M4 Macros for Electric Circuit Diagrams in IXTEX Documents

Dwight Aplevich

Contents, Version 10.5 7 COIMETS +vvvrrneeeeenrnnnnnnnnns 30

1 Introduction 1 8 Loopingccoviiiiiiiiiiiinn.. 31

2 Using the macros 2 9 Logicgatesccviviiiiinnnnn. 31

2.1 Quickstart 2 9.1 Automatic structures 35
2.1.1 Usingm4 2 L

92.1.2 Processing with dpic and 10 Integrated circuits 37

91.3 glikz PGF or _lt)}STH_CkS t i 11 Single-line diagrams 38
2'1'4 S.Iocel.bglr}g.W1‘l gpIc .. 4 11.1 Two-terminal SLD elements 38
I _Cdtlo_nb """" 11.2 One-terminal and composite SLD
2.2 Including the libraries) clements 39
3 Picessentialsccoiiiiiia.. 6 12 Element and diagram scaling 41
3.1 Manuals ..o 6 12.1 Circuit scaling 41
3.2 The linear objects: line, arrow, 12.2 Picscaling 41
spline, arc 6
3.3 Positions. 7 13 Writing macrosc.cooo... 42
3.4 The planar objects: box, circle, 13.1 Macro arguments 45
ellipse, and text 7
35 COInpound Objects 8 14 Interaction With E’IEX. 46
3.6 Other language facilities 8 . .
15 PSTricks and other tricks 49
4 Two-terminal circuit elements 9 15.1 Tikz with pic 50
4.1 Circuit and el t basics 9
premt and e fsmen Jasies 16 Web documents, pdf, and alterna-
4.2 The two-terminal elements 10 e tout f h 50
4.3 Branch-current arrows 15 1ve output Iormats «....coeeee...
44 Labels oo 16 17 Developer’s notes 51
5 Placing two-terminal elements 16 ;g Bugs ...t 52
5.1 Series and parallel circuits 18
19 List of macrosceevveueeennn. 55
6 Composite circuit elements 19
6.1 Semiconductors 27 Referencesc.iiiiiieennn. 96
Introduction

It appears that people who are unable to execute pretty pictures with pen and paper
find it gratifying to try with a computer [11].

This manual' describes a method for drawing electric circuits and other diagrams in I TEX and
web documents. The diagrams are defined in the simple pic drawing language [9] augmented with
m4 macros [10, 3], and are processed by m4 and a pic processor to convert them to Tikz PGF,
PSTricks, other XTEX-compatible code, SVG, or other formats. In its basic usage, the method has
the advantages and disadvantages of TEX itself, since it is macro-based and non-WYSIWYG, with

IThis document is best displayed with a reader that shows bookmarks.

ordinary text input. The book from which the above quotation is taken correctly points out that
the payoff can be in quality of diagrams at the price of the time spent in drawing them.

A collection of basic components, most based on IEC and IEEE standards [7, 8], and conventions
for their internal structure are described. Macros such as these are only a starting point, since it is
often convenient to customize elements or to package combinations of them for particular drawings
or contexts, a process for which m4 and pic are well suited.

Using the macros

This section describes the basic process of adding circuit diagrams to IATEX documents to produce
postscript or pdf files. On some operating systems, project management software with graphical
interfaces can automate the process, but the steps can also be performed by a script, makefile, or by
hand for simple documents as described in Section 2.1.

The diagram source file is processed as illustrated in Figure 1. A configuration file is read by m4,
followed by the diagram source and library macros. The result is passed through a pic interpreter to
produce .tex output that can be inserted into a .tex document using the \input command.

.m4
library
Inacros

m4 pic BTEX .dvi

* -l . or

diagram configuration m4 interpreter > PDeF“clcateX .pdf
source :

Figure 1: Inclusion of figures and macros in the BTEX document.

2.1

2.11

The interpreter output contains Tikz PGF [17] commands, PSTricks [19] commands, basic ITEX
graphics, tpic specials, or other formats, depending on the chosen options. These variations are
described in Section 16.

There are two principal choices of pic interpreter. One is dpic, described later in this document.
A partial alternative is GNU gpic -t (sometimes simply named pic) [12] together with a printer driver
that understands tpic specials, typically dvips [15]. The dpic processor extends the pic language in
small but important ways; consequently, some of the macros and examples in this distribution work
fully only with dpic. Pic processors provide basic macro facilities, so some of the concepts applied
here do not require m4.

Quick start

Read this section to understand basic usage of m4 and macros, and look at the examples.pdf file
for cases that might be similar to yours. The contents of file quick.m4 and resulting diagram are
shown in Figure 2 to illustrate the language and the production of basic labeled circuits.

Using m4
The command
mé4 filename ...

causes m4 to search for the named files in the current directory and directories specified by
environmental variable M4PATH. Set M4PATH to the full name (i.e., the path) of the directory
containing 1ibcct.m4 and the other circuit library .m4 files; otherwise invoke m4 as m4 -I installdir
where installdir is the path to the directory containing the library files. Now there are at least two
basic possibilities as follows, but be sure to read Section 2.1.4 for simplified use.

.PS # Pic input begins with .PS

cct_init # Read in macro definitions and set defaults
elen = 0.75 # Variables are allowed; default units are inches
Origin: Here # Position names are capitalized

source(up_ elen); llabel(-,v_s,+)
resistor(right_ elen); rlabel(,R,)

dot
{ # Save the current position and direction

capacitor(down_ to (Here,Origin)) #(Here,Origin) = (Here.x,Origin.y)

rlabel (+,v,-); llabel(,C,)

dot AN .

T # Restore position and direction + R l i
line right_ elen*2/3 +
inductor(down_ Here.y-Origin.y); rlabel(,L,); b_current(i) US() U= C L
line to Origin - T

.PE # Pic input ends

Figure 2: The file quick.m4 and resulting diagram. There are several ways of drawing the same picture;

2.1.2

for example, nodes (such as Origin) can be defined and circuit branches drawn between them; or
absolute coordinates can be used (e.g., source(up_ from (0,0) to (0,0.75))). Element sizes
can be varied and non-two-terminal elements included (Figure 24) as described in later sections.

Processing with dpic and Tikz PGF or PSTricks

If you are using dpic with Tikz PGF, put \usepackage{tikz} in the main ITEX source file header
and type the following commands or put them into a script or makefile:

m4 pgf.m4 quick.m4 > quick.pic

dpic -g quick.pic > quick.tex
To produce PSTricks code, the INTEX header should contain \usepackage{pstricks}. The com-
mands are modified to read pstricks.m4 and invoke the —p option of dpic as follows:

m4 pstricks.m4 quick.m4 > quick.pic

dpic -p quick.pic > quick.tex

A configuration file (pgf .m4 and pstricks.m4 in the above examples) is always the first file to
be given to m4. Put the following or its equivalent in the document body:

\begin{figure} [ht]
\centering
\input quick
\caption{Customized caption for the figure.}
\label{Symbolic_label}
\end{figure}

Then for Tikz PGF, Invoking PDFlatex on the source produces .pdf output directly. For PSTricks,

the commands “latex file; dvips file” produce file.ps, which can be printed or viewed using gsview,

for example. The essential line is \input quick whether or not the figure environment is used.
The effect of the second m4 command above is shown in Figure 3.

pstricks.mé libgen.m4
.pic . o L
- m4 Configuration file define(‘cct_init’,...)
Diagram source quick.mé libcct.mé
.PS Tt
cct_init define(‘resistor’,...)

Figure 3: The command m4 pstricks.m4 quick.m4 > quick.pic.

3

2.1.3

2.1.4

Configuration files pstricks.mé or pgf.m4 cause library libgen.m4 to be read, thereby defining
the macro cct_init. The diagram source file is then read and the circuit-element macros in
libcct.m4 are defined during expansion of cct_init.

Processing with gpic

If your printer driver understands tpic specials and you are using gpic (on some systems the gpic
command is pic), the commands are

m4 gpic.m4 quick.m4 > quick.pic

gpic -t quick.pic > quick.tex

and the figure inclusion statements are as shown:

\begin{figure} [ht]
\input quick
\centerline{\box\graph}
\caption{Customized caption for the figure.}
\label{Symbolic_label}
\end{figure}

Simplifications

M4 must read a configuration file before any other files, either before reading the diagram source file
or at the beginning of it. There are several ways to control the process, as follows:

1. The macros can be processed by IXTEX-specific project software and by graphic applications
such as Pycirkuit [13]. Alternatively when many files are to be processed, Unix “make,” which
is also available in PC and Mac versions, is a simple and powerful tool for automating the
required commands. On systems without such facilities, a scripting language can be used.

2. The m4 commands illustrated above can be shortened to
m4 quick.m4 > quick.pic

by inserting include(pstricks.m4) (assuming PSTricks processing) immediately after the
.PS line, the effect of which is shown in Figure 4. However, if you then want to use Tikz PGF,
the line must be changed to include (pgf .m4).

Diagram source pstricks.m4 libgen.m4
.PS
.pic ; .) .
PLe | mé mdl,ld? (pstricks.md) Configuration file define(‘cct_init’,...
cct_init .
libcct.mé

define(‘resistor’,...

Figure 4: The command m4 quick.m4 > quick.pic, with include(pstricks.m4) preceding cct_init.

3. In the absence of a need to examine the file quick.pic, the commands for producing the .tex
file can be reduced (provided the above inclusions have been made) to

m4 quick.m4 | dpic -p > quick.tex
4. You can put several diagrams into a single source file. Make each diagram the body of a ETEX
macro, as shown:

\newcommand{\diaA}{%
.PS
drawing commands

2.2

.PE

\box\graph }/, \box\graph not required for dpic

\newcommand{\diaB}{Y

.PS

drawing commands

.PE

\box\graph }% \box\graph not required for dpic

Produce a .tex file as usual, insert the .tex into the I#TEX source, and invoke the macros
\diaA and \diaB at the appropriate places.

5. In some circumstances, it may be desirable to invoke m4 and dpic automatically from the
document. Define a macro \mtotex as shown in the following example:

\documentclass{article}

\usepackage{tikz} % or \usepackage{pstricks}
\newcommand\mtotex [2] {\immediate\writel18{m4 #2.m4 | dpic -#1 > #2.tex}})
\begin{document}

\mtotex{g}{FileA} 7 Generate FileA.tex

\input{FileA.tex} \par

\mtotex{g}{FileB} % Generate FileB.tex

\input{FileB.tex}

\end{document}

The first argument of \mtotex is a p for pstricks or g for pgf. Sources FileA.m4 and FileB.m4
must contain any required include statements, and the main document should be processed
using the latex or pdflatex option --shell-escape. If the M4APATH environment variable is
not set then insert -I installdir after m4 in the command definition, where installdir is the
absolute path to the installation directory. This method processes the picture source each
time IATEX is run, so for large documents containing many diagrams, the \mtotex lines could
be commented out after debugging the corresponding graphic. A derivative of this method
that allows the insertion of pic code into a Tikz picture is described in Section 15.1.

6. It might be convenient for the source of small diagrams to be part of the document source text.
The filecontents environment of current IXTEX allows this; older versions can employ a
now-obsolete package filecontents.sty. The following example for processing by pdflatex
--shell-escape first writes the m4 source to file sample.m4, invokes \mtotex on it, and reads
in the result:

\begin{filecontents} [overwrite,noheader,nosearch]{sample.m4}
include (pgf .m4)

.PS

cct_init

drawing commands . ..

.PE

\end{filecontents}

\mtotex{g}{sample}

\input{sample.tex}

Including the libraries

The configuration files for dpic are as follows, depending on the output format (see Section 16):

pstricks.m4, pgf.m4, mfpic.m4, mpost.m4, postscript.m4, psfrag.m4, svg.m4, gpic.m4,
or xfig.m4. The usual case for producing circuit diagrams is to read pgf.m4 or pstricks.m4 first

when dpic is the postprocessor or to set one of these as the default configuration file. For gpic, the

configuration file is gpic.m4.

3.1

3.2

At the top of each diagram source, put one or more initialization commands; that is, cct_init,
log_init, sfg_init, darrow_init, threeD_init, or, for diagrams not requiring specialized
macros, gen_init. Asshown in Figures 3 and 4, each initialization command reads in the appropriate
macro library if it hasn’t already been read; for example, cct_init tests whether libcct.m4 has
been read and includes it if necessary.

The distribution includes a collection of pic utilities in the file dpictools.pic, which is loaded
automatically by macros that invoke the NeedDpicTools macro.

The file libSLD.m4 contains macros for drawing single-line power distribution diagrams. The
line include (1ibSLD.m4) loads the macros. A few of the distributed example files contain other
macros that can be pasted into diagram source files; see Flow.m4 or Buttons.m4, for example.

Also included in the distribution is a generous set of examples to show capabilities of the macros
and to act as a source of code if you wish to produce similar diagrams.

The libraries contain hints and explanations that might help in debugging or if you wish to
modify any of the macros. Macros are generally named using the obvious circuit element names
so that programming becomes something of an extension of the pic language. Some macro names
end in an underscore to reduce the chance of name clashes. These can be invoked in the diagram
source but there is no long-term guarantee that their names and functionality will remain unchanged.
Finally, macros intended only for internal use begin with the characters m4.

Pic essentials

Pic source is a sequence of lines in a text file. The first line of a diagram begins with .PS with
optional following arguments, and the last line is normally .PE. Lines outside of these pass through
the pic processor unchanged.

The visible objects can be divided conveniently into two classes, the linear objects 1ine, arrow,
spline, arc, and the planar objects box, circle, ellipse.

The object move is linear but draws nothing. A compound object, or block, is planar and
consists of a pair of square brackets enclosing other objects, as described in Section 3.5.

Objects can be placed using absolute coordinates or, as is often better, relative to other objects.

Pic allows the definition of real-valued variables, which are alphameric names beginning with
lower-case letters, and computations using them. Objects or locations on the diagram can be given
symbolic names beginning with an upper-case letter.

Manuals

The classic pic manual [9] is still a good introduction to pic, but a more complete manual [14] can
be found in the GNU groff package, and both are available on the web [9, 14]. Reading either will
give you basic competence with pic in an hour. Explicit mention of *roff string and font constructs
in these manuals should be replaced by their equivalents in the XTEX context. The dpic manual [1]
includes a man-page lanuage summary in an appendix.

A web search will yield good discussions of “little languages”; for pic in particular, see Chapter 9
of [2]. Chapter 1 of reference [5] also contains a brief discussion of this and other languages.

The linear objects: 1line, arrow, spline, arc

A line can be drawn as follows:

line from position to position
where position is defined below or

line direction distance
where direction is one of up, down, left, right. When used with the m4 macros described here,
it is preferable to add an underscore: up_, down_, left_, right_. The distance is a number or
expression and the units are inches, but the assignment

scale = 25.4
has the effect of changing the units to millimetres, as described in Section 12.

Lines can also be drawn to any distance in any direction. The example,

3.3

3.4

line up_ 3/sqrt(2) right_ 3/sqrt(2) dashed
draws a line 3 units long from the current location, at a 45° angle above horizontal. Lines (and
other objects) can be specified as dotted, dashed, or invisible, as above.
The construction
line from A to B chop x
truncates the line at each end by x (which may be negative) or, if x is omitted, by the current circle
radius, a convenience when A and B are circular graph nodes, for example. Otherwise
line from A to B chop x chop y
truncates the line by x at the start and y at the end.
Any of the above means of specifying line (or arrow) direction and length will be called a linespec.
Lines can be concatenated. For example, to draw a triangle:
line up_ sqrt(3) right_ 1 then down_ sqrt(3) right_ 1 then left_ 2

Positions

A position can be defined by a coordinate pair; e.g., 3,2.5, more generally using parentheses by
(expression, expression), as a sum or difference; e.g., position + (expression, expression), or by
the construction (position, position), the latter taking the z-coordinate from the first position
and the y-coordinate from the second. A position can be given a symbolic name beginning with
an upper-case letter, e.g. Top: (0.5,4.5). Such a definition does not affect the calculated figure
boundaries. The current position Here is always defined and is equal to (0,0) at the beginning of a
diagram or block. The coordinates of a position are accessible, e.g. Top.x and Top.y can be used in
expressions. The center, start, and end of linear objects (and the defined points of other objects as
described below) are predefined positions, as shown in the following example, which also illustrates
how to refer to a previously drawn element if it has not been given a name:

line from last line.start to 2nd last arrow.end then to 3rd line.center

Objects can be named (using a name commencing with an upper-case letter), for example:

Bus23: 1line up right
after which, positions associated with the object can be referenced using the name; for example:

arc cw from Bus23.start to Bus23.end with .center at Bus23.center

An arc is drawn by specifying its rotation, starting point, end point, and center, but sensible
defaults are assumed if any of these are omitted. Note that

arc cw from Bus23.start to Bus23.end
does not define the arc uniquely; there are two arcs that satisfy this specification. This distribution
includes the m4 macros

arcr (position, radius, start radians, end radians, modifiers, ht)

arcd(position, radius, start degrees, end degrees, modifiers, ht)

arca(chord linespec, ccwlcw, radius, modifiers)
to draw uniquely defined arcs. If the fifth argument of arcr or arcd contains -> or <- then a
midpoint arrowhead of height specified by arg6 is added. For example,

arcd((1,-1),,0,-90,<- outlined "red") dotted
draws a red dotted arc with midpoint arrowhead, centre at (1, —1), and default radius. The example

arca(from (1,1) to (2,2),,1,->)
draws an acute angled arc with arrowhead on the chord defined by the first argument.

The linear objects can be given arrowheads at the start, end, or both ends, for example:

line dashed <- right 0.5

arc <-> height 0.06 width 0.03 ccw from Here to Here+(0.5,0) \

with .center at Here+(0.25,0)

spline —-> right 0.5 then down 0.2 left 0.3 then right 0.4

The arrowheads on the arc above have had their shape adjusted using the height and width
parameters.

The planar objects: box, circle, ellipse, and text

Planar objects are drawn by specifying the width, height, and position, thus:

3.5

3.6

A: box ht 0.6 wid 0.8 at (1,1)
after which, in this example, the position A.center is defined, and can be referenced simply as A.
The compass points A.n, A.s, A.e, A.w, A.ne, A.se, A.sw, A.nw are automatically defined, as
are the dimensions A.height and A.width. Planar objects can also be placed by specifying the
location of a defined point; for example, two touching circles can be drawn as shown:

circle radius 0.2

circle diameter (last circle.width * 1.2) with .sw at last circle.ne

The planar objects can be filled with gray or colour. For example, either

box dashed fill_(expression) or box dashed outlined "color" shaded "color"
produces a dashed box. The first case has a gray fill determined by expression, with 0 corresponding
to black and 1 to white; the second case allows color outline and fill, the color strings depending
on the postprocessor. Postprocessor-compatible RGB color strings are produced by the macro
rgbstring(red fraction, green fraction, blue fraction); to produce an orange fill for example:

shaded rgbstring(1, 0.645, 0)

Basic colours for lines and fills are provided by gpic and dpic, but more elaborate line and fill
styles or other effects can be incorporated, depending on the postprocessor, using

command "string"
where string is one or more postprocessor command lines.

Arbitrary text strings, typically meant to be typeset by IATEX, are delimited by double-quote
characters and occur in two ways. The first way is illustrated by

"\large Resonances of $C_{20}H_{42}$" wid x ht y at position
which writes the typeset result, like a box, at position and tells pic its size. The default size assumed
by pic is given by parameters textwid and textht if it is not specified as above. The exact typeset
size of formatted text can be obtained as described in Section 14. The second occurrence associates
one or more strings with an object, e.g., the following writes two words, one above the other, at the
centre of an ellipse:

ellipse "\bf Stop" "\bf here"
The C-like pic function sprintf ("format string" ,numerical arguments) is equivalent to a string.
(Its implementation passes arguments singly to the C snprintf function).

Compound objects

A compound object is a group of statements enclosed in square brackets. Such an object, often
called a block, is placed by default as if it were a box, but it can also be placed by specifying the
final position of a defined point. A defined point is the center or compass corner of the bounding
box of the object or one of its internal objects. Consider the last line of the code fragment shown:
Ands: [right_
And1l: AND_gate
And2: AND_gate at Andl - (0,Andl.htx*3/2)

] with .And2.Inl at position
The two gate macros evaluate to compound objects containing Out, Inl, and other locations. The
final positions of all objects inside the square brackets are determined in the last line by specifying
the position of Inl of gate And2. The compound block has been given the name Ands.

Other language facilities

All objects have default sizes, directions, and other characteristics, so part of the specification of an
object can sometimes be profitably omitted.
Another possibility for defining positions is
expression between position and position
which means
1st position + expression x (2nd position — 1st position)
and which can be abbreviated as
expression < position , position >

4.1

Care has to be used in processing the latter construction with m4, since the comma may have to be
put within quotes, ¢, to distinguish it from the m4 argument separator.

Positions can be calculated using expressions containing variables. The scope of a position is the
current block. Thus, for example,

theta = atan2(B.y-A.y,B.x-A.x)

line to Here+(3*cos(theta),3*sin(theta)).

Expressions are the usual algebraic combinations of primary quantities: constants, environmental
parameters such as scale, variables, horizontal or vertical coordinates of terms such as position.x
or position.y, dimensions of pic objects, e.g. last circle.rad. The elementary algebraic operators
are+, -, x, [/, %, =, +=, -=, x=, /= and %=, similar to the C language.

The logical operators ==, !=, <=, >=, >, and < apply to expressions and strings. A modest
selection of numerical functions is also provided: the single-argument functions sin, cos, log,
exp, sqrt, int, where log and exp are base-10, the two-argument functions atan2, max, min,
and the random-number generator rand (). Other functions are also provided using macros.

A pic manual should be consulted for details, more examples, and other facilities, such as the
branching facility

if expression then { anything } else { anything },
the looping facility

for variable = expression to expression by expression do { anything },
operating-system commands, pic macros, and external file inclusion.

Two-terminal circuit elements

There is a fundamental difference between the two-terminal elements, each of which is drawn along
an invisible straight-line segment, and other elements, which are generally compound objects in []
blocks as described in Section 3.5 and Section 6. The two-terminal element macros follow a set of
conventions described in this section, and other elements will be described in Section 6.

Circuit and element basics

A list of the library macros and their arguments is in Section 19. The arguments have default values,
so that only those that differ from defaults need be specified.

Figure 5 shows a resistor and serves as an example of pic commands. The first part of the source
file for this figure is on the left:

e elen_ >
s [rggggggggg—dimen_444——————4T W
cct_init
linewid = 2.0 T T
linethick_(2.0) R1.start Ri.centrek‘*laSt (1 Ri.end

R1: resistor

Figure 5: Resistor named R1, showing the size parameters, enclosing block, and predefined positions.

The lines of Figure 5 and the remaining source lines of the file are explained below:

e The first line after .PS invokes the macro cct_init that loads the library libcct.m4 and
initializes local variables needed by circuit-element macros.

e The sizes of circuit elements are proportional to the pic environmental variable 1inewid, so
redefining this variable changes element sizes. The element body is drawn in proportion to
dimen_, a macro that evaluates to linewid unless redefined, and the default element length
is elen_, which evaluates to dimen_*3/2 unless redefined. Setting linewid to 2.0 as in the
example means that the default element length becomes 2.0 x 3/2 = 3.0in. For resistors, the
default length of the body is dimen_/2, and the width is dimen_/6. All of these values can
be customized. Element scaling and the use of SI units is discussed further in Section 12.

o The macro linethick_ sets the default thickness of subsequent lines (to 2.0 pt in the example).
Macro arguments are written within parentheses following the macro name, with no space
between the name and the opening parenthesis. Lines can be broken before macro arguments
because m4 and dpic ignore white space immediately preceding arguments. Otherwise, a long
line can be continued to the next by putting a backslash as the rightmost character.

e The two-terminal element macros expand to sequences of drawing commands that begin with
‘line invis linespec’, where linespec is the first argument of the macro if it is non-blank,
otherwise the line is drawn a distance elen_ in the current direction, which is to the right
by default. The invisible line is first drawn, then the element is drawn on top of it. The
element—rather, the initial invisible line—can be given a name, R1 in the example, so that
positions R1.start, R1.centre, and R1.end are automatically defined as shown.

e The element body is drawn in or overlaid by a block, which can be used to place labels around
the body. The block corresponds to an invisible rectangle with horizontal top and bottom
lines, regardless of the direction in which the element is drawn. A dotted box has been drawn
in the diagram to show the block boundaries.

e The last sub-element, identical to the first in two-terminal elements, is an invisible line that
can be referenced later to place labels or other elements. If you create your own macros, you
might choose simplicity over generality, and include only visible lines.

To produce Figure 5, the following embellishments were added after the previously shown source:

thinlines_
box dotted wid last [].wid ht last [].ht at last []

move to 0.85 between last [].sw and last [].se
spline <- down arrowht#*2 right arrowht/2 then right 0.15; "\tt last []1" ljust

arrow <- down 0.3 from Rl.start chop 0.05; "\tt Rl.start" below
arrow <- down 0.3 from Rl.end chop 0.05; "\tt Rl.end" below
arrow <- down last [].c.y-last arrow.end.y from Rl.c; "\tt Rl.centre" below

dimension_(from Rl.start to Rl.end,0.45,\tt elen_,0.4)
dimension_(right_ dimen_ from R1l.c-(dimen_/2,0),0.3,\tt dimen_,0.5)
.PE

e The line thickness is set to the default thin value of 0.4 pt, and the box displaying the element
body block is drawn. Notice how the width and height can be specified, and the box centre
positioned at the centre of the block.

e The next paragraph draws two objects, a spline with an arrowhead, and a string left-justified
at the end of the spline. Other string-positioning modifiers than 1just are rjust, above,
and below.

e The last paragraph invokes a macro for dimensioning diagrams.

The two-terminal elements

Two-terminal elements are shown in Figures 6 to 15 and part of Figure 16. Several are included
more than once to illustrate some of their arguments, which are listed in detail in Section 19.

Most of the two-terminal elements are oriented; that is, they have a defined direction or polarity.
Several element macros include an argument that reverses polarity, but there is also a more general
mechanism, as follows.

The first argument of the macro

reversed(‘macro name’ ,macro arguments)
is the name of a two-terminal element in quotes, followed by the element arguments. The element is
drawn with reversed direction; thus,

10

diode(right_ 0.4); reversed(‘diode’,right_ 0.4)
draws two diodes to the right, but the second one points left.
Similarly, the macro
resized (factor,'macro name’,;macro arguments)
will resize the body of an element by temporarily multiplying the dimen_ macro by factor but m4
primitives can be employed instead as follows:
pushdef (‘dimen_’ ,dimen_x* (factor)) , macro name(arguments) popdef (‘dimen_’)
More general resizing should be done by redefining dimen_ globally as described in Section 12.1.
Figure 6 shows some resistors with typical variants. The first macro argument specifies the

—AMN\— resistor — M resistor(,,Q) —p4—— resistor(,,V)

—{ 71— resistor(, ,ES) —NN— resistor(, ,H) resistor(,,AC)

—PAAAA— resistor(,5,B) _:'_I;esistor(,,E) — — ebox(,0.5,0.3)
= ebox

—] }— ebox(,,,0.9) —— ebox(,,,,shaded "green")

—IX— ebox (,wdth=0.2;box=dashed shaded "green";text="X")

Figure 6: Resistors drawn by the macro resistor (linespec, nl|E, chars, cycle wid). The second
argument is either an integer to specify number of cycles, the letter E, or blank. The third argument
specifies the desired variant. The default ebox element designates a resistor.

invisible line segment along which the element is drawn. If the argument is blank, the element is
drawn from the current position in the current drawing direction along a default length. The other
arguments produce variants of the default elements.

Thus, for example,

resistor(up_ 1.25,7)
draws a resistor 1.25 units long up from the current position, with 7 vertices per side. The macro
up_ evaluates to up but also resets the current directional parameters to point up.

Capacitors are illustrated in Figure 7. See Section 6 for the variable macro.

—|—— capacitor ————— capacitor(,C) ——]—— capacitor(,C+)
—JF—— capacitor(,P) —{]—— capacitor(,E) —J}—— capacitor(,K)
—{I—— capacitor(,M) —|[—— capacitor(,N) %>— capacitor(,CP)

. . variable(‘capacitor’,
t ,dC —H— t ,dF +
——Jt—— capacitor(,dC) capacitor(,dF) NN ,-30, dimen_/3)

Figure 7: The capacitor (linespec, chars, [R],height, width) macro, and an example application of the
variable macro.

Basic inductors are illustrated in Figure 8.

———— inductor —000— inductor(,W) —000—— inductor(,L)

A ...(3.m m...(,w,e,pn; e
(3,10 variable 000000000"— (L,9,K)

tapped(‘ebox(,,,0)’,

~) _-_ 99 _H_ i
— AT .. (,,,H3) ebox(, ,,0) -,1/4,-dimen_/6,
addtaps (-, 1/2,~dinen_/6) Tapl Tap2 3/4,-dimen_/6)
"—--7 shielded(

—lll— shielded(‘ebox(,,,0)’,R)

Figure 8: Basic inductors created with the inductor (linespec, WIL, cycles, M|P|K, loop wid) macro,
the ebox macro for European-style inductors, and some modifications (see also Section 6). When an
embellished element is repeated several times, writing a wrapper macro may be desirable.

11

Some two-terminal elements often drawn with truncated leads are in Figure 9. More basic
elements are in Figure 10, and amplifiers in Figure 11.

@ 0

lamp(,, lamp(,T) thermocouple thermocouple(,,,T)
shaded "yellow") g

heater(3339 heater(EREIS] :E) heater(P :ET)

shaded "red!50")

Figure 9: These elements have two terminals but are often drawn with truncated leads.

—F T l—memristor —f{)— tline
— > }— pvcell ———— reed ———— reed(,,,fil1_(0.9),CR)
. e gap e— > oegap(,,A) ———— arrowline

——[—— xtal —@— xtal(,type=R)

Figure 10: More two-terminal elements.

) delay(,, .

am’ t t

P £111(0.9)) integrator
amp(,0.3) delay(,0.2)

4‘ >—— amp —| — y % integrator(,0.3)

Figure 11: Amplifier, delay, and integrator.

Diodes are shown in Figure 12.

—P——diode — M diode (,K)

—PF—— diode(,S) — P diode(,ZK) 4@7 diode(,Z,RE)
—P——diode(,V) — »— diode(,CR) M diode(,U)
—»k—— diode(,v) —p—— diode(,L) ——»—— diode(,T)
—PI—— diode(,w) —>— diode(,F) \\4\‘ diode(,P)
—Pi¢—— diode(,B) —MN— diode(,Sh) »‘\\

—f¢—— diode(,b) —W—— diode(,M) ———— diode(,LE)
—><4—— diode(,6) —H—— diode (,MK) 7— diode(,LER)

—N—— diode(,D)

Figure 12: The macro diode (linespec, BIb|CRIDILILE[R] IP[R]ISITIUIVIvIw|Z]|chars, [R][E]). Ap-
pending K to the second argument draws an open arrowhead.

The arrows are drawn relative to the diode direction by the LE option. For absolute arrow
directions, one can define a wrapper (see Section 13) for the diode macro to draw arrows at 45
degrees, for example:

define(‘myLED’, ‘diode(‘$1’); em_arrows(N,45) with .Tail at last [].ne’)

Figure 13 shows sources, many of which contain internal symbols, and of which the AC and
S options illustrate the need to draw a single cycle of a sinusoid or approximate sinusoid. As a
convenience, the macro ACsymbol (at position, length, height, [n:][AJU|D|L|R|degrees) isincluded
as an interface to the sinusoid macro. For example to add the sumbol “~.” to an ebox:

ebox; { ACsymbol(at last [],,,dimen_/8) }

12

source
source(,I)
source(,i)
source(,ti)
source(,ii)
source(,V)
source(,v)
source(,tv)
source(,SC)
source(,AC)
source(,X)
source(,F)
source(,G)

source(,Q)

000 poctr

source(,,0.4,,
shaded "yellow")

source(,P,,,
£i11_(0.9))

source(,U)
source (,H)
source(,R)
source(,S)
source(,SCr)
source(,T)
source(,L)
source(,B)

nullator

norator

ttmotor (,G)

proximity
consource(,P)

POHIP00600

source(,N)

source(,"mA")
consource
consource(,I)
consource(,1i)
consource(,ti)

source(,SE)

consource(,V)

Saeeatei

consource(,v)

consource(,tv)

— }— battery

—{|||||— battery(,3,R)

Figure 13: Sources and source-like elements. An argument of each element allows customization such as

shading.

For direct current (===), there is also DCsymbol (at position, length, height, U|D|L|R|degrees),
and for power-system diagrams, macros Deltasymbol(at position, keys, UID|IL|R|degrees), and
Ysymbol(at position, keys, U|D|LIR|degrees),

Fuses, breakers, and jumpers are in Figure 14, and switches with numerous controls in Figure 15.

AV, S\ p — Tl 1 | —
fuse fuse(,D) fuse(,B) fuse(,C) fuse(,S,,, fuse(,SB)
£i11_(0.9))
o L 5 20 ﬁ
cbreaker cbreaker (,R) ...(,,D) L GLT ..(,,TS)
—t=— 1 L «l) L
fuse(,HB) ..(,HC,0.5.0.3) jumper ...(,CJBED) ...(,body=outlined "gray" \

shaded "gray";)

Figure 14: Variations of the macros fuse (linespec, A|dAIBICIDIE|IS|IHBIHCISB, wid, ht, attributes),
cbreaker (linespec,L|R,D|T|TS), and jumper (linespec, chars| keys) .

13

o

X

Ao

lswitch G,0 G,0 (,,DA) (,,dD0) (, ,ubC)
1
- o—o Do Yo o o olo
é:)K) (, :KD) (’ :KOD) (’ :KCD) bswitch (, ,C)
B K
B N A 1 - 5
dswitch(,,) (, ,WBKTr)
(, WdBK) G ,WBmdDII())I (, WdBL) (, ,WBSd)
(, ,WBCb) (, ,WBcCb) (, ,WBcDI) (, ,WBKCo) (, ,WBFDI) (, ,WBFSd)
P P |
(, ,WBMMR) (, ,WBMM) (, ,WBMR) (, ,WBEL) (, ,WBLE) (, ,WBoKEL)
1 1 T m m
C—> < I < I
M e e e e
(, ,WBTh) (, ,WBKC) (, ,WBM) (, ,WBCO) (, ,WBMP) (, ,WBoKCP)
e in <« IL »u: >ﬂ</
1 1 1
P P P
(, ,WBCY) (,,WBCZ) (, ,WBCE) (, ,WBRH) (, ,WBRAH) (, ,WBRHH)
& S P2y (;) ()
w
(,,WBPr) (, ,WBPrT) I
(, ,WBPrM) (, ,WBDIGX, [,WBDIGC [,WBCDIGC
text=W) circle="M") circle="M")
Figure 15: The switch(linespec,L|R,chars,L|B|D,attribs) macro is a wrapper for the macros

1switch(linespec, [LIR], [0]C] [D] [K] [A]),

bswitchinespec, [LIR], [0IC]),

and the many-

optioned dswitch(linespec,R,W[ud]B chars,attributes) shown. The switch is drawn in the current
A second-argument R produces a mirror image with respect to the drawing
direction. The separately defined macros Proxim and Magn embellish switches in the bottom row.

drawing direction.

Figure 16 shows a collection of surge-protection devices, or arresters, of which the E and S types
may be either 2-terminal or as 3-terminal (composite) elements described in Section 6.

Figure 16: Variations of the arrester (linespec, chars, wid[:arrowhead ht],

— > ¢— —P> ¢— —e &— —s0o0— 10 >
arrester arrester(,G) .68 .(G,M) .(,0) .(,A)
~c < o) = —ea—
. (,HR) .(,P) .(,8) B .(,9)
G
\k{Eii?—// _EqE}_// \k{gigé_/, B
.(,DE,,, .(,DS) . (,DSL)
flll (0.95)) ...(,DEL)

ht[:arrowhead wid])
macro. Putting D in argument 2 for the S or E configuration creates a 3-terminal composite element
with terminals A, B, and G.

Figure 17 shows some two-terminal elements with arrows or lines overlaid to indicate variability
using the macro

variable(‘element’ ,type, [+|-]angle, length),
where type is one of A, P, L, N, NN with C or S optionally appended to indicate continuous
or stepwise variation. Alternatively, this macro can be invoked similarly to the label macros in
Section 4.4 by specifying an empty first argument; thus, the following line draws the third resistor
in Figure 17:

resistor(up_ dimen_); variable(,uN)

14

%
4148 2%
o

Figure 17: Illustrating variable(‘element’, [A|P|L| [u]lN] | [ulNN]] [CIS], [+|-]angle,length). For
example, variable(‘resistor(up_ dimen_)’,A) draws the leftmost resistor shown above. The
default angle is 45°, regardless of the direction of the element, but the angle preceded by a sign (+
or —) is taken to be relative to the drawing direction of the element as for the lower right capacitor
in Figure 7, for example. The array on the right shows the effect of the second argument.

Figure 18 contains radiation-effect arrows for embellishing two-terminal and other macros.

RS A
om arrows((D48 ..(D LD (B ..(D

Figure 18: Radiation arrows: em_arrows (typel keys,angle, length)

The arrow stems are named Al, A2, and each pair is drawn in a [] block, with the names Head
and Tail defined to aid placement near another device. The second argument specifies absolute angle
in degrees (default 135 degrees).

4.3 Branch-current arrows

Arrowheads and labels can be added to conductors using basic pic statements. For example, the
following line adds a labeled arrowhead at a distance alpha along a horizontal line that has just
been drawn. Many variations of this are possible:

arrow right arrowht from last line.start+(alpha,0) "i_1" above

Macros have been defined to simplify labelling two-terminal elements, as shown in Figure 19.

1 7
b_current (i) ...(i,below_) ..(1,,0) ...(i,below_,0)
7 1
b_current(i,, ,E) ...(i,below_, ,E) ...(i1,,0,E,0.2) ...(i,below_,0,E)
larrow(i) rarrow(i) larrow(i,<-) rarrow(i,<-)

Figure 19: Illustrating b_current, larrow, and rarrow. The drawing direction is to the right.

The macro

b_current (label, above_lbelow_, In|0[ut], Start|E[nd]l, frac)
draws an arrow from the start of the last-drawn two-terminal element frac of the way toward the
body.

If the fourth argument is End, the arrow is drawn from the end toward the body. If the third
element is Out, the arrow is drawn outward from the body. The first argument is the desired label,
of which the default position is the macro above_, which evaluates to above if the current direction
is right or to 1just, below, rjust if the current direction is respectively down, left, up. The label
is assumed to be in math mode unless it begins with sprintf or a double quote, in which case it

15

4.4

is copied literally. A non-blank second argument specifies the relative position of the label with
respect to the arrow, for example below_, which places the label below with respect to the current
direction. Absolute positions, for example below or 1just, also can be specified.

For those who prefer a separate arrow to indicate the reference direction for current, the macros
larrow(label, ->|<-,dist) and rarrow(label, ->|<-,dist) are provided. The label is placed
outside the arrow as shown in Figure 19. The first argument is assumed to be in math mode unless
it begins with sprintf or a double quote, in which case the argument is copied literally. The third
argument specifies the separation from the element.

Labels

Arbitrary text labels can be positioned by any pic placement method including the basic examples
shown:

"text" at position

"text" at position above

"text" wid width ht height with .sw at position

In addition, special macros for labeling two-terminal elements are available:

1llabel(label, label, label, rel placement, block name)

clabel(label, label, label, rel placement, block name)

rlabel(label, label, label, rel placement, block name)

dlabel (long, lat, label, label, label, [X][AIB] [L|R])

The first macro places the first three arguments, which are treated as math-mode strings, on
the left side of the last [1 block (or the block named in the fifth argument if present) with respect
to the current direction: up, down, left, right. The second macro places the strings along the
centre of the element, and the third along the right side. The fourth applies a displacement long, lat
with respect to the drawing direction. Labels beginning with sprintf or a double quote are copied
literally rather than assumed to be in math mode. A simple circuit example with labels is shown in
Figure 20.

.PS
‘Loop.m4’
cct_init
define(‘dimen_’,0.75)
loopwid = 1; loopht = 0.75
source(up_ loopht); llabel(-,v_s,+)
resistor(right_ loopwid); llabel(,R,); b_current(i)
inductor(down_ loopht,W); rlabel(,L,)
capacitor(left_ loopwid,C); llabel(+,v_C,-); rlabel(,C,)
.PE

Figure 20: A loop containing labeled elements, with its source code.

Most commonly, only the first three arguments are needed, and blank arguments are ignored.
The fourth argument can be above, below, left, or right to supplement the default relative
position. The macro dlabel performs these functions for an obliquely drawn element, placing
the three macro arguments at vec_(-long,lat), vec_(0,lat), and vec_(long,lat) respectively
relative to the centre of the element. In the fourth argument, an X aligns the labels with respect
to the line joining the two terminals rather than the element body, and A, B, L, R use absolute
above, below, left, or right alignment respectively for the labels.

Placing two-terminal elements
The length and position of a two-terminal element are defined by a straight-line segment, so four

numbers or equivalent are required to place the element as in the following example:
resistor(from (1,1) to (2,1)).

16

However, pic has a very useful concept of the current point (explicitly named Here); thus,

resistor(to (2,1))
is equivalent to

resistor(from Here to (2,1)).

Any defined position can be used; for example, if C1 and L2 are names of previously defined
two-terminal elements, then, for example, the following places the resistor:

resistor(from L2.end to Cl.start)

A line segment starting at the current position can also be defined using a direction and length.
To draw a resistor up d units from the current position, for example:

resistor(up_ d)

Pic stores the current drawing direction, which is unfortunately limited to up, down, left,
right, for reference when necessary. The circuit macros need to know the current direction, so
whenever up, down, left, right are used they should be written respectively as the macros up_,
down_, left_, right_ as in the above example.

To allow drawing circuit objects in other than the standard four directions, a transformation
matrix is applied at the macro level to generate the required (but sometimes very elaborate) pic
code. Potentially, the matrix elements can be used for other transformations. The macro

setdir_(direction, default direction)
is preferred when setting drawing direction. The direction arguments are of the form

Rlight] | L[eft] | Ulp] | D[own] | degrees,
but the macros Point_(degrees) , point_(radians) , and rpoint_(relative linespec) are employed
in many macros to re-define the entries of the matrix (named m4a_, m4b_, mdc_, and m4d_) for
the required rotation. The macro eleminit_ in the two-terminal elements invokes rpoint_ with a
specified or default linespec to establish element length and direction.

As shown in Figure 21, “Point_(-30); resistor” draws a resistor along a line with slope of -30

.PS
‘Oblique.m4’
cct_init

Ct:dot; Point_(-60); capacitor(,C); dlabel(0.12,0.12,,,C_3)
Cr:dot; left_; capacitor(,C); dlabel(0.12,0.12,C_2,,)
Cl:dot; down_; capacitor(from Ct to C1,C); dlabel(0.12,-0.12,,,C_1)

T:dot(at Ct+(0,elen_))
inductor(from T to Ct); dlabel(0.12,-0.1,,,L_1)

Point_(-30); inductor(from Cr to Cr+vec_(elen_,0))
dlabel(0,-0.1,,L_3,)
R:dot
L:dot(at Cl1-(R.x-Cr.x,Cr.y-R.y))

inductor (from L to Cl); dlabel(0,-0.12,,L_2,) Rs
right_; resistor(from L to R); rlabel(,R_2,)
resistor(from T to R); dlabel(0,0.15,,R_3,) ; b_current(\;y,ljust)
line from L to 0.2<L,T>
source(to 0.5 between L and T); dlabel(sourcerad_+0.07,0.1,-,,+)
dlabel (0,sourcerad_+0.07, ,u,)
resistor(to 0.8 between L and T); dlabel(0,0.15,,R_1,)
line to T
.PE

Figure 21: Illustrating elements drawn at oblique angles.

degrees, and “rpoint_(to Z)” sets the current direction cosines to point from the current location
to location Z. Macro vec_(x,y) evaluates to the position (x,y) rotated as defined by the argument
of the previous setdir_, Point_, point_ or rpoint_ command. The principal device used to
define relative locations in the circuit macros is rvec_(x,y), which evaluates to position Here +
vec_(x,y). Thus, line to rvec_(x,0) draws a line of length x in the current direction.

17

5.1

Figure 21 illustrates that some hand placement of labels using dlabel may be useful when
elements are drawn obliquely. The figure also illustrates that any commas within m4 arguments
must be treated specially because the arguments are separated by commas. Argument commas are
protected either by parentheses as in inductor (from Cr to Cr+vec_(elen_,0)), or by multiple
single quotes as in ‘¢, ’’, as necessary. Commas also may be avoided by writing 0.5 between L
and T instead of 0.5<L,T>.

Series and parallel circuits

To draw elements in series, each element can be placed by specifying its line segment as described
previously, but the pic language makes some geometries particularly simple. Thus,
setdir_(Right)
resistor; llabel(,R); capacitor; llabel(,C); inductor; llabel(,L)
draws three elements in series as shown in the top line of Figure 22.

R ¢ L
AN 1 A
R ¢ L
/\/\/\/—||—4’YYY
R ¢ L
AN— —"

Figure 22: Three ways of drawing basic elements in series.

However, the default length elen_ appears too long for some diagrams. It can be redefined
temporarily (to dimen_, say), by enclosing the above line in the pair

pushdef (‘elen_’,dimen_) resistor... popdef(‘elen_’)
with the result shown in the middle row of the figure.

Alternatively, the length of each element can be tuned individually; for example, the capacitor in
the above example can be shortened as shown, producing the bottom line of Figure 22:

resistor; llabel(,R)

capacitor(right_ dimen_/4); llabel(,C)

inductor; 1llabel(,L)

If a macro that takes care of common cases automatically is to be preferred, you can use the
macro series_(elementspec, elementspec, ...). This macro draws elements of length dimen_ from
the current position in the current drawing direction, enclosed in a [] block. The internal names
Start, End, and C (for centre) are defined, along with any element labels. An elementspec is of
the form [Label:] element; [attributes], where an attribute is zero or more of 11abel(...),
rlabel(...), or b_current(...).

Drawing elements in parallel requires a little more effort but, for example, three elements can be
drawn in parallel using the code snippet shown, producing the left circuit in Figure 23:

define(‘elen_’ ,dimen_)
L: inductor(right_ 2*elen_,W); llabel(+,L,-)
Rl: resistor(right elen_ from L.start+(0,-dimen_)); llabel(,R1)
R2: resistor; llabel(,R2)
C: capacitor(right 2*elen_ from Rl.start+(0,-dimen_)); llabel(,C)
line from L.start to C.start
line from L.end to C.end

18

setdir_(Down)
parallel_(
series_(‘Rl:resistor; rlabel(,R_1)7,
parallel_(
series_(‘resistor; rlabel(,R_2)’,
“inductor(,W); rlabel(,L)’),
‘capacitor(,C); rlabel(,C)’),
line down dimen_/2),
‘Sep=linewid*3/2; V:source; rlabel(+,V,-)’)

R1 R2
Start

End
parallel_(‘L:inductor(,W); llabel(+,L,-)’,

series_(‘Rl:resistor; 1llabel(,R1)’, ‘R2:resistor; llabel(,R2)’),
‘C:capacitor; llabel(,C)’)

Figure 23: Illustrating the macros parallel_ and series_, with Start and End points marked.

A macro that produces the same effect automatically is

parallel_(‘elementspec’, ‘elementspec’, ...)

The arguments must be quoted to delay expansion, unless an argument is a nested parallel_ or
series_ macro, in which case it is not quoted. The elements are drawn in a [] block with defined
points Start, End, and C. An elementspec is of the form

[Sep=val;] [Label:]1 element; [attributes]
where an attribute is of the form

[1label(...);]1 | [rlabel(...)] | [b_current(...);]

Putting Sep=val; in the first branch sets the default separation of all branches to val; in a later
element, Sep=val; applies only to that branch. An element may have normal arguments but should
not change the drawing direction.

Composite circuit elements

Many basic elements are not two-terminal. These elements are usually enclosed in a [] pic block,
and contain named interior locations and components. Nearly all elements drawn within blocks can
be customized by adding an extra argument, which is executed as the last item within the block. By
default, a block is placed as if it were a box; otherwise, the block must be placed by using its compass
corners, thus: element with corner at position or, when the block contains predefined locations,
thus: element with location at position. In some cases, an invisible line can be specified by the
first argument to determine length and direction (but not position) of the block. A few macros are
positioned with the first argument; the ground macro, for example: ground(at position) .

Figure 24 illustrates the adaptation of file quick.m4 to include a transformer, a composite
element described in detail below, followed by code for the figure.

Figure 24: The file quick.m4 modified to include a composite element, the transformer, which is positioned

by placing an internal point.

Figure 25 shows variants of the transformer macro, which has predefined internal locations P1,
P2, S1, S2, TP, and TS. The first argument specifies the direction and distance from P1 to P2 but
not the position of the transformer, which is determined by the enclosing block as normal for a

19

composite element. The second argument places the secondary side of the transformer to the left
or right of the drawing direction. The optional third and fifth arguments specify the number of
primary and secondary arcs respectively. If the fourth argument string contains an A, the iron core
is omitted; if a P, the core is dashed (powder); and if it contains a W, wide windings are drawn. A D1
puts phase dots at the P1, SI end, D2 at the P2, S2 ends, and D12 or D21 puts dots at opposite ends.

Pl P1
Pl oS »5 Plw ,S] - Slw s PI
|[f=s T3 TS
P27 ™S2 H ~g ‘32
P27 P27 P27 52 S27 P2
transformer ...(,,8,WDn12,4)
.(down_ 0.6,,2,P,8) - (,,9,AL) -+ - (R, 8, AW)

Figure 25: The transformer (linespec,L|R,np, [A|P] [W|L] [D1|D2|D12|D21],ns) macro (drawing direc-
tion down), showing predefined terminal and centre-tap points.

The code for Figure 24 is reproduced in the following. Label Vs has been added for later reference.
The transformer is positioned by placing internal position P1.

.PS
#QTrans.m4
cct_init
elen = 0.75
Origin: Here
Vs: source(up_ elen,S); llabel(-,V_s,+)
resistor(right_ elen); rlabel(,R_s)
dot
{ capacitor(down_ to (Here,Origin))
rlabel(+,V,-); 1llabel(,{1\over{j\omega C}},)
dot }
arrowline(right_ elenx2/3); llabel(,I)
T1: transformer(down_ Vs.len,,6,,4) with .P1 at Here # Place P1
"$T1$" at last [].n above
line from T1.P2 to Origin
line from T1.S1 up_ to (T1.S1,Vs.end) then right_ elenx2/3
resistor(down_ Vs.len); rlabel(,R_L); b_current(I_L,rjust)
line to (T1.S82,Here) then to T1.82
.PE

The macro potentiometer (linespec, cycles, fractional pos,length, ...), shown in Figure 26,
first draws a resistor along the specified line, then adds arrows for taps at fractional positions along
the body, with default or specified length. A negative length draws the arrow from the right of the
current drawing direction.

Start Start Start
T1 T1 T1 o
End End End
.(down_ dimen_,,0.5,-5mm__)
potentiometer (down_ dimen_) ...(down_ dimen_,,0.25,-5mm__,0.75,5mm__)

Figure 26: Default and multiple-tap potentiometer.

20

The macro addtaps ([arrowhd | type=arrowhd;name=Name], fraction, length, fraction, length,
..), shown in Figure 27, will add taps to the immediately preceding two-terminal element.

Tap2 right_; t = 0.2in_

- R2: ebox(,elen_*0.6)
R1.star R1.end Iﬁl ’ -
R1: resistor(,,E) addtaps(type=—;name=Tx,
addtaps(<-,0.2,-t,0.8,t) Tx1

Tapi X 3 9.2,-t,0.5,-t,0.8,-t)

R3: tapped(‘ebox(,elen_x*0.6,)’,->,0.2,-t,0.5,-t,0.8,-t) \
R3.Stdrt4|ﬁl7R3.End with .Start at Rl.start+(0.25in__,-0.6in__)
R3.Tapl R3.Tap3

L1: tapped(‘inductor(right_ 9*dimen_/8,,9)’,

_,0,_t,3/9,_t/2,6/9,_t/2,1,_t)
L1.Tapl L1.Tap4

Figure 27: Macros for adding taps to two-terminal elements.

However, the default names Tap1l, Tap2 ... may not be unique in the current scope. An alterna-
tive name for the taps can be specified or, if preferable, the tapped element can be drawn in a [|
block using the macro tapped(two-terminal element’, [arrowhd | type=arrowhd;name=Name]
fraction, length, fraction, length, ...). Internal names .Start, .End, and .C are defined automati-
cally, corresponding to the drawn element. These and the tap names can be used to place the block.
These two macros require the two-terminal element to be drawn either up, down, to the left, or to
the right; they are not designed for obliquely drawn elements.

A few composite symbols derived from two-terminal elements are shown in Figure 28.

T1 T1
Start \ End Start\ End Sta\rt E,/Hd Start ~ End

Start T1 T2 End A N i \-Iﬂ_)l_/
—wWW— TI T2 T2 T2 TI T
KelvinR KelvioR(,R) FTcap FTcap(B) FTcap(C) FTcap(D)

Figure 28: Composite elements KelvinR (cycles, [R],cycle wid) and FTcap(chars) .

The ground symbol is shown in Figure 29. The first argument specifies position; for example,
ground(at (1.5,2)) has the same effect as move to (1.5,2); ground. The second argument
truncates the stem, and the third defines the symbol type. The fourth argument specifies the angle
at which the symbol is drawn, with D (down) the default. This macro is one of several in which a

temporary drawing direction is set using the setdir_(U|D|LI|R|degrees, default RIL|U|D|degrees
) macro and reset at the end using resetdir_.

T

ground (,T) S,90) ,»L) (,T,PR)
ground G,F (,dimen_/2,8) G, G ,P)

Figure 29: The ground(at position, T|stem length, NIF|S|L|IP[A]|E, UIDILIR|degrees) macro.

The arguments of antenna(at position, Tl|stem length, AIL|T|SID|P|F, UID|LIR|degrees)
shown in Figure 30 are similar to those of ground.

(L ¢, (,dimen_x*3/4,P)
SVARRAN = I = N AR O B
T T T1T T2 T1 T2 T1 T2 T1 T2 T T

Figure 30: Antenna symbols, with macro arguments shown above and terminal names below.

21

Figure 31 illustrates the macro opamp (linespec, - label, + label, size, chars, attributes).

N
Inl E1
E
W Out Vi V2
n2 S E2 Point_ (90) H Opamp(39
opamp(, , , opamp(, , , ,PR) body=shaded "orange"
body=shaded "yellow") T

Figure 31: Operational amplifiers. The P option adds power connections. The second and third arguments
can be used to place and rotate arbitrary text at Inl and In2.

The element is enclosed in a block containing the predefined internal locations shown. These
locations can be referenced in later commands, for example as “last [].0ut.” The first argument
defines the direction and length of the opamp, but the position is determined either by the enclosing
block of the opamp, or by a construction such as “opamp with .Inl at Here”, which places the
internal position Inl at the specified location. There are optional second and third arguments for
which the defaults are \scriptsize$-$ and \scriptsize$+$ respectively, and the fourth argument
changes the size of the opamp. The fifth argument is a string of characters. P adds a power
connection, R exchanges the second and third entries, and T truncates the opamp point.

Typeset text associated with circuit elements is not rotated by default, as illustrated by the
second and third opamps in Figure 31. The opamp labels can be rotated if necessary by using
postprocessor commands (for example PSTricks \rput) as second and third arguments.

The code in Figure 32 places an opamp with three connections.

line right 0.2 then up 0.1

A: opamp(up_,,,0.4,R) with .Inl at Here
line right 0.2 from A.Out
line down 0.1 from A.In2 then right 0.2

Figure 32: A code fragment invoking the opamp (linespec, -, +, size, [R] [P]) macro.

Figure 33 shows some audio devices, defined in [] blocks, with predefined internal locations as

shown.
Box Circle Box Face Circle
Inl N Ini ' Ini Ini
~a] N
Ind In5 Box In2—] In2—] n2 In2
Inl In3 In3 1 In3
In2 bell Box buzzer buzzer(,,C) microphone
ni N Head
In3 L R
6 In7 In2 C Head.b
speaker gpeaker(,,H, In3 Stand.s
£ill (0.9)) earphone earphone(, ,C) microphone (A)

Figure 33: Audio components: speaker (U|D|L|R|degrees,size, type, attributes) , bell, microphone,
buzzer, earphone, with their internally named positions and components.

The first argument specifies the device orientation. The fourth can add fill or line attributes.
Thus,

S: speaker(U) with .In2 at Here
places an upward-facing speaker with input In2 at the current location.

22

The nport (box specs [; other commands], nw, nn, ne, ns, space ratio, pin Igth, style) macro is
shown in Figure 34.

Nla N1b N2a N2b

! r 1 !

—e Ela
Wila Ela Wla e | o
— —e
n-port B W1 o —e F1
o— o —e
W1b Elb Wib e — !
—e E3b S1
nport l l l l l l l l nterm
Sla s S4b

nport(wid 2.0 ht 1 £ill_(0.9) "n-port",1,2,3,4)

Figure 34: The nport macro draws a sequence of pairs of named pins on each side of a box. The pin

names are shown. The default is a twoport. The nterm macro draws single pins instead of pin pairs.

The macro begins with the line define (‘nport’, ‘ [Box: box ‘$1’, so the first argument is a
box specification such as size, fill, or text. The second to fifth arguments specify the number of
ports (pin pairs) to be drawn respectively on the west, north, east, and south sides of the box. The
end of each pin is named according to the side, port number, and a or b pin, as shown. The sixth
argument specifies the ratio of port width to inter-port space, the seventh is the pin length, and
setting the eighth argument to N omits the pin dots. The macro ends with ‘$9°]°), so that a ninth
argument can be used to add further customizations within the enclosing block.

The nterm(box specs, nw, nn, ne, ns, pin Igth, style) macro illustrated in Figure 34 is similar to
the nport macro but has one fewer argument, draws single pins instead of pin pairs, and defaults to
a 3-terminal box.

Many custom labels or added elements may be required, particularly for 2-ports. These elements
can be added using the first argument and the ninth of the nport macro. For example, the following
code adds a pair of labels to the box immediately after drawing it but within the enclosing block:

nport(; ¢"0"’ at Box.w ljust; ‘"oo"’ at Box.e rjust)

If this trick were to be used extensively, then the following custom wrapper would save typing,
add the labels, and pass all arguments to nport:

define(‘nullor’, ‘nport(‘$1’
{"${}0$"’ at Box.w ljust
‘"∞"’ at Box.e rjust},shift($0))’)

The above example and the related gyrator macro are illustrated in Figure 35.

o~ [pdl b :

gyrator(invis,,0,N)
nullor gyrator gyrator(invis wid boxht,,0,NV)

!

!
l

Figure 35: The nullor example and the gyrator macro are customizations of the nport macro.

23

Figure 36 shows the macro contact (chars), which contains predefined locations P, C, O for the
armature and normally closed and normally open terminals. An I in the first argument draws open
circles for contacts.

C O C
o ¥ c vO0 o b \2 b \2 v oj
A POT 4 oj © ° °1
0 C L S A o A
contact (R) (@ (© P (PR) (PO) (PC)
po—2aC o0 o— °C °
o0 Po—C ° o—* 00 ~ °/:
(I) (RI) (01) (CcI) (PI) (PI0) (PIC)
oteC DR — I I —
) “~C ! I o\r I
(T) (RT) (0T) (CT) (PT) (PTO) (PTC)
_<C _0) _o _ _ -
) (RU) (ov) (co) (PU) (PUD) (PUC)

Figure 36: The contact (chars) macro (default drawing direction right) can be used alone, in a set of
ganged contacts, or in relays.

The contacts(poles, chars) macro in Figure 37 draws multiple contacts.

C2
P2°JL 0/1902
02 P2 1 C2
C1 P20—=2C2 pyo 002 T 2°/r|1 02 P2 2
Ploj 0—0-0812 °_°O2 P o/lI)Cl p]o/\uCl P 8%
LOI Pi o1 Pl o1l 1 o) 101 Plo/‘/: 01
contacts(2) (2,I) (2,10) (2,PICD) (2,PTCD) (2,PUCD)

Figure 37: The contacts(poles, chars) macro (drawing direction right).

For drawing relays, the macro relaycoil (chars, wid, ht, U|D|L|R|degrees) shown in Figure 38
provides a choice of connection points and actuator types.

Al BI
Vi Vi
VI—D—V2 ﬂg %% V2:| ':V2 <D> 4& @» f
(NX”,’
£i11_(0.9)) (AXSR) (BXSR) (SR) (S0) (SOR) I(PC)

B

(HS) (NAC) (AC) (ML) (PO (RM) (RH) (TH) (EL) (MR)

relaycoil

Figure 38: The relaycoil macro.

24

The relay macro in Figure 39 defines coil terminals V1, V2 and contact terminals P;, C;, O;.

V1 _i i— V2
)
(2 01

C2 o:_A_ P2 02 \

pro—¥ ¢! poo¥ pro—— 2 1°C1 Pl—=gx
L oY prot¥ ! L oY Pl o I;gé
VI—D—V2 —D— Vi P2o—!£c2
relay (2,CTh) (2,0 (2,PIAX) relay(2,R)

Figure 39: The relay(poles, chars, attributes) macro (drawing direction right).

The double-throw switches shown in Figure 40 are drawn in the current drawing direction like
the two-terminal elements, but are composite elements that must be placed accordingly.

Llo ORI
oR (\l\

\oT L2o O/rOR2 L2o <\'\0R2 R2o\|\o o2
1
1

1
O/O oL Lio 0/(0R1 L3o <\'\0R3 Rlo\\i oLl

o
L T R up_; NPDT NPDT(2) left_; NPDT(2,R)

NPDT NPDT(3,R)

Figure 40: Multipole double-throw switches drawn by NPDT (npoles, [R]).

The jack and plug macros and their defined points are illustrated in Figure 41. The first
argument of both macros establishes the drawing direction.

B—_TB A—__ B— _r—B
C C
A—T°1A B AT Ta
plug plug(,R) plug(,3) plug(L,3R) v LM2
L2im1 SMI—,
LM L1 S1
S oy T e s T
Go—n ~—o8 ~—o8 LB
G
jack jack(,LMBS) ..(L,RLS) .. (L,RLBLMLMS) .. (,RSBSMLB)

Figure 41: The jack(U|D|L|R|degrees, chars) and plug(U|D|L|R|degrees, [213] [R]) components and
their defined points.

The second argument is a string of characters defining drawn components. An R in the string
specifies a right orientation with respect to the drawing direction. The two principal terminals of the
jack are included by putting L S or both into the string with associated make (M) or break (B) points.
Thus, LMB within the third argument draws the L contact with associated make and break points.
Repeated L[M|B] or S[M|B] substrings add auxiliary contacts with specified make or break points.

A macro for drawing headers is in Figure 42.

P15 P1
Block P8—fo o] I I I
p1 o e po . §8EEEEH-pinp
g g oo HHE,
Header P5—0 o1—P6 —T° B—PI Pi6 . P2
Header(2,3,8mm__,10mm__) down_; Header(2,8)

left_; Header(2,4,,,fill_(0.9))

Figure 42: Macro Header (1|2, rows, wid, ht, type).
25

Some connectors are shown in Figure 43 and Figure 44. The tstrip macro allows keys wid=value;
ht=value; and box=attributes; in argument 3 for width, height, and e.g., fill, color, or dashed.

P NG
o | . 7 7 ccoax(,F) tbox(V_2)
: p. : e o o
T FON
L1+ Rl tstrip(R,s, (choaX‘S tbox(V_1,,,<)
tstrip(U) DO;wid=1.0;ht=0.25)

tbox(V_1,,,<>)

o > g

tconn(,0) ...(,>) ...(,>>) .G, (G LG G

Figure 43: Macros tstrip(R|IL|U|D|degrees, chars), ccoax(at location, M|F, diameter), tbox(text,
wid, ht, <|>|<>,type), and tconn(linespec, chars|keys, wid).

B Q5L
a1 GT—n - =

pconnex (,A) (,AF) (,AC) (,ACF) (Up,D) (Up,DF) (U,J) (U,JF)
00
0
(,PF)
G GF) (L,GF) (,GC) (,GCF)

Figure 44: A small set of power connectors drawn by pconnex (R|IL|U|D|degrees, chars). Each connector
has an internal H, N, and where applicable, a G shape.

A basic winding macro for magnetic-circuit sketches and similar figures is shown in Figure 45.
For simplicity, the complete spline is first drawn and then blanked in appropriate places using the
background (core) color (1ightgray for example, default white).

itch
1
J’ le core color 71 = [T [s
I \
ﬂ T2 T2 -iL | > : AZ‘Q-
[Left pins Left pins + = d_| g I b
windin cwW CCW v I v
g diam core wid ! :* N N2<‘—:_‘: 2
T2 E T2] T e
_] FT1 T1 ' :
I | Right pinsRight pins
winding(R) T1 T2 cw ccw

Figure 45: The winding(L|R, diam, pitch, turns, core wid, core color) macro draws a coil with
axis along the current drawing direction. Terminals T1 and T2 are defined. Setting the first argument
to R draws a right-hand winding.

26

6.1 Semiconductors

Figure 46 shows the variants of bipolar transistor macro bi_tr (linespec,L|R,P,E) which contains
predefined internal locations E, B, C.

e o D]

b1 tr(R) bi tr(,,, 1gbt(,,LD)
bi_tr(up_ dimen_) bi_tr(,,P) igbt

Figure 46: Variants of bipolar transistor bi_tr (linespec,L|R,P,E) (current direction upward).

The first argument defines the distance and direction from E to C, with location determined
by the enclosing block as for other elements, and the base placed to the left or right of the current
drawing direction according to the second argument. Setting the third argument to P creates a PNP
device instead of NPN, and setting the fourth to E draws an envelope around the device.

Figure 47 shows a composite macro with several optional internal elements.

o C C C
EE Cj B§E§§E§3:> B<E§§E§z%> B<§é§£§§%>
B B
[; B
. B p 5 B1 5 Bl 5

Darlington (R,DZB1) (,EB1) (,EB1DZR1) (,EB1DE1E2)

Figure 47: Macro Darlington(L|R, [E] [P] [B1] [E1|R1] [E2|R2] [D] [Z]), drawing direction up_.

The code fragment example in Figure 48 places a bipolar transistor, connects a ground to the
emitter, and connects a resistor to the collector.

S: dot; line left_ 0.1; up_

Q1: bi_tr(,R) with .B at Here

ground(at Q1.E)

line up 0.1 from Q1.C; resistor(right_ S.x-Here.x); dot

Figure 48: The bi_tr (linespec,L|R,P,E) macro.
The bi_tr and igbt macros are wrappers for the macro bi_trans (linespec, L|IR, chars, E),

which draws the components of the transistor according to the characters in its third argument. For
example, multiple emitters and collectors can be specified as shown in Figure 49.

BU B B
sB p g Em2 Ccm2
uE c
C E
E C E2 EF1 EO coC1C2
bi_trans(, ,BCuEBUS) bi_trans(, ,BCdE2BU) bi_trans(, ,BC2dEBU)

Figure 49: The bi_trans (linespec,L|R, chars,E) macro. The sub-elements are specified by the third
argument. The substring En creates multiple emitters EQ to En. Collectors are similar.

27

A UJT macro with predefined internal locations B1, B2, and E is shown in Figure 50.

E B2 E B2 B2 E B2 E
BI B1 B1 B1
ujt(up_ dimen_,’,E) ujt(: ,P;) ujt(:R,;) ujt(:R,P:)

Figure 50: UJT devices, with current drawing direction up_.

The 3 or 4-terminal thyristor macro with predefined internal locations G and T1, T2, or A, K,
G, and Ga as appropriate is in Figure 51. Except for the G and Ga terminals, a thyristor (the IEC
variant excluded) is much like a two-terminal element.

A T1 TI TI A A T A A A
G
fo T8 () % ke @ @) 17K
K120 9, 7% k k Y1 O% X
thyrist ,F) ... (,UARE) ’
yrastor gy GBRE) o pey () (,BRE) (.AV)
A , A A g, A A A gaA g, A A T
a
AR ENCIRE SRCYNEI IR MCVESIRES)
K K X K& KGGXE K G K T2
G ... (,SCR) ... (SCRRE) ... (SCSE) ... (SBSE)
...(,UAH) ...(,UANRE) ... (SCRE) ...(sCs) ... (SUSE)
QG 03.G

—N/—SCI(’ :Q)
Q2.G 4@7@8(,%,&3) 4@7sbs(,E,Q4)

—»—scs(,,Q2)
Q2.Ga Q.G

Figure 51: The top two rows illustrate use of the thyristor (linespec, chars) macro, drawing direction
down_, and the bottom row shows wrapper macros (drawing direction right_) that place the
thyristor like a two-terminal element. Append K to the second argument to draw open arrowheads.

The wrapper macro thyristor_t (linespec, chars, label) and similar macros scr, scs, sus,
and sbs place thyristors using linespec as for a two-terminal element, but require a third argument
for the label for the compound block; thus,

scr(from A to B,,Q3); line right from Q3.G
draws the element from position A to position B with label Q3, and draws a line from G.

28

Some FETs with predefined internal locations S, D, and G are also included, with similar
arguments to those of bi_tr, as shown in Figure 52.

G
G
G @ G G G G
o o N1,y U, O, T, T T
j_fet j_fet(right_ e_fet e_fet(,,P) e fet(,,p,s) c_fet c_fet(,,P)
dimen_,,P,E)

G1 Gl GO
G G “ . _| 1
Sy B0 i
dtet a fet(,,P) d_fet(,,P,8) g fet g_fot (up_ - - - (, ,dBSDFQuM1)

dimen_,,P) mosfet(, ,dBSDFQMl ,E)

mosfet(,,dGSDF) .. ,,dMEDSQuB)
"(”H%EDF’) ...(, ,uMEDSuB) - Fe fet("TEDSQuB)

S~—ar P——E!
A= featjimL
..(, ,ZSDFd4T,) S
IRF4905

Figure 52: JFET, insulated-gate enhancement and depletion MOSFETs, simplified versions, graphene,
and ferroelectric fets. These macros are wrappers that invoke the mosfet macro as shown in the
second and lower rows. The bottom-row examples show custom devices, the first defined by omitting
the substrate connection, and the second defined using a wrapper macro.

In all cases the first argument is a linespec, and entering R as the second argument orients the
G terminal to the right of the current drawing direction. The macros in the top three rows of the
figure are wrappers for the general macro mosfet (linespec, R, characters,E). The third argument of
this macro is a subset of the characters {BDEFGLMQRSTXZ}, each letter corresponding to a diagram
component as shown in the bottom row of the figure. Preceding the characters B, G, and S by u
or d adds an up or down arrowhead to the pin, preceding T by d negates the pin, and preceding M
by u or d puts the pin at the drain or source end respectively of the gate. The obsolete letter L is
equivalent to dM and has been kept temporarily for compatibility. This system allows considerable
freedom in choosing or customizing components, as illustrated in Figure 52.

The number of possible semiconductor symbols is very large, so these macros must be regarded as
prototypes. Often an element is a minor modification of existing elements. The thyristor (linespec,
chars) macro in Figure 51 is derived from diode and bipolar transistor macros. Another example is
the tgate macro shown in Figure 53, which also shows a pass transistor.

Gb Gb#
tgate A—*—B A B ptrans
G G
A—1 _1+—B G
G

G
A%B ptrans(,L)
tgate(,L) A_Dt]}’b_B tgate(,B) Gb

Figure 53: The tgate (linespec, [B] [RIL]) element, derived from a customized diode and ebox, and the
ptrans(linespec, [RIL]) macro. These are not two-terminal elements, so the linespec argument
defines the direction and length of the line from A to B but not the element position.

29

Some other non-two-terminal macros are dot, which has an optional argument “at location”,
the line-thickness macros, the fill_ macro, and crossover, which is a useful if archaic method to
show non-touching conductor crossovers, as in Figure 54.

- VCC

Figure 54: Bipolar transistor circuit, illustrating crossover and colored elements.

This figure also illustrates how elements and labels can be colored using the macro

rgbdraw(r, g, b, drawing commands)
where the r, g, b values are in the range 0 to 1 to specify the rgb color. This macro is a wrapper for
the following, which may be more convenient if many elements are to be given the same color:

setrgb(r, g, b)

drawing commands

resetrgb

A macro is also provided for colored fills:

rgbfill(r, g, b, drawing commands)
These macros depend heavily on the postprocessor and are intended only for PSTricks, Tikz PGF,
MetaPost, SVG, and the Postscript or PDF output of dpic. Basic Pic objects are probably best
colored and filled as discussed in Section 3.4.

7 Corners

If two straight lines meet at an angle then, depending on the postprocessor, the corner may not be
mitred or rounded unless the two lines belong to a multisegment line, as illustrated in Figure 55.

r r r r

line up 0.2 line up 0.2 \ line up 0.2 line up 0.2
line right 0.2 then right 0.2 line right 0.2 \ round
chop -hlth chop 0 line right 0.2

(A LigM]?C

. corner (,at A) A
line up 0.15 left 0.15 Mitre (L,M,5 bp__)

corner . mitre_(A,B,C)
line up 0.1 right 0.1

Figure 55: Producing mitred angles and corners.

This is normally not an issue for circuit diagrams unless the figure is magnified or thick lines are
drawn. Rounded corners can be obtained by setting post-processor parameters, but the figure shows
the effect of macros round and corner. The macros mitre_ (Positionl,Position2, Position3,length,attributes)
and Mitre_(Linel,Line2,length,attributes) may assist as shown. Otherwise, a right-angle line can
be extended by half the line thickness (macro hlth) as shown on the upper row of the figure, or a
two-segment line can be overlaid at the corner to produce the same effect.

30

8 Looping

Sequential actions can be performed using either the dpic command

for variable=expression to expression [by expression] do { actions }
or at the m4 processing stage. The libgen library defines the macro

for_(start, end, increment, ‘actions’)
for this and other purposes. Nested loops are allowed and the innermost loop index variable is m4x.
The first three arguments must be integers and the end value must be reached exactly; for example,
for_(1,3,2, ‘print In‘’m4x’) prints locations Inl and In3, but for_(1,4,2, ‘print In‘’méx’)
does not terminate since the index takes on values 1, 3, 5,

Repetitive actions can also be performed with the 1ibgen macro

foreach_(‘variable’, actions, valuel, value2, ...)
(an alias for the older macro Loopover_), which evaluates actions and increments counter m4Lx for
each instance of variable set to valuel, value2, ...

9 Logic gates

Library 1iblog.m4 contains a selection of basic and advanced logic gates and structures. The default
size and style parameters defined near the top of the file can be globally redefined or temporarily set
locally. Individual gates also have arguments that allow adjustment of size, and fill, for example.

Figure 56 shows the basic logic gates. The first argument of the gate macros can be an integer
N from 0 to 16, specifying the number of input locations In1, ... InNV, as illustrated for the NOR
gate in the figure. By default, N = 2 except for macros NOT_gate and BUFFER_gate, which have
one input Inl unless they are given a first argument, which is treated as the line specification of a
two-terminal element.

&
) AND_gate [0 NAND_gate NAND_gate(,B)
Ini Qut g=1
D OR_gate I?IQMNOR_gate(S) d O NOR_gate(3,NB)
N_Out Q
_C

In3

D BUFFER_gate Do NOT_gate

In1

)D X0R_gate IgélgE%Do NXOR_gate (NPN) = BOX_gate(PP,N,,,=)

Figure 56: Basic logic gates. The input and output locations of a three-input NOR gate are shown.
Inputs are negated by including an N in the second argument letter sequence. A B in the second
argument produces a box shape as shown in the rightmost column, where the second example has
AND functionality and the bottom two are examples of exclusive OR functions.

O— BOX_gate(PN,N,,,=1)

Input locations retain their positions relative to the gate body regardless of gate orientation, as
in Figure 57.

.PS

‘FF.m4’ S

log_init

S: NOR_gate
left_

R: NOR_gate at S+(0,-L_unit*(AND_ht+1)) R
line from S.0ut right L_unit*3 then down S.0Out.y-R.In2.y then to R.In2
line from R.Out left L_unit*3 then up S.In2.y-R.Out.y then to S.In2
line left 4xL_unit from S.Inl ; "Ssp_" rjust
line right 4*L_unit from R.Inl ; "sp_R" ljust

.PE

Figure 57: SR flip-flop.

31

Beyond a default number (6) of inputs, the gates are given wings as in Figure 58.

VYV V Y YV Y

WW@?W

Figure 58: Eight-input multiplexer, showing a gate with wings.

So

S

So

P>

it

Negated inputs or outputs are marked by circles drawn using the NOT_circle macro. The name
marks the point at the outer edge of the circle and the circle itself has the same name prefixed
by N_. For example, the output circle of a nand gate is named N_Out and the outermost point of
the circle is named Out. Instead of a number, the first argument can be a sequence of letters P or N
to define normal or negated inputs; thus for example, NXOR_gate (NPN) defines a 3-input nxor gate
with not-circle inputs In1 and In3 and normal input In2 as shown in the figure. The macro I0defs
can also be used to create a sequence of custom named inputs or outputs.

Gates are typically not two-terminal elements and are normally drawn horizontally or vertically
(although arbitrary directions may be set with e.g. Point_(degrees)). Each gate is contained in a
block of typical height 6%xL_unit where L_unit is a macro intended to establish line separation for
an imaginary grid on which the elements are superimposed.

Including an N in the second argument character sequence of any gate negates the inputs, and
including B in the second argument invokes the general macro BOX_gate([P|N] ..., [P|N], horiz
size, vert size,label) , which draws box gates. Thus, BOX_gate (PNP,N, ,8,\geq 1) creates a gate
of default width, eight L_units height, negated output, three inputs with the second negated, and
internal label “> 1”. If the fifth argument begins with sprintf or a double quote then the argument
is copied literally; otherwise it is treated as scriptsize mathematics.

A good strategy for drawing complex logic circuits might be summarized as follows:

o Establish the absolute locations of gates and other major components (e.g. chips) relative to a
grid of mesh size commensurate with L_unit, which is an absolute length.

Draw minor components or blocks relative to the major ones, using parameterized relative
distances.

Draw connecting lines relative to the components and previously drawn lines.
o Write macros for repeated objects.
o Tune the diagram by making absolute locations relative, and by tuning the parameters. Some
useful macros for this are the following, which are in units of L_unit:
AND_ht, AND_wd: the height and width of basic AND and OR gates
BUF_ht, BUF_wd: the height and width of basic buffers
N_diam: the diameter of NOT circles

32

The macro BUFFER_gate (linespec, [N|B] , wid, ht, [N|P]*, [N|P]*) is a wrapper for the compos-
ite element BUFFER_gen. If the second argument is B, then a box gate is drawn; otherwise the gate
is triangular. Arguments 5 and 6 determine the number of defined points along the northeast and
southeast edges respectively, with an N adding a NOT circle. If the first argument is non-blank
however, then the buffer is drawn along an invisible line like a two-terminal element, which is
convenient sometimes but requires internal locations of the block to be referenced using last [], as

shown in Figure 59.

N_NEI
SONE o Il N NE2 Inl Out
In2
c Out C
o BUFFER (,N,bd,bd,NN) N SEl
giF;Eglmen_’f/id o) -gate(,N,bd,bd, BUFFER_gen (ITNOC,bd,bd,PN, ,N,,
_gate)) LH_symbol at C)

BUFFER_gate(right_ elen_, ,bd,bd)

line down dimen_/3 from last [].N_SEl.s then left dimen_x2/3

% BUFFER_gate(right_ elen_,N,bd,bd,,N, ,LH_symbol(I) at C)

Figure 59: The BUFFER_gate and BUFFER_gen macros. The bottom two examples show how the gate can
be drawn as a two-terminal macro but internal block locations must be referenced using last [].

Figure 60 shows the macro F1ipFlop(D|T|RS|JK, label, boxspec, pinlength), which is a wrapper
for the more general macro FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins,

pinlength) .
CLR
—b Q— — Q— R - - Q—
Q1 Q2 —O>CK
—pPcK Qr— —Pck Q— s Qr —x Q—
PR
FlipFlop(,Q1) F1ipFlop(T,Q2, Fléiilofri(iiés’ F1ipFlop (JK)
ht hi wid wi £ill (0.9)) P | tprLop
CLR
—Ib af— —Ir af— - Q—
—>CK
—PCK Ql— —>CK —x
FlipFlopX(,, FlipFlopX(,, FlipFlopX(,,
:D;E:CK,,:Q;:1g_bartxt(Q)) :T;E:CK,,:Q;) :J;E:CK;:K,N:CLR, :Q;)

Figure 60: The FlipFlop and FlipFlopX macros, with variations.

The first argument modifies the box (labelled Chip) default specification. Each of arguments 3
to 6 is null or a string of pinspecs separated by semicolons (;). A pinspec is either empty (null) or
of the form [pinopts] : [label[: Picname]]. The first colon draws the pin. Pins are placed top to
bottom or left to right along the box edges with null pinspecs counted for placement. Pins are named
by side and number by default; eg W1, W2, ..., N1, N2, ..., E1, ..., S1, ... ; however, if
: Picname is present in a pinspec then Picname replaces the default name. A pinspec label is text
placed at the pin base. Semicolons are not allowed in labels; use e.g., \char59{} instead. To put a

33

bar over a label, use 1g_bartxt (label). The pinopts are [LIM|I]0] [N] [E] as for the 1g_pin macro.
Optional argument 7 is the pin length in drawing units.

Figure 61 shows a multiplexer block with variations, and Figure 62 shows the very similar
demultiplexer.

Sel0

In0 Sell In0 In7
i n0 | L]
Sel0 0 1 2 3 4 5 6 7
In2 g\ /
In3 In3 Sel2 |
Sel ~Nogp OF down_; Mux(8,,L3,,28*L_unit)

Mux (4,M1) Mux (4, ,0EBN2)
left_; Mux(4,,LNOE)

Figure 61: The Mux (input count, label, [L][BIH|X][N[n]|S[n]][IN]CE], wid,ht) macro.

In|
Sel0
Se]?ﬂ)l234567\
owd | 1 11T T o7
Demux (4,DM1) (4, ,NOEBN2) down_; Demux(8,,L3,,28+L_unit)

left_; Demux(4,,LOE)

Figure 62: The Demux (input count, label, [L][B|H|X][N[n]|S[n]l][INIOE],wid, ht) macro.

Customized gates can be defined simply. For example, the following code defines the custom
flipflops in Figure 63.

define(‘customFF’, ‘FlipFlopX(wid 10%L_unit ht FF_ht*L_unit,,
:S;NE:CK;:R, N:PR, :Q;;ifelse(‘$1’,1,:1g bartxt(Q)), N:CLR) °’)

PR4, PR3, PR2 PR1, PRO,
PRESET o o ° °
ENABLE
PR PR PR PR PR
SERIAL < < < < -
INPUT S Q S Q S Q S Q S Q OUTPUT
—CPCK —COP>CK —COPCK —OP>CK —OP>CK
R qQ R qQ R qQ R qQ R

creaR—d >0 b b i b
CLOCK—DO

Figure 63: A 5-bit shift register.

This definition makes use of macros L_unit and FF_ht that predefine default dimensions. There are
three pins on the right; the centre pin is null and the bottom is null if the first macro argument is 1.

34

For hybrid applications, the dac and adc macros are illustrated in Figure 64. The figure shows the
default and predefined internal locations, the number of which can be specified as macro arguments.

N1 N1 N2 N1 N1 N2
NW NE NW NE
Inl—+ Out3 Inl —Outl
Iy o H-out DAC Outz Mo, |Out! ADC |+ Out2
In2—» Outl In2 — Out3
SW SE SW SE
S1 S1 S2 S3 S1 S1 S2 S3
dac Q: dac(,,2,2,3,3); "DAC" "2" at Q.C adc adc(,,2,2,3,3)

Figure 64: The dac(width,height,nIn,nN,nOut,nS) and adc(width,height,nIn,nN,nOut,nS) macros.

In addition to the logic gates described here, some experimental IC chip diagrams are included
with the distributed example files.

9.1 Automatic structures

In some common but special cases, logic circuits having a predefined structure can be drawn
automatically, thereby saving much repetitive code. Boolean functions expressed as a product of
sums or a sum of products are examples, and result in two-layer diagrams. Consider for example,
the function

f(a,b,c,d) = abed + ~ba + c + b~a

which is the sum (that is, “or”) of four terms which are products (that is, “and”) of one or more
single-character variables or their negation indicated by a preceding tilde. This and similar functions
can be drawn in two-layer form, as follows. Define the circuit using function notation with the
logic-gate functions And, Or, Not, Buffer, Xor, Nand, Nor, and Nxor. Variables can also be
negated using tilde notation as shown above. An m4 macro implementing a stack can parse the
defining function and draw the corresponding structure, as shown in Figure 65 for the above example.
d ¢ b a

>0

————] f

1

>0

Figure 65: The circui