1 What is Erewhon-Math?

Erewhon-Math is an Utopia based OpenType maths font. The maths symbols and Greek letters are borrowed or derived from Michel Bovani’s Fourier-GUTenberg. Latin letters and digits are borrowed from Michael Shape’s Erewhon font.

It requires LuaTeX or XeTeX as engine and the unicode-math package¹.

It is meant to be used with Utopia based OpenType text fonts like Erewhon. For Fourier-GUTenberg users who want to switch to LuaLaTeX or XeLaTeX, the file fourier-otf.sty can be used as a replacement of fourier.sty.

Please note that the current version (0.65) is experimental, do expect metrics and glyphs to change until version 1.0 is reached. Comments, suggestions and bug reports are welcome!

2 Usage

2.1 Calling \setmathfont

A basic call for Erewhon-Math would be:

\usepackage{unicode-math}
\setmathfont{Erewhon-Math.otf} % Call by file name or
\setmathfont{Erewhon Math} % Call by font name

this loads Erewhon-Math as maths font² with the default options, see subsections 3.1 on page 3, 3.2 on page 4 and 3.3 on page 5 for customisation.

Please note that the three sets of text fonts have to be chosen separately, f.i.:

¹Please read the documentation unicode-math.pdf.
²Both calls work equally well with LuaTeX; with XeTeX a call by font name will fail unless the font is declared as a system font.
2.2 Calling fourier-otf.sty (recommended)

As an alternative to load Erewhon-Math you can type:

\usepackage[options 4]{fourier-otf}

it loads unicode-math with the default options, sets Erewhon-Math as maths font and
Erewhon Text fonts as Roman fonts (families sf and tt left unchanged) but does a bit more:

1. it loads realscripts.sty for better superscripts and footnote calls;
2. it loads fourier-orns.sty, providing many text ornaments;
3. it checks at \begin{document} if packages amssymb or latexsym are loaded and
 issues warnings in case they are;
4. it provides aliases for glyphs named differently in Unicode, so that latexsym or AMS
 names are also available;
5. it defines specific maths characters like \Bbbbackslash \textbackslash, \varemptyset \emptyset,
 \parallelslant \parallel, \shortparallelslant \shortparallel, etc.;
6. it reduces spacing in maths mode: \thinmuskip, \medmuskip and \thickmuskip are
 reduced as in fourier.sty. The option loose disables these settings.

Apart from the loose option mentioned above, fourier-otf.sty provides two options
no-text and Scale=<decimal> meant to be used to load the Erewhon-Math font together
with roman text fonts other than Erewhon, while keeping the advantages 1. to 5. pointed
in the preceding list, f.i. \usepackage[no-text,Scale=0.98]{fourier-otf}

Please note that the fonts loaded by fourier-otf.sty are about 2% larger than those
loaded by fourier.sty: the Erewhon text fonts are based on Utopia reduced à 94%, while
the fourier fonts are based on Utopia reduced à 92%. Option Scale=0.98 can be used to
mimic the output produced by the fourier.sty package.

Option no-text can also be useful if Erewhon is to be loaded with specific options, f.i.
\usepackage[no-text]{fourier-otf}
\setmainfont{erewhon}[RawFeature=+onum;+ss01]

\setmainfont{erewhon} \setsansfont{Cabin}[Scale=MatchLowercase] \setmonofont{Inconsolatazi4}[Scale=MatchLowercase] % tt
otherwise you would get Latin Modern for text fonts.

\^Erewhon (with capital E) is fine with LuaTeX but would fail with XeTeX (erewhon.fontspec not found).
\^Possible options are loose, no-text, Scale= or any of the options described in sections 3.1 to 3.4.
3 What is provided?

Erewhon-Math provides all glyphs supplied by Fourier-GUTenberg plus all glyphs available in the amsfonts and latexsym packages and many more. Therefore, these two packages should not be loaded as they might override Erewhon-Math glyphs.

Sans-serif, typewriter and fraktur styles are borrowed from Latin Modern fonts. See in section 3.6 on page 8 how to choose from other maths fonts for these styles.

A full list of available glyphs is shown in file unimath-erewhon.pdf.

3.1 Upright or slanted?

Package unicode-math follows \LaTeX{} conventions for Latin and Greek letters: in maths mode, the default option (math-style=\TeX) prints Latin letters $a...z$ $A...Z$ and lowercase greek letters $\alpha...\omega$ slanted (italic) while uppercase greek letters $\Delta...\Omega$ are printed upright. This can be changed by option math-style as shown in table 1.

Table 1: Effects of the math-style package option.

<table>
<thead>
<tr>
<th>Package option</th>
<th>Latin</th>
<th>Greek</th>
</tr>
</thead>
<tbody>
<tr>
<td>math-style=ISO</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
<tr>
<td>math-style=\TeX{}</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
<tr>
<td>math-style=french</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
<tr>
<td>math-style=upright</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
</tbody>
</table>

Bold letters are printed upright except lowercase Greek letters which are slanted (the default option is bold-style=\TeX). This can be changed by option bold-style as shown in table 2.

Table 2: Effects of the bold-style package option.

<table>
<thead>
<tr>
<th>Package option</th>
<th>Latin</th>
<th>Greek</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold-style=ISO</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
<tr>
<td>bold-style=\TeX{}</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
<tr>
<td>bold-style=upright</td>
<td>(a,z,B,X)</td>
<td>$(\alpha,\beta,\Gamma,\Xi)$</td>
</tr>
</tbody>
</table>

Other possible customisation: ∇ is printed upright and ∂ is printed slanted by default, but nabla=italic and partial=upright can change this.

All these options are offered by the unicode-math package but they can be added to the \setmathfont call\(^5\), for example:

\setmathfont{Erewhon-Math.otf}[math-style=french,partial=upright]

will print for the code

\[
[\ \frac{\partial f}{\partial x} = \alpha \ \symbf{V} + a\nabla\Gamma + \symbf{\beta}\symbf{M} \]
\]

\(^5\)IMHO it is easier to add all options to the \setmathfont command.

3
\[
\frac{\partial f}{\partial x} = \alpha V + a \nabla \Gamma + \beta M
\]

while the default settings would print

\[
\frac{\partial f}{\partial x} = a V + a \nabla \Gamma + \beta M
\]

Both shapes remain available anytime: \uppi, \itpi prints π, π.

If your text editor is able to handle Greek letters or maths symbols, they can be entered in the code instead control sequences (i.e. $\alpha, \beta, \Gamma, ...$ for \alpha, \beta, \Gamma, ...).

3.2 Character variants

Erewhon-Math provides fourteen “Character Variants” options, listed on table 3, to choose between different glyphs for Greek characters and some others. Alternative calligraphic capitals have been added for E, Q and T in version 0.50.

<table>
<thead>
<tr>
<th>Table 3: Character variants.</th>
<th>Default</th>
<th>Variant</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv00</td>
<td>0</td>
<td>\emptyset</td>
<td>0</td>
</tr>
<tr>
<td>cv01</td>
<td>\hbar</td>
<td>h</td>
<td>\hslash</td>
</tr>
<tr>
<td>cv02</td>
<td>\phi</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>cv03</td>
<td>\epsilon</td>
<td>\epsilon</td>
<td>\epsilon</td>
</tr>
<tr>
<td>cv04</td>
<td>\kappa</td>
<td>\kappa</td>
<td>\kappa</td>
</tr>
<tr>
<td>cv05</td>
<td>\pi</td>
<td>\emptyset</td>
<td>\pi</td>
</tr>
<tr>
<td>cv06</td>
<td>\phi</td>
<td>\phi</td>
<td>\phi</td>
</tr>
<tr>
<td>cv07</td>
<td>\rho</td>
<td>\emptyset</td>
<td>\rho</td>
</tr>
<tr>
<td>cv08</td>
<td>\sigma</td>
<td>\varsigma</td>
<td>\sigma</td>
</tr>
<tr>
<td>cv09</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>cv10</td>
<td>\Theta</td>
<td>\Theta</td>
<td>\Theta</td>
</tr>
<tr>
<td>cv11</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>cv20</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>cv21</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>cv22</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

For instance, to get \texttt{\textbackslash epsilon} and \texttt{\textbackslash phi} typeset as ϵ and ϕ instead of ϵ and ϕ, you can add option CharacterVariant={3,6} to the \texttt{\setmathfont} call:

\texttt{\setmathfont{Erewhon-Math.otf}[CharacterVariant={3,6}]

This works for all shapes and weights of these characters: f.i. \texttt{\symbf{\textbackslash epsilon}}, \texttt{\symbf{\textbackslash phi}} are output as ϵ, ϕ instead of ϵ, ϕ.

Similarly with math-style=french, \texttt{\textbackslash epsilon} and \texttt{\textbackslash phi} are output as ϵ and ϕ (upright).

Please note that curly braces are mandatory whenever more than one “CharacterVariant” is selected.
Note about \hbar (v 0.43): unicode-math defines \hbar as \hslash (U+210F) while amsmath provides two different glyphs (italic h with horizontal or diagonal stroke). Erewhon Math now follows unicode-math; the italic h with horizontal stroke can be printed using \hslash or \hbar together with character variant cv01 or with \mathbar (replacement for AMS’ command \hbar).

3.3 Stylistic sets

Erewhon-Math provides five “Stylistic Sets” options to choose between different glyphs for families of maths symbols.

StylisticSet=4, alias Style=leqslant, converts (large) inequalities into their slanted variants, see table 5a.

StylisticSet=5, alias Style=smaller, converts some symbols into their smaller variants, see table 5b.

<table>
<thead>
<tr>
<th>Command</th>
<th>Default</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>\leq</td>
<td>≤</td>
<td><</td>
</tr>
<tr>
<td>\geq</td>
<td>≥</td>
<td>></td>
</tr>
<tr>
<td>\nleq</td>
<td>≰</td>
<td>⪯</td>
</tr>
<tr>
<td>\ngeq</td>
<td>≱</td>
<td>⪰</td>
</tr>
<tr>
<td>\leqq</td>
<td>≦</td>
<td>⫹</td>
</tr>
<tr>
<td>\geqq</td>
<td>≩</td>
<td>⫺</td>
</tr>
<tr>
<td>\eqless</td>
<td>⪕</td>
<td></td>
</tr>
<tr>
<td>\eqgtr</td>
<td>⪖</td>
<td></td>
</tr>
<tr>
<td>\lesseqgtr</td>
<td>⪕</td>
<td></td>
</tr>
<tr>
<td>\gtreqless</td>
<td>⪖</td>
<td></td>
</tr>
<tr>
<td>\lesseqqgtr</td>
<td>⪋</td>
<td></td>
</tr>
<tr>
<td>\gtreqqless</td>
<td>⪋</td>
<td></td>
</tr>
</tbody>
</table>

StylisticSet=6, alias Style=subsetneq, converts some inclusion symbols, see table 6a on the next page.

StylisticSet=7, alias Style=parallelslant, converts “parallel” symbols into their slanted variants, see table 6b on the following page.

To enable Stylistic Sets 4, 6 and 7 for Erewhon-Math, you should enter

\setmathfont[Erewhon-Math.otf][StylisticSet={4,6,7}] or
\usepackage[Style={leqslant,subsetneq,parallelslant}]{fourier-otf}

These Style aliases are provided by fourier-otf.sty.
Table 5: Stylistic Sets 6 and 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Default</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>\subsetneq</td>
<td>\⊊</td>
<td>\⊊</td>
</tr>
<tr>
<td>\supsetneq</td>
<td>\⊋</td>
<td>\⊋</td>
</tr>
<tr>
<td>\subsetneqq</td>
<td>\⫋</td>
<td>\⫋</td>
</tr>
<tr>
<td>\supsetneqq</td>
<td>\⫌</td>
<td>\⫌</td>
</tr>
</tbody>
</table>

(b) Style=parallelslant (+ss07)

<table>
<thead>
<tr>
<th>Command</th>
<th>Default</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>\parallel</td>
<td>\∥</td>
<td>\∥</td>
</tr>
<tr>
<td>\nparallel</td>
<td>\∦</td>
<td>\∦</td>
</tr>
<tr>
<td>\shortparallel</td>
<td>\∥</td>
<td>\∥</td>
</tr>
<tr>
<td>\nshortparallel</td>
<td>\∥</td>
<td>\∥</td>
</tr>
</tbody>
</table>

then, \[x \leq y \quad A \subsetneq B \quad D \parallel D' \] will print as

\[
\begin{align*}
& x \leq y \\
& A \subsetneq B \\
& D \parallel D'
\end{align*}
\]

instead of

\[
\begin{align*}
& x \leq y \\
& A \subseteq B \\
& D \parallel D'
\end{align*}
\]

StylisticSet=3, alias Style=upint, converts integrals signs into their upright variants, see table 6.

Table 6: Style=upint (+ss03)

<table>
<thead>
<tr>
<th>Command</th>
<th>\int</th>
<th>\iint</th>
<th>\iiint</th>
<th>\iiiint</th>
<th>\oint</th>
<th>\oiint</th>
<th>\oiiint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>\∫</td>
<td>\∬</td>
<td>\∭</td>
<td>\∮</td>
<td>\∮</td>
<td>\∮∫</td>
<td>\∮∭</td>
</tr>
<tr>
<td>Upright</td>
<td>\∫</td>
<td>\∬</td>
<td>\∭</td>
<td>\∮</td>
<td>\∮</td>
<td>\∮∫</td>
<td>\∮∭</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>\intclockwise</th>
<th>\awint</th>
<th>\varointclockwise</th>
<th>\ointctrclockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>\∮</td>
<td>\∮</td>
<td>\∮</td>
<td>\∮</td>
</tr>
<tr>
<td>Upright</td>
<td>\∮</td>
<td>\∮</td>
<td>\∮</td>
<td>\∮</td>
</tr>
</tbody>
</table>

3.4 Other font features

3.4.1 Oldstyle numbers

To get oldstyle numbers in maths, the feature +onum is available:

\setmathfont{Erewhon-Math.otf}[Numbers=OldStyle] or \usepackage[Style=fulloldstyle]{fourier-otf}

0123456789, 0123456789

7These Style aliases are provided by fourier-otf.sty.
3.4.2 Delimiters’ size

When switching from Type 1 to OpenType, Adobe has significantly increased\(^8\) the sizes of Utopia’s delimiters ‘()’, ‘[]’ and ‘{}’. Erewhon-Math has been built from Fourier (Utopia’s Type 1 type faces\(^9\)), while the Erewhon text fonts have been built from the OpenType version; the difference was visible on examples like \((P(n))\) which has been typeset as \((P(n))\) by versions up to 0.53.

This glitch is now fixed, you get now \((P(n)), [P[n]], \{P[n]\}\). An option \texttt{Style=smalldelim (+ss09)}, which can be passed either to the \texttt{fourier-otf} package or to the \texttt{\setmathfont} command, has been added in version 0.54 for backward compatibility: it reverts to the former behaviour.

3.5 Standard LaTeX math commands

All standard LaTeX maths commands, all \texttt{amssymb} commands and all \texttt{latexsym} commands are supported by Erewhon-Math, for some of them loading \texttt{fourier-otf.sty} is required.

Various wide accents are also supported:

- \texttt{\wideoverline} and \texttt{\mathunderline}\(^{10}\)

\[
\begin{align*}
\overline{x} & \quad \overline{xy} & \quad \overline{xyz} & \quad A \cup B & \quad A \cup (B \cap C) \cup D & \quad m + n + p \\
\mathunderline{x} & \quad \mathunderline{xy} & \quad \mathunderline{xyz} & \quad \mathunderline{A \cup B} & \quad \mathunderline{A \cup (B \cap C) \cup D} & \quad \mathunderline{m + n + p}
\end{align*}
\]

- \texttt{\widehat} and \texttt{\widetilde}

\[
\begin{align*}
\hat{x} & \quad \hat{xy} & \quad \hat{xyz} & \quad \hat{A \cup B} & \quad \hat{A \cup (B \cap C) \cup D} & \quad \hat{x + y} & \quad \hat{a + b + ... + z} \\
\tilde{x} & \quad \tilde{xy} & \quad \tilde{xyz} & \quad \tilde{A \cup B} & \quad \tilde{A \cup (B \cap C) \cup D} & \quad \tilde{x + y} & \quad \tilde{a + b + ... + z}
\end{align*}
\]

- \texttt{\overparen} and \texttt{\underparen}

\[
\begin{align*}
\overparen{x} & \quad \overparen{xy} & \quad \overparen{xyz} & \quad \overparen{A \cup B} & \quad \overparen{A \cup (B \cap C) \cup D} & \quad \overparen{\frac{x + y}{2}} & \quad \overparen{a + b + ... + z} \\
\underparen{x} & \quad \underparen{xy} & \quad \underparen{xyz} & \quad \underparen{A \cup B} & \quad \underparen{A \cup (B \cap C) \cup D} & \quad \underparen{\frac{x + y}{2}} & \quad \underparen{a + b + ... + z}
\end{align*}
\]

- \texttt{\overbrace} and \texttt{\underbrace}

\[
\begin{align*}
\overbrace{a} & \quad \overbrace{ab} & \quad \overbrace{abc} & \quad \overbrace{abcd} & \quad \overbrace{abcde} & \quad \overbrace{a + b + c} & \quad \overbrace{a + b + ... + z} \\
\underbrace{a} & \quad \underbrace{ab} & \quad \underbrace{abc} & \quad \underbrace{abcd} & \quad \underbrace{abcde} & \quad \underbrace{a + b + c} & \quad \underbrace{a + b + ... + z}
\end{align*}
\]

\(^8\)Actually +21% both in height and thickness!
\(^9\)Scaled at 94% instead of 92% to match Erewhon text fonts.
\(^{10}\)\texttt{\overline} and \texttt{\underline} are not font related, they are based on \texttt{\rule}.

7
\overbracket and \underbracket
\[
\begin{array}{cccccc}
\overbracket{\bar{a} \bar{a} \bar{a} \bar{a} \bar{a} \bar{a}} & \underbracket{\bar{a} \bar{a} \bar{a} \bar{a} \bar{a} \bar{a}} \\
\overbracket{\bar{a} \bar{a} \bar{a} \bar{a} \bar{a} \bar{a}} & \underbracket{\bar{a} \bar{a} \bar{a} \bar{a} \bar{a} \bar{a}}
\end{array}
\]
\[
\frac{3}{26}\frac{26}{26}
\]
\overrightarrow and \overleftarrow
\[
\overrightarrow{\vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v}} \overleftarrow{\vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v}}
\]
\overrightharpoon and \underleftarrow
\[
\overrightharpoon{\vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v}} \underleftarrow{\vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v}}
\]
Finally \widearc and \overrightarc (loading fourier-otf.sty is required)
\[
\widearc{\overrightarc{\vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v}}}
\]

3.6 Mathematical alphabets

All Latin and Greek characters are available in italic, upright, bold and bold italic via the \symit{}, \symup{}, \symbf{} and \symbfit{} commands.

Calligraphic alphabet (\symscr or \symcal or \mathcal command), uppercase:
\[
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\]
also in boldface (\symbfscr, \symbfcal or \mathbfcal command):
\[
\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\]
Blackboard-bold alphabet (\symb or \mathbb command):
\[
\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\]
\[
\text{abcdefghijklmnopqrstuvwxyz} \text{0123456789}
\]
Fraktur alphabet is borrowed from Latin Modern,

\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\text{abcdefghijklmnopqrstuvwxyz}

but this can be overwitten, i.e.

\setmathfont{Asana-Math.otf}[range=frak,Scale=MatchUppercase]
\textbackslash symfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\textbackslash abcdefghijklmnopqrstuvwxyz

Sans serif alphabet is borrowed from Latin Modern,

\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\text{abcdefghijklmnopqrstuvwxyz}

but it can be borrowed from another maths font, i.e.

\setmathfont{STIXTwoMath-Regular.otf}[range={sfup,sfit},Scale=MatchUppercase]
\textbackslash symsfup{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\textbackslash abcdefghijklmnopqrstuvwxyz

Typewriter alphabet is borrowed from Latin Modern,

\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\text{abcdefghijklmnopqrstuvwxyz}

but it can be borrowed from another Math font, i.e.

\setmathfont{STIXTwoMath-Regular.otf}[range=tt,Scale=MatchUppercase]
\textbackslash symtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\textbackslash abcdefghijklmnopqrstuvwxyz

Like Latin Modern, Erewhon-Math provides only four lowercase Latin letters in script (or calligraphic) shape: \textbackslash e, \textbackslash g, \textbackslash l, \textbackslash o (\textbackslash mscre, \textbackslash mscrg, \textbackslash ell, \textbackslash mscro).

All others (range "1D4B6 to "1D4CF) have to be borrowed from another maths font if needed, i.e.

\setmathfont{LibertinusMath-Regular.otf}[range="1D4B6-"1D4CF, Scale=MatchLowercase]

3.7 Bold variant

In case short maths formulas have to be printed in section titles, a limited bold variant has been added in version 0.54. Example of usage:

\setmathfont{Erewhon-Math-Bold.otf}[version=bold, options]
\section{\textbackslash mathversion{bold} Einstein’s equation \$E=mc^2\$}

It is also possible to use the \texttt{\textbackslash boldmath} command:

\setmathfont{Erewhon-Math-Regular.otf}[BoldFont=Erewhon-Math-Bold.otf]
\section{\textbackslash boldmath Einstein’s equation \$E=mc^2\$}
3.8 Missing symbols

Erewhon-Math does not aim at being as complete as STIXTwoMath-Regular or Cambria, the current glyph coverage compares with TeXGyre maths fonts. In case some symbols do not show up in the output file, you will see warnings in the .log file, for instance:

Missing character: There is no ⥤ (U+2964) in font ErewhonMath

Borrowing them from a more complete font, say Asana-Math, is a possible workaround:
\setmathfont{Asana-Math.otf}[range={"2964},Scale=1.02]
scaling is possible, multiple character ranges are separated with commas:
\setmathfont{Asana-Math.otf}[range={"294A-"2951,"2964,"2ABB-"2ABE}]

Let’s mention albatross, a useful tool to find out the list of fonts providing a given glyph: f.i. type in a terminal “albatross U+2964”, see the manpage or albatross-manual.pdf.

3.9 Fourier ornaments

When loaded by \usepackage{fourier-otf}, Erewhon-Math loads fourier-orns.sty which provides all logos and ornaments available in Fourier-GUTenberg.

fourier-orns.sty as of v2.x automatically fetches its glyphs in a specific OpenType font with LuaTeX or XeTeX engines and from a Type 1 font otherwise (pdfTeX).

\begin{itemize}
 \item A variant of the euro symbol: \eurologo €, €, €, €.
 \item Two “starred” bullets: \starredbullet *, \decosix ⚫.
 \item Decos and logos: \warning △, \noway ☢, \caution △, \boom ⚢,
 \decoone ☢, \decofourleft ☢, \decothreeright ☢,
 \decofourleft ☢, \decofourright ☢, \floweroneleft ☢, \floweronereight ☢,
 \leftand ☢, \rightand ☢, \textxswup ☢, \textxswdown ☢.
 \item Smiley: \grimace ☹, \textthing ☹.
 \item Leaves: \aldineleft ☢, \aldineright ☢, \aldine ☢, \aldinesmall ☢,
 \leafleft ☢, \leafright ☢, \leafNE ☢, \leafNW ☢, \leafSE ☢, \leafSW ☢.
 \item Pilcrows: \oldpilcrowone ☢, \oldpilcrowtwo ☢, \oldpilcrowthree ☢,
 \oldpilcrowfour ☢, \oldpilcrowfive ☢, \oldpilcrowsix ☢, \oldpilcrowseven ☢.
\end{itemize}

All these logos and ornaments are also available as described in the fournier-orns documentation: for instance, you could type \{\FourierOrns E 2 F\} to get ☢ ☢ ☢.

Finally, some symbols are also provided in maths mode, with other names:

\\forbidden (reachable), \beware (reachable), \boom (reachable),

\\textthing (reachable) is a QED symbol for a false proof. Of course, you don’t need it!

\\xswordsup (reachable) and \xswordsdown (reachable) may be used as tags for a debated statement, or for anything else.
4 Acknowledgements

All glyphs in Erewhon-Math are borrowed or derived either from Erewhon fonts or Fourier-GUTenberg package. Many thanks to Michael Sharpe and Michel Bovani for providing these.

I am grateful to George Williams and his co-workers for providing and maintaining FontForge and to Ulrik Vieth for his illuminating paper published in TUGboat 2009 Volume 30 about Open Type Math.

Thanks to Oliver Natt for providing valuable feedback!