area legend] fill between[of=microwave and radiowave];\addlegendentry{γ-ray}\addlegendentry{X-ray}\addlegendentry{Ultra violet}\addlegendentry{Visible light}\addlegendentry{Infrared}\addlegendentry{Micro wave}\addlegendentry{Radio wave}\end{axis}\end{tikzpicture}\end{document}
Filling optical spectrum curve with color gradient (second answer)

The original code lines that were replaced, in this possible answer, are commented and the code without changes was omitted.

\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{calc, positioning, shapes, backgrounds, fit, arrows}
\usepackage{pgf-spectra}
\usepackage{siunitx}
\usepackage{contour}
\begin{document}
%\pgfdeclarehorizontalshading{visiblelight}{50bp}{%
%https://tex.stackexchange.com/a/348492/120853
% color(0bp)=(violet!25);
% color(8.33bp)=(blue!25);
% color(16.67bp)=(cyan!25);
% color(25bp)=(green!25);
% color(33.33bp)=(yellow!25);
% color(41.5bp)=(orange!25);
% color(50bp)=(red!25)
%}%
% make the horizontal shading and set the UV and IR colors -->
%\pgfspectraStyle[gamma=.6]% uncomment to change the gamma
\wlcolor{380}\colorlet{UV}{wlcolor}%
\wlcolor{780}\colorlet{IR}{wlcolor}%
\pgfspectraplotshade[logarithmic,shade opacity=.3]{visiblelight}%
%\pgfspectraStyleReset% uncomment to reset the style
\begin{tikzpicture}[
raylabel/.style={font=\scriptsize}\\
% ... code omitted ... %
% On background layer so already drawn arrow and scale lines cover it up nicely
\begin{scope}[on background layer]
 \node[
inner sep=0pt, outer sep=0pt,
%fit={([xshift=-2.2em]WAVELENGTH_0|-ARROW.after tail) ([xshift=-2.2em]WAVELENGTH_1|-ARROW.before tail)}, shading=visiblelight]
{SMALL_VISIBLE_LIGHT} {};

\shade[
left color=white, right color=violet!25, middle color=violet!5, middle color=UV!5, outer sep=0pt
]
% ... code omitted ... %
\shade[
left color=red!25, left color=IR!25, right color=white, middle color=red!5, middle color=IR!5, outer sep=0pt,
]
% ... code omitted ... %
\end{scope}
\end{tikzpicture}
\end{document}
% Some labels can be drawn automatically at the designated label coordinates:
\foreach [count=\i] \label in {
 \{Gamma\ rays\},
 \{X-rays\},
 \{};%Skip this one
 \{infrared\}
}\{
 \node[raylabel, align=center] at (LABEL_\i) \{\label\};
\}
% These do not fit the loop and are drawn manually:
\node[raylabel, align=right, anchor=north] at
 ([yshift=-1em,xshift=-2.5pt]$(WAVELENGTH_-2)!0.45!(WAVELENGTH_0)$)
 \{Ultra-\ violet\};
\node[raylabel, fill=white] at (CONNECTION_6) \{radio waves\};
\node[raylabel, left=0.1em of CONNECTION_1, align=right] \{cosmic\ rays\};
\node[draw, fill=black!20, below=4em of SMALL_VISIBLE_LIGHT, align=center, label=above:{\textbf{Visible Spectrum}}]
 \{\pgfspectra[width=13em,height=3em, axis, axis unit=micron, axis step=100, axis ticks=4, axis unit precision=2]\%
 \pgfspectra also has a builtin axis which of course much better than
 \%this terrible approach, but it is in nanometer
 \%\num{0.38} \hfill \num{0.48} \hfill \num{0.58} \hfill \num{0.68} \hfill \num{0.78} \%
}\};
% ... code omitted ... %
\end{tikzpicture}
\end{document}
Next examples show possible usage of color maps feature of PGFPLOTS with the color map build with the \texttt{pgfspectraplotmap} command:

\texttt{\pgfspectraplotmap{myColorMap}\% default resolution (51 colors)}

\texttt{\pgfplotscolormap{example}\% \texttt{samples of colormap=(10 of myColorMap)}}\hspace{1cm} \texttt{\colorbar horizontal,\colormap access=const}\hspace{1cm} \texttt{\\}\hspace{1cm} \texttt{\pgfplotscolormap{example}\% \texttt{samples of colormap=(10 of myColorMap)}}\hspace{1cm} \texttt{\colorbar horizontal,\colormap access=map}\hspace{1cm} \texttt{\\}\hspace{1cm} \texttt{\% --- code improved by Stefan Pinnow ---\rangle}\hspace{1cm} \texttt{\begin{tikzpicture}\hspace{1cm} \foreach \i in {0,...,\pgfplotscolormaplastindexof{myColorMap}}{\hspace{1cm} \fill [index of colormap={\i of myColorMap}] (\x*12pt,-\y*10pt) rectangle ++(12pt,10pt)\hspace{1cm} \node [inner sep=Opt,\textcolor{white}]{\i};}\hspace{1cm} \end{tikzpicture}}

\texttt{\pgfspectraplotmap{myColorMap}\% high resolution (401 colors)}

\texttt{\pgfplotscolormap{example}\% \texttt{samples of colormap=(10 of myColorMapH)}}\hspace{1cm} \texttt{\colorbar horizontal,\colormap access=const}\hspace{1cm} \texttt{\\}\hspace{1cm} \texttt{\pgfplotscolormap{example}\% \texttt{samples of colormap=(10 of myColorMapH)}}\hspace{1cm} \texttt{\colorbar horizontal,\colormap access=map}\hspace{1cm} \texttt{\\}\hspace{1cm} \texttt{\% --- code improved by Stefan Pinnow ---\rangle}\hspace{1cm} \texttt{\begin{tikzpicture}\hspace{1cm} \foreach \i in {0,...,\pgfplotscolormaplastindexof{myColorMapH}}{\hspace{1cm} \fill [index of colormap={\i of myColorMapH}] (\x*12pt,-\y*10pt) rectangle ++(12pt,10pt)\hspace{1cm} \node [inner sep=Opt,\textcolor{white}]{\i};}\hspace{1cm} \end{tikzpicture}}
Using `\pgfspectrarainbow`

Here are some examples of rainbows:

```
\pgfspectrarainbow{1cm}
```

```
\pgfspectrarainbow\{rainbow start=0\}{1cm}
```

```
\pgfspectrarainbow\{rainbow start=.4\}{1cm}
```

```
\pgfspectrarainbow\{rainbow start=.8\}{1cm}
```

```
\pgfspectrarainbow\{rainbow knock out=.8\}{1cm}
```

```
\pgfspectrarainbow\{rainbow knock out=0\}{1cm}
```

```
\pgfspectrarainbow\{rainbow knock out=-.8\}{1cm}
```

```
\pgfspectrarainbow\{rainbow transparency=.5\}{1cm}
```

```
\pgfspectrarainbow\{rainbow background=white\}{1cm}
```

```
\pgfspectrarainbow\{rainbow background=blue, rainbow transparency=.5\}{1cm}
```
\pgfspectrarainbow(rainbow background=black,\textcolor{red}{rainbow transparency=.5})\{1\text{cm}\}

\pgfspectrarainbow(rainbow background=white,\textcolor{red}{rainbow transparency=.5})\{1\text{cm}\}

\pgfspectrarainbow(rainbow fade=south)\{1\text{cm}\}

\pgfspectrarainbow(rainbow fade=north)\{1\text{cm}\}

\pgfspectrarainbow[white,\textcolor{red}{path fading=south}]\{1\text{cm}\}

\pgfspectrarainbow[white](rainbow fade=south)\{1\text{cm}\}

\pgfspectrarainbow[orange,\textcolor{red}{path fading=west}](rainbow fade=south)\{1\text{cm}\}

\pgfspectrarainbow[blue,\textcolor{red}{xslant=.1},\textcolor{red}{\text{opacity=.2}}]\{1\text{cm}\}
Alphabetical list of available options

Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorption</td>
<td>minimum intensity for the lines in the spectrum when using their relative intensities</td>
<td>boolean</td>
<td>false</td>
<td>(true, false)</td>
</tr>
<tr>
<td>axis</td>
<td>show or hide the axis</td>
<td>boolean</td>
<td>false</td>
<td>(true, false)</td>
</tr>
<tr>
<td>axis color</td>
<td>color of the axis</td>
<td>color</td>
<td>black</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>axis font</td>
<td>font of the axis labels</td>
<td>font commands</td>
<td>\texttt{\LaTeX} font commands</td>
<td></td>
</tr>
<tr>
<td>axis font color</td>
<td>color of the axis labels</td>
<td>color</td>
<td>white</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>axis label</td>
<td>shows or hides the axis label below it</td>
<td>boolean</td>
<td>false</td>
<td>(true, false)</td>
</tr>
<tr>
<td>axis label position</td>
<td>sets the position of the axis label</td>
<td>text</td>
<td>center</td>
<td>left or center or right</td>
</tr>
<tr>
<td>axis label text</td>
<td>if not empty, shows the axis label with the given text below it</td>
<td>text</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>axis step</td>
<td>interval in nanometres between two major axis ticks</td>
<td>integer</td>
<td>20</td>
<td>[0;</td>
</tr>
<tr>
<td>axis ticks</td>
<td>number of minor ticks</td>
<td>integer</td>
<td>0</td>
<td>{0,1,2,3,…}</td>
</tr>
<tr>
<td>axis unit</td>
<td>unit of the axis labels</td>
<td>text</td>
<td>nm</td>
<td>nm or micron or A</td>
</tr>
<tr>
<td>axis unit precision</td>
<td>number of significant digits (for values in nanometres) shown in axis labels</td>
<td>integer</td>
<td>3</td>
<td>{0,1,2,3,…}</td>
</tr>
<tr>
<td>back</td>
<td>spectrum background color</td>
<td>color</td>
<td>black</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>backIRUV</td>
<td>IR and UV emission lines color in emission spectrum or background color of IR and UV regions in absorption spectrum</td>
<td>color</td>
<td>black</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>backVIS</td>
<td>visible region background color in emission spectrum or emission lines color in absorption spectrum</td>
<td>color</td>
<td>black</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>begin</td>
<td>first wavelength, in nanometres</td>
<td>integer</td>
<td>380</td>
<td>[10;4000]nm</td>
</tr>
<tr>
<td>brightness</td>
<td>brightness color correction as in the CMYK color model</td>
<td>decimal</td>
<td>1</td>
<td>[0;1]</td>
</tr>
<tr>
<td>charge</td>
<td>charge of the element(s)</td>
<td>integer</td>
<td>0</td>
<td>LSE Data: {0,1,2,3,4} NIST Data: {0,1}</td>
</tr>
<tr>
<td>element</td>
<td>chemical symbol of one element or comma sparated list of chemical symbols elements</td>
<td>text</td>
<td>NONE</td>
<td>H to Es except Fr</td>
</tr>
<tr>
<td>end</td>
<td>last wavelength, in nanometres</td>
<td>integer</td>
<td>780</td>
<td>[10;4000]nm</td>
</tr>
<tr>
<td>gamma</td>
<td>gamma color correction at the edges of the visible region</td>
<td>decimal</td>
<td>0.8</td>
<td>[0;1]</td>
</tr>
<tr>
<td>height</td>
<td>spectrum height</td>
<td>length</td>
<td>1cm</td>
<td>up to maximum \texttt{\LaTeX} dimension (16384pt)</td>
</tr>
<tr>
<td>Imin</td>
<td>minimum intensity of the lines</td>
<td>decimal</td>
<td>0</td>
<td>[0;1]</td>
</tr>
<tr>
<td>IRcolor</td>
<td>IR emission lines color in emission spectrum or background color of IR region in absorption spectrum</td>
<td>color</td>
<td>\texttt{rgb}(.3157,.2373,.2373)</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>label</td>
<td>show or hide the axis labels</td>
<td>boolean</td>
<td>false</td>
<td>(true, false)</td>
</tr>
<tr>
<td>label after text</td>
<td>extra text to place after the label of the spectrum</td>
<td>text</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>label before text</td>
<td>extra text to place before the label of the spectrum</td>
<td>text</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>label font</td>
<td>font of the spectrum label</td>
<td>font commands</td>
<td>\texttt{\LaTeX} font commands</td>
<td></td>
</tr>
<tr>
<td>label font color</td>
<td>color of the font of the spectrum label</td>
<td>color</td>
<td>black</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>label position</td>
<td>position of the label of the spectrum</td>
<td>text</td>
<td>{west}</td>
<td>{west, north west, north, north east, east, south east, south, south west}</td>
</tr>
</tbody>
</table>
Alphabetical list of available options

\texttt{\pgfspectra} (continuation)

<table>
<thead>
<tr>
<th>key</th>
<th>description</th>
<th>type</th>
<th>default</th>
<th>value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>line intensity</td>
<td>draw all lines with the same intensity value</td>
<td>integer</td>
<td>100</td>
<td>{0,1,2,\ldots,99,100}</td>
</tr>
<tr>
<td>line width</td>
<td>width of each line drawn in the spectrum</td>
<td>length</td>
<td>1pt</td>
<td>up to maximum \LaTeX\ dimension (16384pt)</td>
</tr>
<tr>
<td>lines</td>
<td>number or comma separata list of numbers</td>
<td>integer or decimal</td>
<td>{}</td>
<td>{10;4000}nm</td>
</tr>
<tr>
<td>redshift</td>
<td>computes and draws the redshifted (or blueshifted) lines</td>
<td>text</td>
<td>{}</td>
<td>numeric value or {D=numeric value between {0;1}/any angle value in degrees}</td>
</tr>
<tr>
<td>relative intensity</td>
<td>draws the lines using their relative intensities</td>
<td>boolean</td>
<td>false</td>
<td>{true, false}</td>
</tr>
<tr>
<td>relative intensity threshold</td>
<td>all lines with intensity</td>
<td>decimal</td>
<td>0.25</td>
<td>{0;1}</td>
</tr>
<tr>
<td>show redshift value</td>
<td>show or hide the redshift value</td>
<td>boolean</td>
<td>false</td>
<td>{true, false}</td>
</tr>
<tr>
<td>use visible shading</td>
<td>visible region is drawn using a shading (instead of line by line)</td>
<td>boolean</td>
<td>true</td>
<td>{true, false}</td>
</tr>
<tr>
<td>UVcolor</td>
<td>UV emission lines color in emission spectrum or background color of UV region in absorption spectrum</td>
<td>color</td>
<td>rgb(.3,.2568,.3)</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>width</td>
<td>spectrum width</td>
<td>length</td>
<td>{0.9\textwidth}</td>
<td>up to maximum \LaTeX\ dimension (16384pt)</td>
</tr>
</tbody>
</table>

\texttt{\pgfspectradata}

<table>
<thead>
<tr>
<th>key</th>
<th>description</th>
<th>type</th>
<th>default</th>
<th>value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>numerical precision of the data internally stored</td>
<td>integer</td>
<td>1</td>
<td>non negative integer</td>
</tr>
<tr>
<td>unit</td>
<td>unit of the spectral lines data</td>
<td>text</td>
<td>{}</td>
<td>nm or micron or Å</td>
</tr>
<tr>
<td>begin</td>
<td>first wavelength, in nanometres</td>
<td>integer</td>
<td>380</td>
<td>{10;4000}nm</td>
</tr>
<tr>
<td>charge *</td>
<td>charge of the element(s)</td>
<td>integer</td>
<td>0</td>
<td>LSE Data: {0,1,2,3,4} NIST Data: {0,1}</td>
</tr>
<tr>
<td>element *</td>
<td>chemical symbol of one element or comma sparated list of chemical symbols elements</td>
<td>text</td>
<td>NONE</td>
<td>H to Es except Fr</td>
</tr>
<tr>
<td>end *</td>
<td>last wavelength, in nanometres</td>
<td>integer</td>
<td>780</td>
<td>{10;4000}nm</td>
</tr>
<tr>
<td>Imin *</td>
<td>minimum intensity of the lines</td>
<td>decimal</td>
<td>0</td>
<td>{0;1}</td>
</tr>
<tr>
<td>redshift *</td>
<td>numerical precision of the data internally stored</td>
<td>text</td>
<td>{}</td>
<td>numeric value or {D=numeric value between {0;1}/any angle value in degrees}</td>
</tr>
</tbody>
</table>

* options shared with \texttt{\pgfspectra}

\texttt{\pgfspectratable}

<table>
<thead>
<tr>
<th>key</th>
<th>description</th>
<th>type</th>
<th>default</th>
<th>value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>back color</td>
<td>background color of the table header, of the element(s) column, of the table border lines and of the lines between rows</td>
<td>color</td>
<td>black!10</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>data back color</td>
<td>the background color of each data row</td>
<td>color</td>
<td>white</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>elements column width</td>
<td>the width of the element(s) column</td>
<td>length</td>
<td>2.5em</td>
<td>up to maximum \LaTeX\ dimension (16384pt)</td>
</tr>
<tr>
<td>text color</td>
<td>the color of all text in the table</td>
<td>color</td>
<td>black</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>title</td>
<td>the title in the table header</td>
<td>text</td>
<td>\langle\text{REDSHIFTED}\rangle SPECTRAL LINES OF ELEMENT(S)\ldots</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>the total width of the table</td>
<td>length</td>
<td>\textwidth</td>
<td>up to maximum \LaTeX\ dimension (16384pt)</td>
</tr>
</tbody>
</table>
\texttt{\textit{pgfspectraplotshade}}

<table>
<thead>
<tr>
<th>key</th>
<th>description</th>
<th>type</th>
<th>default</th>
<th>value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>shade begin</td>
<td>first wavelength, in nanometres</td>
<td>integer</td>
<td>380</td>
<td>[0;15999]nm</td>
</tr>
<tr>
<td>shade end</td>
<td>last wavelength, in nanometres</td>
<td>integer</td>
<td>780</td>
<td>[1;16000]nm</td>
</tr>
<tr>
<td>shade opacity</td>
<td>opacity of the computed shade</td>
<td>decimal</td>
<td>1</td>
<td>[0;1]</td>
</tr>
<tr>
<td>shade opacity color</td>
<td>background color of the computed shading</td>
<td>color</td>
<td>white</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>logarithmic</td>
<td>the shading is built in a logarithmic scale</td>
<td>boolean</td>
<td>false</td>
<td>(true, false)</td>
</tr>
</tbody>
</table>

\texttt{\textit{pgfspectrarainbow}}

<table>
<thead>
<tr>
<th>key</th>
<th>description</th>
<th>type</th>
<th>default</th>
<th>value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rainbow background</td>
<td>background color below the rainbow</td>
<td>color</td>
<td>white</td>
<td>any named color or user defined color</td>
</tr>
<tr>
<td>rainbow fade</td>
<td>scope fading in the clipped region</td>
<td>text</td>
<td>{}</td>
<td>any named Ti\texttt{\textit{k}} fading or user defined fading</td>
</tr>
<tr>
<td>rainbow knock out</td>
<td>relative distance from the half-circle base to perform the clip</td>
<td>decimal</td>
<td>.4</td>
<td>[-1;1]</td>
</tr>
<tr>
<td>rainbow start</td>
<td>fraction from which the rainbow colors begin, relative to the center of a circle with radius 1</td>
<td>decimal</td>
<td>.6</td>
<td>[0;1]</td>
</tr>
<tr>
<td>rainbow transparency</td>
<td>overall transparency of the rainbow</td>
<td>decimal</td>
<td>0</td>
<td>[0;1]</td>
</tr>
</tbody>
</table>
Recommendations and known issues

The code could be a bit slow, so if there are many spectra to draw, the time consumption to get them could be high. In that case it’s preferable to compile individual spectrum via the `preview` package, for later inclusion with `\includegraphics{<filename>.pdf}`:

```latex
% <filename>.tex
\documentclass{article}
\usepackage{pgf-spectra}
\usepackage[active,tightpage]{preview}
\setlength{\PreviewBorder}{1pt}
\begin{document}
\pgfspectra[element=H, width=15cm]
\end{document}
```

*Hint for `\LaTeX` ‘limits’:
If \TeX\ capacity exceeded when running...
«! \TeX\ capacity exceeded, sorry [main memory size=2000001].»
just make a `\newpage` at the point of origin of the message (ejecting the page releases the \TeX\ memory!)}
Index

COMMANDS
\pgfspectra 6
\pgfspectraStyle 7
\pgfspectraStyleReset 8
\pgfspectrashade 8
\usepgfspectralibrary 8
\wicolor 7

LIBRARIES
data 23
The options for \pgfspectradata 23
The options for \pgfspectratable 24
\pgfspectradata 23
\pgfspectratable 24
\pgfspectrawrite 27
pgfplots 29
The options for \pgfspectraplotshade 31
\pgfspectraplotmap 29
\pgfspectraplotshade 30
rainbow 36
The options for \pgfspectrarainbow 37
\pgfspectrarainbow 36
tempercolor 35
\tempercolor 35

OPTIONS
\pgfspectra
 absorption 15
 axis 15
 axis color 18
 axis font 19
 axis font color 19
 axis label 18
 axis label position 18
 axis label text 18
 axis step 16
 axis ticks 16
 axis unit 16
 axis unit precision 17
 back 12
 backIRUV 13
 begin 14
 brightness 12
 charge 10
 element 9
 end 16
 gamma 15
 height 9
 Imin 10
 IRcolor 13
 label 19
 label after text 20
 label before text 20
 label font 19
 label font color 20
 label position 19
 line intensity 11
 line width 14
 lines 14
 redshift 20
 relative intensity 10
 relative intensity threshold 10
 show redshift value 21
 use visible shading 9
 UVcolor 14
 width 9
\pgfspectradata
 name of data set 23
 precision 23
 unit 23
\pgfspectraplotshade
 logarithmic 33
 shade begin 31
 shade end 31
 shade opacity 32
 shade opacity color 32
\pgfspectrarainbow
 rainbow background 38
 rainbow fade 38
 rainbow knock out 37
 rainbow start 37
 rainbow transparency 38
\pgfspectratable
 back color 26
 data back color 26
 elements column width 27
 text color 26
 title 24
 width 26