The pfdicons Package: Documentation

Aaron Drews
adrews@ucsd.edu

v1.0a from 2021/07/26

Contents

1 Introduction 1
2 Usage 2
3 Process units 3
3.1 Reactors 3
3.2 Heat exchangers 5
3.3 Separation units 8
3.4 Fluid transport 10
4 Streams 12
4.1 Feed terminal 12
4.2 Product terminal 13
4.3 Stream numbers 13
4.4 Stream arrow tips 14
4.5 Stream crossings 15
5 Control elements 16
5.1 Valve 16
5.2 Electrical instruments 17
6 Examples 18
6.1 Material and Energy Balances 18
6.2 Thermodynamics 19
6.3 Reaction Engineering 21
6.4 Separations 23
6.5 Process Controls 26
6.6 Capstone processes 28
7 Quick reference

1 Introduction

This package provides TikZ shapes and a few supporting functions to draw icons and streams for process flow diagrams (PFDs) in chemical engineering, and to a lesser extent process and instrumentation
diagrams (PIDs) in the same field. Unit operations provided by this package are expected to cover-in Turton's estimate-about 90% of fluid processing systems.

This package was developed to support students and faculty in undergraduate chemical engineering courses where excessive detail and customization are not necessary to convey meaning, as opposed to professionals who may require more customization than this package currently provides. Examples from several standard textbooks in undergraduate chemical engineering have been reproduced in the Examples section to illustrate the applicability of this package. A visual summary of all process units is provided at the end of this document as a quick reference.

2 Usage

To use this package simply provide

```
\usepackage{tikz}
\usepackage{pfdicons}
```

in your preamble. The tikz package must be loaded first. The pfdicons package automatically loads the ifthen package as well as the following TikZ libraries: positioning, shapes, arrows.meta, and spath3. Most shapes provided by the package are drawn within a tikzpicture environment using the basic syntax

```
\begin{tikzpicture}
    \node[<shape>] {};
\end{tikzpicture}
```

where <shape> is the desired process unit. Like most TikZ shapes the icons provided by pfdicons can be scaled, rotated, and colored in the usual ways:

```
\begin{tikzpicture}
    \node[basic hx] at (0,0) {};
    \node[basic hx, draw=blue] at (1,0) {};
    \node[basic hx, draw=red, fill=yellow] at (0,-1) {};
    \node[basic hx, scale=0.75, rotate=90, anchor=center] at (1,-1) {};
\end{tikzpicture}
```

Two additional PGF keys are available for some process units: unit int which modifies the interior contents of the process unit, and unit ext which modifies the exterior of the process unit. ${ }^{1}$ These keys can be used as

```
\node[<shape>, unit int=<intopt>, unit ext=<extopt>] {};
```

where <intopt> and <extopt> are interior and exterior options specific to the process unit. For most process units both keys can be used to combine effects. For example, the basic hx shape drawn above has keys U tube and stems which can be combined as follows:

```
\begin{tikzpicture}
    \node[basic hx] at (0,0) {};
    \node[basic hx, unit ext=util] at (1,0) {};
    \node[basic hx, unit fill=U tube] at ( 0, -1) {};
    \node[basic hx, unit fill=U tube, unit ext=util] at (1,-1) {};
\end{tikzpicture}
```

[^0]However, unlike "standard" nodes the curly braces should always be empty; that is, text cannot be directly included as part of the node (this prohibition includes keys like label). Annotations and labels of shapes from pfdicons must be included as separate nodes:

```
\begin{tikzpicture}
    % No:
    % \node[basic hx] {H-101};
    % Yes:
    \node[basic hx] (g) {};
    \node[right] at (g.east) {H-101};
\end{tikzpicture}
```

All process units have the standard cardinal and off-cardinal anchors which can be accessed using the standard TikZ anchor notation such as f. north or mycolumn. south east. Some units have additional anchors on half-cardinal points (e.g., north north east or east south east) or special process unit features (e.g., east jacket or actuator). All compass anchors of custom shapes provided by the pfdicons package are aliased with abbreviated versions (e.g., n for north, ene for east north east) to allow for shortened code. Full anchor names can always be used to provide syntax consistency with core TikZ.

3 Process units

3.1 Reactors

3.1.1 Tank reactor

\node[tank reactor] \{\};

The tank reactor shape provides a cylindrical tank reactor, also referred to as a stirred-tank reactor, continuous stirred-tank reactor (CSTRs), or autoclave. The center anchor is offset slightly to accommodate fill and interior options as described below. Several key modifiers are available:

Table 1: Key-value pairs for the tank reactor shape.

key=value	Description
unit int=stirred	Adds a rounded stirrer with motor and mixing blade. Three additional anchors are specific to this option: west motor, north motor, and east motor.
unit int=liquid	Adds wavy lines from west to east to in- dicate a liquid surface.
unit int=stirred liquid combination of unit int=stirred and unit int=liquid. jacket	ext=lower Adds a jacket around the lower portion of the reactor. Two additional anchors are specific to this option: west jacket and east jacket.
unit jacket	ext=side actor. Several additional anchors avail- able: west jacket, north west jacket, south west jacket, east jacket, north east jacket, and south east jacket.

3.1.2 Tube reactor

1 \node[tube reactor] \{\};

The tube reactor shape provides a horizontal cylinder with curved sides to be used for such reactors as plug flow reactors, packed bed reactors, fixed bed reactors, tubular reactors, and so forth. Several key-value pairs can be provided to indicate common fills and utility features:

Table 2: Key-value pairs for the tube reactor shape.

key=value	Description		
unit int=packed	Adds a cross representing a packed, dumped, or random fill within the reactor. unit int=fixed		
Adds angled lines representing a fixed bed.			
unit ext=cis shell	Adds horizontal lines representing tubes for (e.g.) shell-and-tube reactors, double-pipe reac- tors, and so forth. side with anchors west shell and east shell.		
unit ext=trans shell			
Stems can be moved to the south side by rotat-			
ing (rotate=180) or scaling (yscale=-1) the node.		\quad	Adds two shell-side stems, one on the north side
:---			
and one on the south side, with anchors north			
shell and south shell. Stem locations can be			
swapped by scaling the node (yscale=-1 or xscale			
$=-1)$.			

3.2 Heat exchangers

3.2.1 Basic heat exchanger

\node[basic hx] \{\};

The basic hx shape provides a circle with a jagged interior line and represents a generic heat exchange unit. Only the four cardinal and intercardinal anchors are used; the half-cardinals nnw, nne, ssw, and sse anchors are not used. Protrusions from the inner "tube" line can be added to provide additional indication of tube-side fluids, typically to indicate utility fluids (hence the util value). Additional anchors can be used to place labels at ends of the protrusions.

Table 3: Key-value pairs for the basic hx shape.

key=value	Description	Example
unit ext=util	Adds protrusions from the inner tube, typically to indicate utility fluids. Additional anchors south util and north util are available at the terminals.	
unit int=U tube	Modifies interior to a generic U-tube orienta- tion with both tube points on the same shell side. The south west and south east anchors are located at these tube points.	Modifies interior to U-tube orientation and adds protrusions, typically to indicate utility fluids. Additional anchors west util and east unit int=U tube available at the terminals.
unit ext=util		

3.2.2 Shell and tube heat exchanger

\node[shell and tube hx] \{\};

mm

The shell and tube hx shape provides a rectangle with an inner set of horizontal lines representing a shell and tube heat exchanger. Keys can modify the appearance to provide shell-side stems or modify the tube ends to represent two-pass or four-pass arrangements.

Table 4: Key-value pairs for the shell and tube hx shape.

key=value	Description	Example
unit int=two pass	Adds a horizontal line on the west shell side to indicate a two-pass heat exchanger.	
unit int=four pass	Adds two horizontal line on the west shell side and one on the east to indicate a four-pass heat exchanger.	

Table 4: Key-value pairs for the shell and tube hx shape (cont'd)
unit ext=cis shell Adds two shell-side stems, both on the north side with anchors west shell and east shell. Stems can be moved to the south side by rotat-

unit ext=trans shell Adds two shell-side stems, one on the north side and one on the south side, with anchors north shell and south shell. Stem locations can be swapped by scaling the node (yscale=-1 or xscale
 $=-1$).

3.2.3 Plate heat exchanger

\node[plate hx] \{\};

The plate $h \times$ shape provides a rectangle with an inner set of vertical lines representing a plate-and-frame heat exchanger. This unit has no key=value pairs for additional modification.

3.2.4 Fired exchanger

Inode[fired hx] \{\};

The fired hx shape provides a square unit with tapered chimney representing a fired heat exchanger. A horizontal through-line represents the process tube; a small circular icon at the bottom indicates the combustion region of the heat exchanger. The default number of process tubes is one (unit int=single or omitted) but additional process tubes can be added using the unit int key. Inlets and outlets will shift to correspond to half-cardinal anchors as shown below.

Table 5: Key-value pairs for the fired hx shape.

key=value	Description	Example
unit int=double	Provides two tubes roughly corresponding to the radiative and convective zones.	
unit int=triple	Provides three tubes roughly corresponding to a radiative zone and two convective zones.	

3.3 Separation units

3.3.1 Column

```
\node[column] {};
```


The column shape provides a vertical, elongated cylinder as a generic separation column. The default fill is empty but several key=value pairs are provided to represent the most common separation units. Several additional anchors and keys are available based on these settings.

Table 6: Key-value pairs for the column shape.

key=value	Description
unit ext=simple hx	Provides stylized representation of condenser and reboiler along with anchors distillate and bottoms for stream connections. These an- chors always exist but coincide with north east and south east when the simple hx key is omit- ted.

Table 6: Key-value pairs for the column shape (cont'd)

unit int=tray unit int=dashed tray	Dashed, horizontal lines. Dashes will always have three segments and two openings.	
unit int=weir tray	Solid, horizontal lines with small risers to represent tray weirs.	- \square \square \square
```unit int=numbered tray associated keys: top tray=99 feed tray=00 bottom tray=22```	Dashed, horizontal lines at top, feed, and bottom trays. Associated keys top tray, feed tray , and bottom tray can be used to indicate tray numbers if column is not transformed. If column is transformed then associated keys can be omitted and anchors feed tray, top tray, and bottom tray used for placement of additional text nodes.	
unit int=packed	Large cross symbol indicating random or dumped fill (packing).	
unit int=double packed	Two sections of random or dumped fill (packing) separated by a small, central gap.	8

### 3.3.2 Vessel

## \node[vessel] \{\};

The vessel shape provides a vertical cylinder as a generic vessel. Such a vessel can be, for example, down-scaled and rotated $90^{\circ}$ can represent a product tank or a phase separator after a condenser. The default fill is empty but several key=value pairs are provided to represent two common vapor-liquid units as well as liquid accumulation tanks. Several additional anchors are available based on these settings.


Table 7: Key-value pairs for the vessel shape.

key=value	Description
unit int=liquid	Adds wavy lines across the middle of the vessel   to indicate a liquid level.   unit int $=\quad$ liquid   rotated
Adds wavy lines down the center of the vessel   to indicate a liquid level. This key is intended   to be used with a rotated node such as   Inode[vessel, rotate=90, unit int=   liquid rotated] \{\};	
unit int=phase sep	Adds a knock-down element near the west an-   chor and a dashed, horizontal line near the top   of the vessel to indicate a demister pad.
Adds a simplified heat transfer element to the   bottom portion of the vessel. Two additional an-   chors, north hx and south hx, are located at the   exterior points of the heat exchanger tubes.	

The centrifugal pump shape provides a circular element with a triangular base to represent a centrifugal pump. An additional half-circle can be added using the unit int key to indicate the pump inlet and a rectangular outlet direction can be added using the unit ext key.

Table 8: Key-value pairs for the centrifugal pump shape.

key=value	Description
unit int=inlet west	Adds a half-circle around the center anchor to   accept an inlet stream to enter from the west.   unit int=inlet east   Adds a half-circle around the center anchor to   accept an inlet stream to enter from the east.
unit int=inlet north	Adds a half-circle around the center anchor to   accept an inlet stream to enter from the north.
Adds a half-circle around the center anchor to	
accept an inlet stream to enter from the south.	
Note that there is no means of removing the tri-	
angular base; such an inlet stream should be	
drawn as going through the base.	

### 3.4.2 Reciprocating pump



The reciprocating pump shape provides two square elements-a pump head and motor-connected by a simple shaft. Most anchors are placed relative to the pump head. This unit has no key=value pairs for additional modification.

### 3.4.3 Compressor

\node[compressor] \{\};


The compressor shape provides a quadrilateral to represent a gas-phase compressor. This unit has no key=value pairs for additional modification. If mirrored along the $x$-axis (e.g., by using something like xscale=-1 or rotate=90) then the compressor shape is identical to the turbine shape but with different anchor points.

### 3.4.4 Turbine

\node[turbine] \{\};


The turbine shape provides a quadrilateral to represent a gas-phase turbine. This unit has no key=value pairs for additional modification. If mirrored along the $x$-axis (e.g., by using something like xscale=-1 or rotate=90) then the turbine shape is identical to the compressor shape but with different anchor points.

## 4 Streams

### 4.1 Feed terminal



## \node[feed] \{\};

The feed shape provides a half-filled circle representing a process feed point. The special anchor stream corresponds to the east anchor and is provided as an optional method to define stream starting points. This unit has no key=value pairs for additional modification.

### 4.2 Product terminal

\node[product] \{\};


The product shape provides a half-filled circle representing a process product point. The special anchor stream corresponds to the west anchor and is provided as an optional method to define stream ending points. This unit has no key=value pairs for additional modification.

### 4.3 Stream numbers

## \node[sid] \{99\};



The sid (read "ess eye dee" for "stream identification") shape provides a modified diamond shape from the shapes library for the purpose of labeling streams. The anchors are not aliased with their abbreviations because (a) this is not a custom shape of the pfdicons package and (b) the sid shape is typically used within a line (stream) without accessing its anchors. The fill of sid is white which allows it to be conveniently placed within a stream-drawing command such as

```
\begin{tikzpicture}
 \draw[->] (0,0) -- node[sid] {00} (2,0);
\end{tikzpicture}
```



The sid shape has no key=value pairs to modify its appearance but you can modify the appearance by redefining its tikzstyle, which by default is

```
\tikzstyle\{sid\} = [diamond, draw, solid, fill=white, text badly centered, inner sep=1pt, font=
```

    \footnotesize]
    Modifications to this definition can occur either in the preamble (to affect all drawings) or within the document (to affect individual drawings or lines). For example, if you'd like to use circular identifiers with a blue fill and more space around bigger numbers then you could do something like this:

```
\begin{tikzpicture}
 \draw[->] (0,0) -- node[sid] {1} (2,0);
 \tikzstyle{sid} = [circle, draw, solid, fill=blue!15, text badly
 centered, inner sep=3pt, font=\tiny]
 \draw[->] (0,-1) -- node[sid] {2} (2,-1);
 \draw[->] (0,-2) -- node[sid] {3} (2,-2);
\end{tikzpicture}
```

You can also modify individual parameters while retaining others by passing additional modifiers within the sid node usage, like this:

```
\begin{tikzpicture}
 \draw[->] (0,0) -- node[sid] {1} (2,0);
 \draw[->] (0,-1) -- node[sid, rectangle, fill=red!20] {2} (2,-1);
 \draw[->] (0,-2) -- node[sid] {3} (2,-2);
\end{tikzpicture}
```


### 4.4 Stream arrow tips

The arrow tip is set using the standard TikZ syntax

```
\tikzset{>=<tip style>}
```

When loaded the pfdicons package sets <tip style> to Triangle as

```
\tikzset{>=Triangle}
```

You can change this setting in the preamble or within the document itself to whatever arrow tip you prefer (see $\S 16.5$ in the PGF manual for a summary of arrow tips). For example,

```
\begin{tikzpicture}
 \draw[->] (0,0) -- (1,0);
 \tikzset{>=Latex[open]}
 \draw[->] (0,-0.5) -- (1,-0.5);
 \draw[->] (0,-1) -- (1,-1);
\end{tikzpicture}
```

You can also make modifications to individual arrow tips simply by using a different tip for that particular arrow:

```
\begin{tikzpicture}
 \draw[->] (0,0) -- (1,0);
 \draw[-{Stealth[red]}] (0,-0.5) -- (1,-0.5);
 \draw[->] (0,-1) -- (1,-1);
\end{tikzpicture}
```


### 4.5 Stream crossings

When two streams cross it's desirable to indicate their status as distinct streams to avoid confusion with junctions or mixing points. Consider the following example:

```
\begin{tikzpicture}
 \draw[->] (0,0.5) -- node[sid, pos=0.25]{1} (2,0.5);
 \draw[->] (0,0) -- node[sid]{2} (1.5,0) -- (1.5,1) -- (2,1);
\end{tikzpicture}
```



It may not be immediately obvious that the intersection between streams 1 and 2 is not a four-way pipe junction with two inlets and two outlets. To make such distinction a bridge can be used, most commonly in the form of a break in one stream, an arc of one stream, or a combination of a break and an arc. The pfdicons package provides a bridge style which uses the spath3 package to detect crossings and create bridges. The workflow to use the bridge style is as follows:

1. Identify that a crossing has occurred (e.g., by completing a drawing as done above). Determine which stream is to be drawn continuously (the over stream) and which stream is to be broken (the under stream).
2. Re-define the original streams using the path operation, removing all decorations.
3. Use the bridge key with tikzset to set the over and under paths as \tikzset\{bridge=\{over\}\{under\}\}.
4. Re-draw the streams with a draw operation, replacing any previously removed decorations.

To demonstrate this process on the previous example we select stream 1 as the over stream (Turton recommends horizontal streams be continuous and vertical streams be broken). The remaining steps are completed as follows:

```
\begin{tikzpicture}
 % \draw[->] (0,0.5) -- node[sid, pos=0.25]{1} (2,0.5);
 % \draw[->] (0,0) -- node[sid]{2} (1.5,0) -- (1.5,1) -- (2,1);
 \path[spath/save=over] (0,0.5) -- (2,0.5);
 \path[spath/save=under] (0,0) -- (1.3,0) -- (1.3,1) -- (2,1);
 \tikzset{bridge={over}{under}}
 \draw[->, spath/use=over] node[sid, pos=0.15]{1};
 \draw[->, spath/use=under] node[sid, pos=0.1]{2};
\end{tikzpicture}
```

Lines 4 and 5 define the original streams using the path operation. Line 6 sets the bridge key to identify the over and under stream (the names here could be anything as long as the first input is the "over" path and the second input is the "under" path). Lines 7 and 8 re-draw the streams with an appropriate draw operation, adding the stream labels as well. Notice that the positioning of the stream labels must be modified slightly from the original syntax; getting the labels precisely where they were before the bridging operation can be challenging (but is usually not necessary).

The bridge style can be modified by using $\backslash$ tikzset to set the value of two keys, bridge gap and bridge radius, as summarized below.

Table 9: Key-value pairs for use with stream crossings

key	Description	Example
bridge gap	Adjusts the amount of space around a stream break. The default value is 4 pt .	\tikzset\{bridge gap=0pt\} $\square$
		\tikzset\{bridge gap=15pt\}
bridge radius	Adjusts the radius of an arc bridge. The default value is 0 pt which produces a straight line.	$\text { \tikzset\{bridge radius=8pt\} }$
		\tikzset\{bridge radius=20pt\}

## 5 Control elements

### 5.1 Valve

## \node[valve] \{\};

$\bowtie$
$\bowtie$


The valve shape provides two opposing triangles as a generic valve shape. Unlike most other shapes the fill color of a valve shape is white which allows it to be conveniently placed within a line-drawing operation such as

```
1 \begin{tikzpicture}
 \draw[->] (0,0) -- node[valve] {} (2,0); }\longrightarrow\infty
\end{tikzpicture}
```

Placement of the valve on the stream can be modified using the standard placement keys (e.g., middle or near start) or by the pos=number key. The valve can also be rotated to an arbitrary angle using the rotate=degree key. For example:

```
\begin{tikzpicture}
 \draw[->] (0,0) -- node[valve, near start] {} (2,0);
 \draw[->] (0,-0.5) -- node[valve, near end] {} (2,-0.5);
 \draw[->] (0,-1) -- node[valve, pos=0.4] {} (2,-1);
 \draw[->] (0,-1.5) -- (1,-1.5) -- node[valve, rotate=90] {} (1,-2.5)
 -- ++(1,0);
\end{tikzpicture}
```



A generic actuator can be added to the valve shape by using the unit ext key as summarized below.

Table 10: Key-value pairs for the valve shape.

key=value	Description	Example
unit ext=actuator	Adds a hemisphere-capped protrusion as an   indicator of a generic actuation device. The                  actuator anchor is placed at the top of the   hemisphere for electrical connections.	

### 5.2 Electrical instruments

\node[elec] $\{\mathrm{XX}\}$;


The elec shape provides a modified circle shape from the shapes library for the purpose of labeling streams. The anchors are not aliased with their abbreviations because this is not a custom shape of the pfdicons package. Like the valve and sid shapes the fill of elec is white which allows it to be conveniently placed within a stream-drawing command such as

```
\begin{tikzpicture}
 \draw[dashed] (0,0) -- node[elec] {XX} (2,0);
\end{tikzpicture}
```

The elec shape has no key=value pairs to modify its appearance but you can modify the appearance by redefining its tikzstyle, which by default is

```
\tikzstyle{elec} = [circle, draw, solid, fill=white, text badly centered, inner sep=1pt, font=
 \footnotesize]
```

Modifications to this definition can occur either in the preamble (to affect all drawings) or within the document (to subsequent drawings or lines). For example, if you'd like to use circular identifiers with a blue fill and more space around bigger numbers then you could do something like this:

```
\begin{tikzpicture}
 \draw[dashed] (0,0) -- node[elec] {TT} (2,0);
 \tikzstyle{elec} = [circle, draw, solid, fill=blue!15, text badly
 centered, inner sep=3pt, font=\tiny]
 \draw[dashed] (0,-1) -- node[elec] {LT} (2,-1);
 \draw[dashed] (0,-2) -- node[elec] {PT} (2,-2);
\end{tikzpicture}
```

You can also modify individual parameters while retaining others by passing additional modifiers within the sid node usage, like this:

```
\begin{tikzpicture}
 \draw[dashed] (0,0) -- node[elec] {TT} (2,0);
 \draw[dashed] (0,-1) -- node[elec, rectangle, fill=red!20] {LT}
 (2,-1);
 \draw[dashed] (0,-2) -- node[elec] {PT} (2,-2);
\end{tikzpicture}
```

-- - TT---
-- - -LT- - -
-- - -PT--- -

## 6 Examples

The following examples use the pfdicons package to replicate process flow diagrams and other diagrams found in several standard undergraduate textbooks. The examples are generally grouped according to the (approximate) course in which they occur: material and energy balances, thermodynamics, reaction engineering, separations, process controls, and capstone design.

Caution: Sometimes copy/pasting example code will introduce artifacts (mostly whitespaces) into the pasted code which are not apparent in this document. If this occurs you can (1) check and remove any erroneous whitespaces in your pasted code, (2) type out the examples here by hand, or (3) copy the code directly from the pfdicons-doc.tex file on the CTAN page for this package.

### 6.1 Material and Energy Balances

Example 1: A basic separation process consisting of a pump, flash unit, and valve. Source: Himmelblau, D.; Riggs, J. Basic Principles and Calculations in Chemical Engineering, 8th ed.; Prentice Hall, 2012.


```
\begin{tikzpicture}
 \node[centrifugal pump, unit ext=outlet east] (c) {};
 \node[vessel, right=2cm of c.outlet] (s) {};
 \draw[<-] (c.west) -- ++(-2,0);
 \draw[->] (c.outlet) -- (s.west);
```

```
 \draw[->] (s.north) -- ++(0,0.5) -- node[valve] {} ++(2,0);
 \draw[->] (s.south) |- ++(2,-0.5);
\end{tikzpicture}
```

Example 2: A simplified ethylene dichloride synthesis process illustrating the reactor-separator-recycle-purge (RSRP) arrangement. Source: Himmelblau, D.; Riggs, J. Basic Principles and Calculations in Chemical Engineering, 8th ed.; Prentice Hall, 2012.


```
\begin{tikzpicture}
 \node[tube reactor, unit int=packed] (r) {};
 \node[column, right=of r] (s) {};
 \coordinate [left=of r] (m);
 \draw[<-] (r.west) -- ++(-2,0);
 \draw[->] (r.east) -- (s.west);
 \draw[->] (s.south) |- ++(1,-0.5);
 \draw[->] (s.north) -- ++(0,1);
 \draw[->] (s.north) -- ++(0,0.5) -| (m);
\end{tikzpicture}
```


### 6.2 Thermodynamics

Example 3: A simple steam power plant. Source: Figure 8.1 on pg. 270 in Smith, J.M.; Van Ness, H.C.; Abbot, M.M. Introduction to Chemical Engineering Thermodynamics, 6th ed.; McGraw-Hill, 2001.


```
\begin{tikzpicture}[font=\footnotesize]
 % Units
 \node [basic hx, rotate=90] (boiler) {};
```

```
 \node [turbine, below right=1\textrm{cm}}\mathrm{ and 2cm of boiler] (turbine) {};
 \node [basic hx, rotate=90, below left=of turbine] (cond) {};
 \node [centrifugal pump, below left=of boiler, unit int=inlet south, unit ext=outlet
 north west] (pump) {};
 % Streams
 \draw[->] (boiler.south) -| (turbine.nnw);
 \draw[->] (turbine.sse) |- (cond.south);
 \draw[->] (cond.north) - | (pump.center);
 \draw[->] (pump.outlet) |- (boiler.north);
 % Labels
 \node[below] at (boiler.west) {Boiler};
 \node[above] at (cond.east) {Condenser};
 \node[left] at (turbine.west) {Turbine};
 \draw[<-] (boiler.east) -- node[pos=1.5] {\dot{Q}_H} ++(0,5mm);
 \draw[->] (cond.west) -- node[pos=1.5] {\dot{Q}_C} ++(0,-5mm);
 \draw[->] (turbine.east) -- node[pos=1.5] {\dot{W}_s} ++(5mm,0);
 \draw[<-] (pump.west) -- node[pos=1.5] {\dot{W}_s} ++(-5mm,0);
\end{tikzpicture}
```

EXAMPLE 4: A two-stage cascade refrigeration system. Here a matrix structure is used for node placement but one could equally use positioning keys (i.e., above, below, and so forth) to achieve similar placement. Source: Figure 9.3 on pg. 301 in Smith, J.M.; Van Ness, H.C.; Abbot, M.M. Introduction to Chemical Engineering Thermodynamics, 6th ed.; McGraw-Hill, 2001.


```
\begin{tikzpicture}[font=\footnotesize]
 % \usetikzlibrary{matrix}
 % Units
 \matrix [column sep=1.5cm, row sep=0.75 cm] {
 % Row }
 & \node[basic hx, rotate=90] (cond) {};
 & \\
 % Row }
 \node[valve, rotate=90] (v2) {}; &
```

```
 \node{\normalsize Cycle 2}; &
 \node[turbine] (c2) {}; \\
 % Row 3
 & \node[shell and tube hx] (intx) {};
 & \\
 % Row }
 \node[valve, rotate=90] (v1) {}; &
 \node{\normalsize Cycle 1}; &
 \node[turbine] (c1) {}; \\
 % Row 5
 & \node[basic hx, rotate=90] (evap) {}; & \\
 };
 % Streams
 \tikzset{>=Stealth}
 % Upper loop
 \draw[->] (cond.n) - | (v2.e);
 \draw[->] (v2.w) |- (intx.wnw);
 \draw[->] (intx.ene) -| (c2.sse);
 \draw[->] (c2.nnw) |- (cond.s);
 % Lower loop
 \draw[->] (intx.wsw) - | (v1.e);
 \draw[->] (v1.w) |- (evap.n);
 \draw[->] (evap.s) -| (c1.sse);
 \draw[->] (c1.nnw) |- (intx.ese);
 % Labels
 \node[above] at (intx.north) {Interchanger};
 \node[below] at (cond.w) {Condenser at T_H};
 \node[above] at (evap.e) {Evaporator at T_C};
 \node[above left=1pt and 7mm of intx.wnw] {T^{\prime}_C};
 \node[below left=1pt and 7mm of intx.wsw] {T^{\prime}_H};
 \draw[<-] (c2.e) -- node[pos=2] {$W_s(2)$} ++(5mm,0);
 \draw[<-] (c1.e) -- node[pos=2] {$W_s(1)$} ++(5mm,0);
 \draw[->] (cond.e) -- node[pos=1.5] {$\lvert Q_H \rvert$} ++(0,5mm);
 \draw[<-] (evap.w) -- node[pos=1.5] {$\lvert Q_C \rvert$} ++(0,-5mm);
\end{tikzpicture}
```


### 6.3 Reaction Engineering

ExAmple 5: A series of two CSTRs followed by a PFR as part of a discussion regarding Levenspiel plots. Source: Figure 2-10 on pg. 61 in Fogler, H.S. Elements of Chemical Reaction Engineering, 4th ed.; Pearson, 2006.


```
\begin{tikzpicture}[font=\footnotesize]
 % Custom point marker
 \tikzstyle{dot} = [circle, draw, fill=black, inner sep=1.5pt]
 % Units
 \node[tank reactor, unit int=stirred liquid] (R1) {};
 \node[tank reactor, unit int=stirred liquid, below right=of R1] (R2) {};
 \node[tube reactor, unit int=tubular, right=2cm of R2.ese] (R3) {};
 % Streams
 \draw[<-] (R1.nnw) |- coordinate[at end] (p0) ++(-1.5,0.5);
 \draw[->] (R1.ese) -| node[dot, pos=0.3] (p1) {} (R2.nnw);
 \draw[->] (R2.ese) -- node[dot, pos=0.3] (p2) {} (R3.w);
 \draw[->] (R3.e) -- node[dot] (p3) {} coordinate[at end] (p4) ++(1.5,0);
 % Labels
 \node[left, align=right] at (p0) {F_{A0}\\$X=0$};
 \node[above] at (p1) {(1)};
 \node[right=5mm of p1, align=left] {F_{A1}\\X_1};
 \node[above] at (p2) {(2)};
 \node[above left, align=left] at (R3.w) {F_{A2}\\X_2};
 \node[above] at (p3) {(3)};
 \node[right, align=left] at (p4) {F_{A3}\\X_3};
\end{tikzpicture}
```

ExAMPLE 6: Two adiabatic reactors separated by a heat exchanger as part of a discussion regarding interstage heating and cooling. Source: Figure 11.2 on pg. 300 in Drews, A. An Introduction to Chemical Reaction Engineering with MATLAB; ceng113. eng. ucsd. edu (2019).


```
\begin{tikzpicture}[font=\footnotesize]
 % Units
 \node[tank reactor, unit int=stirred liquid] (R1) {};
 \node[basic hx, unit ext=util, right=2cm of R1] (HX1) {};
 \node[tube reactor, unit int=tubular, right=2cm of HX1] (R2) {};
 % Streams
 \draw[<-] (R1.w) -- node[above, near end] {0} ++(-2,0);
 \draw[->] (R1.e) -- node[above] {1} (HX1.w);
 \draw[->] (HX1.e) -- node[above] {2} (R2.w);
 \draw[->] (R2.e) -- node[above] {3} ++(2,0);
 % Control volumes
 \coordinate[above left=7mm and 5mm of R1.nw] (a);
 \coordinate[below right=7mm and 5mm of R1.se] (b);
 \coordinate[above left=9mm and 8mm of R1.nw] (c);
 \coordinate[below right=11mm and 5mm of R2.se] (d);
 \draw[dashed] (a) rectangle (b);
 \draw[dashed] (c) rectangle (d);
```

```
 % Labels
 \node[below] at (R1.s) {R-1};
 \node[below] at (HX1.south util) {HX-1};
 \node[below] at (R2.s) {R-2};
 \node[anchor=base west] at (b) {\textbf{CV1}};
 \node[anchor=base west] at (d) {\textbf{CV2}};
\end{tikzpicture}
```


### 6.4 Separations

ExAmple 7: A general distillation system using a total condenser and partial reboiler. Some annotations have been excluded for clarity (clarity of this document, not the figure: if so desired it would only be a matter of additional node elements to replace the excluded annotations). Source: Figure 7.2 on pg. 261 in Seader, J.D.; Henley, E.J.; Roper, D.K. Separation Process Principles, 3rd ed.; John Wiley and Sons, 2011.


```
\begin{tikzpicture}[font=\footnotesize]
 %\usetikzlibrary{decorations.pathmorphing}
 % Units
 \node[column, unit int=numbered tray, scale=1.5] (c) {};
 \node[vessel, rotate=90, unit int=liquid rotated, above right=8mm and 15mm of c, anchor=
 north] (drum) {};
 \node[basic hx, unit ext=util, above left=8mm and 5mm of drum.north] (cond) {};
 \node[basic hx, unit int=U tube, unit ext=util, rotate=90, below right=5mm and 5mm of c,
 anchor=east] (reboil) {};
 % Helpful points
 \coordinate[left=3cm of c.west] (F);
 \coordinate[right=4cm of c.north east] (D);
 \coordinate[below right=2cm and 2.5cm of c.south east] (B);
 % Streams
```

```
 \draw[->] (c.north) |- (cond.west);
 \draw[->] (cond.east) -| (drum.east);
 \draw[->] (drum.west) |- (c.north east);
 \draw[->] (drum.west) |- (D);
 \draw[->] (c.south) |- (reboil.north);
 \draw[->] (reboil.east) |- (c.south east);
 \draw[->] (reboil.west) |- (B);
 \draw[->] (F) -- node[valve, near end] {} (c.west);
 % Distillate labels
 \node[above=0.5pt of c.top tray] {1};
 \node[left=5mm of c.top tray, anchor=east] {Top stage};
 \node[anchor=south west] at (c.ne) {Reflux};
 \node[above] at (D) {Distillate};
 \node[above right] at (cond.ne) {Total condenser};
 \node[above right] at (drum.south east) {Reflux drum};
 % Feed labels
 \node[above=0.5pt of c.feed tray] {f};
 \node[anchor=south west] at (F) {Feed};
 \node[right=5mm of c.feed tray, anchor=west] {Feed stage};
 \node[align=left, anchor=north west] at (F) {Light-key\\mole frac, z_F};
 % Bottoms labels
 \node[above=0.5pt of c.bottom tray] {N};
 \node[above] at (B) {Bottoms};
 \node[right] at (reboil.south) {Partial reboiler};
 \node[left=5mm of c.bottom tray, anchor=east, align=center] {Bottom\\stage};
 \node[below, align=center] at (D) {Light-key\\mole frac, x_D};
 \node[below, align=center] at (B) {Light-key\\mole frac, x_B};
\end{tikzpicture}
```

EXAMPLE 8: A schematic of pressure-swing adsorption for the dehydration of air. In this diagram the original authors used approximately the same symbol for a filter as the adsorber, a similarity retained here. A matrix was again used to help with alignment and several tikzstyle definitions were used to create "shortcut" shapes for the filter, ads, and pump units. Source: Figure 15.2 on pg. 570 in Seader, J.D.; Henley, E.J.; Roper, D.K. Separation Process Principles, 3rd ed.; John Wiley and Sons, 2011.


```
\begin{tikzpicture}[font=\footnotesize]
 % \usetikzlibrary{matrix}
 % Definitions
 \tikzstyle{filter} = [tube reactor, unit int=packed, rotate=90, scale=0.75];
 \tikzstyle{ads} = [tube reactor, unit int=packed, rotate=90];
 \tikzstyle{pump} = [reciprocating pump, yscale=-1];
 % Nodes
 \matrix [column sep=1.5cm, row sep=0.5 cm] {
 % 4 columns: & & & \\
 & & \node[filter] (f1) {}; & \\
 & & & \\
 & & & \\
 & \node[ads] (ads1) {}; & & \node[ads] (ads2) {};\\
 & & & \\
 & & \node[filter] (f2) {}; & \\ % f2
 \node[pump] (p) {}; & \node[basic hx, unit ext=util] (hx) {};& & \\ % pump+cooler
 };
 % Helper points
 \coordinate[above=5mm of f2.e] (v2); % for valves near f2
 \coordinate[below=11mm of f1.w] (v1); % for valves near f1
 % Streams
 \draw[<-] (p.w) -- node[pos=1.7] {Moist air} ++(-1,0);
 \draw[->] (p.e) -- (hx.w);
 \draw[->] (hx.e) -। (f2.w);
 \draw[->] (f2.e) -- (v2);
 \draw (v2) -| node[valve, near start] {} (ads1.w);
 \draw[->] (ads1.w |- v2) -- node[valve] {} node[anchor=north, at end] {Purge} ++(-2,0);
 \draw (v2) -| node[valve, near start] {} (ads2.w);
 \draw[->] (ads2.w |- v2) -- node[valve] {} node[anchor=north, at end] {Purge} ++(2,0);
 \draw (ads1.e) |- node[valve, near end] {} (v1) -| node[valve, near start] {} (ads2.e);
 \draw (v1) -- node[valve, rotate=90] {} (f1.w);
 \draw (ads1.e) -- ++(0,1.3) -। (ads2.e);
```

```
 \draw[->] (f1.e) -- ++(0,5mm);
 % Labels
 \node[right, align=center] at (f1.s) {Particulate\\filter};
 \node[right, align=center] at (ads2.s) {Adsorber\\no. 2};
 \node[left, align=center] at (ads1.n) {Adsorber\\no. 1};
 \node[right, align=center] at (f2.s) {Coalescing\\filter};
 \node[below, align=center] at (p.n) {Gas\\compressor};
 \node[below] at (hx.south util) {Aftercooler};
 \node[above] at (hx.north util) {cw};
\end{tikzpicture}
```


### 6.5 Process Controls

Example 9: A comparison of feedforward and feedback control systems. This example illustrates the use of absolute positioning (only for variety, not because it's necessary). Source: Figure E1.9 on pg. 13 in Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle III, F.J. Process Dynamics and Control, 4th ed.; John Wiley and Sons, 2016.


```
\begin{tikzpicture}[font=\footnotesize]
 % Feedforward system
 \draw[->] (0,0) -- ++(4,0);
 \node[elec] at (1, 0.5) (ft1) {FT};
 \node[elec] at (2, 1.2) (fc1) {FC};
 \node[valve, unit ext=actuator, scale=1.5] at (3,0) (v1) {};
 \node[left] at (0,0) {Liquid};
 \node[below] at (2,-0.1) {System A};
 \draw (1,0) -- (ft1.south);
 \draw[->, dashed] (ft1.north) |- (fc1.west);
 \draw[->, dashed] (fc1.east) -। (v1.actuator);
 % Feedback system
 \draw[->] (0,-2.5) -- ++(4,0);
 \node[valve, unit ext=actuator, scale=1.5] at (1,-2.5) (v2) {};
 \node[elec] at (2, -1.2) (fc2) {FC};
 \node[elec] at (3, -2) (ft2) {FT};
 \node[left] at (0,-2.5) {Liquid};
 \node[below] at (2,-2.6) {System B};
 \draw (3,-2.5) -- (ft2.south);
 \draw[->, dashed] (ft2.north) |- (fc2.east);
 \draw[->, dashed] (fc2.west) -। (v2.actuator);
\end{tikzpicture}
```

EXAMPLE 10: A blending system controlled by measuring the composition of the stream 1 and adjusting a control valve on stream two. Source: Figure 1.5 on pg. 5 in Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle III, F.J. Process Dynamics and Control, 4th ed.; John Wiley and Sons, 2016.


```
\begin{tikzpicture}[font=\footnotesize]
 % Units
 \node[tank reactor, unit int=stirred liquid, scale=2] (r) {};
 \node[elec, above=of r] (ac) {AC};
 % Helpful points
 \coordinate[left=2cm of r.nw] (f1);
 \coordinate[right=2cm of r.ne] (f2);
 \coordinate[right=2cm of r.se] (p);
 % Streams and stream labels
 \draw[->] (f1) -- coordinate[pos=0.7] (s) (r.nw);
 \draw[->] (f2) -- node[valve, unit ext=actuator, pos=0.6] (v) {} (r.ne);
 \draw[->] (r.e) -- ++(3mm,0) |- (p);
 \node[left, align=right] at (f1) {x_1\\w_1};
 \node[right, align=left] at (f2) {$x_2=1$\\w_2};
 \node[right, align=left] at (p) {x\\w};
 % Control elements
 \node[elec, above=5mm of s] (at) {AT};
 \draw (s) -- (at.south);
 \draw[->, dashed] (at.north) |- (ac.west);
 \draw[->, dashed] (ac.east) -। (v.actuator);
 % Labels
 \node[align=center, anchor=south east] at (at.west) {Composition\\analyzer/transmitter};
 \node[align=center, anchor=south west] at (v.ne) {Control\\valve};
 \node[align=center, above] at (ac.north) {Composition\\controller};
\end{tikzpicture}
```


### 6.6 Capstone processes

Example 11: Hydrodealkylation of toluene to produce benzene. Source: Figure 1.3 in Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis, and Design of Chemical Processes, 3rd ed.; Pearson, 2009.


```
\begin{tikzpicture}[font=\footnotesize]
 % Reduce stream label sizes
 \tikzstyle{sid} = [diamond, draw, solid, fill=white, text badly centered, inner sep=1pt, font
 =\tiny]
 % Units
 \node[vessel, rotate=90] (V101) {};
 \node[reciprocating pump, below right=0.75cm and 0.5cm of V101] (P101) {};
 \node[basic hx, unit ext=util, above right=0.25cm and 2.75cm of V101] (E101) {};
 \node[fired hx, below right=1\textrm{cm}\mathrm{ and 0.6cm of E101, anchor=west] (H101) {};}
 \node[tube reactor, unit int=packed, right=of H101, anchor=center, rotate=90] (R101) {};
 \node[turbine, right=1.5cm of R101.se] (C101) {};
 \node[basic hx, unit ext=util, below=of C101] (E102) {};
 \node[vessel, unit int=phase sep, right=0.5cm of E102] (V102) {};
 \node[vessel, unit int=phase sep, below=of V102.se, anchor=west] (V103) {};
 \node[basic hx, unit ext=util, right=2.75cm of C101] (E103) {};
 \node[column, unit int=tray, right=1cm of E103] (T101) {};
 \node[basic hx, unit ext=util, below left=0.5cm and 0.7cm of T101.s] (E106) {};
 \node[basic hx, unit ext=util, above right=0.5cm and 1cm of T101.n] (E104) {};
 \node[vessel, rotate=90, below right=1\textrm{cm}\mathrm{ and 0.5cm of E104] (V104) {};}
 \node[centrifugal pump, below=1cm of V104.nw] (P102) {};
 \node[basic hx, unit ext=util, below=0.5cm of P102] (E105) {};
 \node[product, right=1.3cm of E105] (bz) {};
 \node[product, above=4.5cm of bz] (fuel) {};
 \node[feed, above left=0.75cm and 1cm of V101.ne] (tol) {};
 \node[feed, below=3.5cm of tol] (h2) {};
```

```
% Streams
\draw[->] (tol.e) -। node[sid, near start]{1} node[valve, near end, rotate=90]{} (V101.ne);
\draw[->] (V101.sw) |- (P101.w);
\draw[->] (P101.n) |- (E101.w);
\draw[<-] (V101.se) |- node[valve, pos=0.6]{} node[sid, pos=0.83]{2} (E101.w) node[pos=0.92](
 n1){} ;
\draw[->] (E101.e) -- ++(0.2,0) |- node[sid, near start]{4} (H101.w);
\draw[->] (H101.e) -| node[sid,near end]{6} ++(0.3,1) -। (R101.e);
\draw[->] (E102.e) -- (V102.w);
\draw[->] (V102.s) |- node[valve, rotate=90, near start]{} (V103.w);
\draw[->] (V103.s) |- node[valve, rotate=90, near start]{} ++(0.5,-0.6) |- node[sid, near
 start]{18} (E103.w);
\draw[->] (E103.e) -- node[sid, pos=0.4]{10} (T101.w);
\draw[->] (T101.ssw) |- (E106.e);
\draw[->] (E106.w) -- ++(-0.2,0) |- (T101.sw);
\draw[->] (T101.n) |- node[sid,near end]{13} (E104.w);
\draw[->] (E104.e) -। (V104.ne);
\draw[->] (V104.sw) |- (P102.e);
\draw[->] (P102.w) -- ++(-0.75,0) |- node[sid,pos=0.15]{12} node[valve,rotate=90,pos=0.4]{} (
 T101.ne);
\draw[->] (P102.w) -- node[sid]{14} ++(-0.75,0) |- node[valve,rotate=90,near start]{} (E105.w
);
\draw[->] (E105.e) -- (bz.w);
\draw[->] (V103.n) |- node[sid, pos=0.2]{17} node[valve,rotate=90, pos=0.3]{} (fuel.w);
\draw[->] (V102.n) |- node[sid, pos=0.2]{8} node[valve,rotate=90, pos=0.3]{} node[sid, pos
 =0.96]{16} (fuel.w);
\draw[->] (V104.e) -- node[sid,pos=0.3]{19} node[valve,rotate=90,pos=0.6]{} (V104 |- fuel);
\draw[->] (V102.n) |- (C101.e);
\draw[->] (C101.w) -- node[valve, near start]{} node[sid,near end]{7} (R101.se) node[pos
 =0.5](n2){};
% Cross stream 9 over 5
\path[spath/save=over1] (R101.w) |- (E102.w);
\path[spath/save=under1] (n2 |- C101) |- (n1 |- V103) -| (n1 |- E101);
\tikzset{bridge={over1}{under1}}
\draw[->, spath/use=over1] node[sid, pos=0.5]{9};
\draw[->, spath/use=under1] node[sid, pos=0.5]{5};
% Cross stream 3 over 11
\path[spath/save=over2] (h2.e) -- (n1 |- h2);
\path[spath/save=under2] (T101.s) -- ++(0,-3.5) -| (V101.w);
\tikzset{bridge={over2}{under2}}
\draw[->, spath/use=over2] node[sid, pos=0.2]{3};
\draw[->, spath/use=under2] node[sid, pos=0.4]{11};
% Unit labels
\node at (V101.center) {V-101};
\node[below] at (P101.s) {P-101};
\node[above] at (E101.north util) {E-101};
\node[left] at (H101.sw) {H-101};
\node[above=4mm of R101.e] {R-101};
\node[above=1mm of C101.n] {C-101};
\node[below] at (E102.south util) {E-102};
\node[left, anchor=south east] at (V102.n) {V-102};
\node[below left, anchor=north east] at (V103.sw) {V-103};
\node[above] at (E103.north util) {E-103};
\node[above left] at (T101.nw) {T-101};
\node[above] at (E104.north util) {E-104};
\node at (V104.center) {V-104};
```

```
 \node[above] at (P102.n) {P-102};
 \node[below] at (E105.south util) {E-105};
 \node[below] at (E106.south util) {E-106};
 % Stream labels
 \node[above] at (tol.n) {toluene};
 \node[above] at (h2.n) {hydrogen};
 \node[below] at (bz.s) {benzene};
 \node[above] at (fuel.n) {fuel gas};
 % Utility labels
 \tikzset{font=\scriptsize}
 \node[right] at (E105.north util) {cw};
 \node[below] at (E104.south util) {cw};
 \node[above] at (E102.north util) {cw};
 \node[right] at (E106.north util) {mps};
 \node[below] at (E101.south util) {hps};
 \draw[->] (H101.n) -- node[at end, right, align=center] {combustion\\products} ++(0,0.8);
 \draw[<-] (H101.sse) -- node[right, align=left] {fuel\\gas} ++(0,-0.8);
 \draw[<-] (H101.ssw) -- node[left] {air} ++(0,-0.8);
\end{tikzpicture}
```


## 7 Quick reference



tube reactor			packed   fixed   tubular $\square$	west shell   north shell   trans shell
basic hx			U tube	util   util   west util east util
shell and tube $h x$			two pass   four pass	west shell east shell cis shell north shell trans shell $\square$ south shell
plate hx				
fired $h x$			double   triple	





[^0]:    ${ }^{1} \mathrm{~A}$ few other keys are available for drawing streams which are introduced later.

