Vector Enumeration Programs, version 3.04

Steve Linton

Copyright (©) 1993,1994 Steve Linton

Vector Enumeration 1

Vector Enumeration

This is the manual for version 3.04 of my vector enumeration programs me, qme and zme. These
programs are distributed free of charge for non-commercial use, and there is NO WARRANTY
WHATSOEVER.

This document does not describe the underlying mathematics, which are described in the papers
referred to later, but describes the operation of the programs.

Chapter 1: Introduction 2

1 Introduction

The vector enumeration algorithm for fields is described in the papers Constructing Matrix
Representations of Finitely Presented Groups (J. Symbolic Computation (12) 1991) and On Vector
Enumeration (to appear in the Journal of Linear Algebra and Applications). The me and gme
programs implement this algorithm, me for prime fields of order less than 256 and qme for the
rational numbers. The zme program implements an extended algorithm which works over principle
ideal rings, for the special case of the integers. The extended algorithm will be described in a future
publication.

This document describes the installation and use of these three programs, the formats of input
and output files and the various options which control the execution. Some notes on the structure
of the programs is also included.

In On Vector Enumeration, an application of the algorithm to constructing quotients of algebra
representations is described. These programs include a special option -Q to read an input format
suited to that application and proceed accordingly.

1.1 What’s New

1.1.1 What’s New in Version 3.04

There are a number of changes in version 3.04. Several bugs were fixed, in particular one relating
to meat-axe format output. Thanks to Thomas Breuer for spotting this one.

The -L command line option was added at this release, to allow logging information to be
preceded by a comment designator.

The runtime in milliseconds was added to the output in several of the formats. This change
should not break any reasonable program using the output.

Finally, a new ‘Makefile’ is added, suitable for most make programs. The old ‘Makefile’, which
retains some advantages for development, is renamed ‘GNUmakefile’.

Chapter 1: Introduction 3

1.1.2 What’s New in Versions 3.02 and 3.03

These versions (3.02 was never released) contain bug fixes relating to the integer vector enumer-
ation program zme and changes to some undocumented features relating to the forthcoming GAP
interface.

The zme bugs could cause a crash or improper non-termination.

1.1.3 What’s New in Version 3.01

This version is a bug-fix version. The main bug fixed at this release is that under certain
circumstances information could be lost during look-ahead, resulting in the output module being
a proper pre-image of the correct module.

The fix for this problem involves allowing some definitions to be made, even during look-ahead.
When the -t option see Section 4.6 [Limit Options|, page 22 is used to limit the total number of
dimensions, a proportion of the limit is allocated for these critical definitions. This proportion can
be changed by a new form of the -t option.

1.1.4 What’s New in Version 3

e The zme program is completely new in this version.

e The quot quotient-constructing program has been merged with me and corresponding func-
tionality added to gqme and zme. See Section 4.4 [Input File Options], page 20 and Section 3.2
[Input for Quotient Construction], page 14.

e A number of internal changes have improved performance for most examples, sometimes dra-
matically.

e The input format has been enriched in a number of ways see Chapter 3 [Input Formats|, page 9
and the error handling and reporting in the parser has been greatly enhanced see Section 4.3
[Logging and Error Message Options|, page 17.

e Three new output formats have been added: one for output to be read into AXIOM and two
formats intended to be simply and quickly read by special-purpose programs. See Chapter 5
[Output Formats|, page 24 and Section 4.2 [Output Options|, page 16.

e A special option has been added to indicate that all the generators commute with one another,
so that the module constructed will be a quotient of a polynomial ring. See Section 4.4 [Input
File Options|, page 20.

Chapter 1: Introduction 4

e All the programs have been combined into a single set of sources. See Chapter 7 [The Source
Code], page 31.

e A number of new options have been added to control execution and limit the module dimension
and the run time. See Section 4.6 [Limit Options|, page 22

e A new option has been added to override the characteristic given in the presentation file. See
Section 4.4 [Input File Options], page 20.

e A new options has been added to suppress the automatically generated relations for non-

invertible generators.

e FEarly-closing is now disabled by default, in the interests of mathematical accuracy. It can be
re-enabled using the -e option. See Section 4.1 [Strategic Options], page 15.

Chapter 2: Installation 5

2 Installation

2.1 Installation Procedure

Since you’re reading this manual you have probably already obtained the vector enumeration
package and unpacked it from the compressed distribution. Just for completeness, or for getting
a later version, the software is available from me, Steve Linton (sal@cs.stand.ac.uk), or by
anonymous FTP from galois.maths.qmw.ac.uk. It consists of just one file ‘nme.tar.Z’ (there
may also be ‘nme.tar.z’ and/or ‘nme.zoo’). The file ‘nme .README’ is a copy of the ‘README’ file
contained in the distribution.

You should create a new directory the nme home directory into which to unpack the distribution
which will then create subdirectories ‘. /ve’, ‘. /rat’, ‘. /int’, ‘. /docs’ and ‘. /examples’. The first
three contain only ‘GNUmakefile’s, ‘./docs’ contains this TeXInfo file and ‘. /examples’ contains
some input files for testing. The current directory contains the C and Bison source files, the master
‘Makefile’ and ‘GNUmakefile’ and the shell script ‘build.sh’.

There are three alternative ways of compiling the programs. Simple compilation should suffice
for most users.

2.1.1 Simple Compilation

Users not intending to modify the programs or to compile them for multiple architectures in the
same directory hierarchy should use simple compilation. Simply change to the nme home directory
and:

1. Edit the shell script ‘build.sh’ to:
e Set the correct name for the C compiler (probably cc or gcc).

e Set the compiler, pre-processor and linker flags so that the compiler will find the GMP
libraries and include files see Section 2.2 [Pre-requisites|, page 8 and will suitably optimize
the programs.

e Include the C version of alloca if it is not provided by your system (most BSD systems
provide it, most System V systems do not).

e Comment out appropriate sections of the script if you do not need all of the programs
‘me’, ‘gme’ and ‘zme’. If you need only ‘me’, then you needn’t worry about GMP.

2. Type ‘./build.sh’.

Chapter 2: Installation 6

3. Cross your fingers.

Assuming everything works, you will end up with the three executable programs in the ‘bin’
subdirectory of the nme home directory. They may be moved to any convenient location.

2.1.2 General Installation

If you plan to develop enhancements to the programs, or wish to compile them for multiple
architectures then you will need to install the package completely. You can do this either using
the ‘Makefile’, mainly prepared for when the package is installed as a GAP share library, or using
the ‘GNUmakefile’. For the latter you will need version 3.63 or later of GNU make. It will also be
simpler if you have a C compiler with the -M option to prepare dependency lists automatically.

General installation and simple installation should not be done in the same directory, as they
use subdirectories differently.

2.1.2.1 Using GNU Make

For general installation with GNU make you will need to arrange to have an environment variable
ARCH set to some convenient name for the current hardware architecture. I do this with a line

setenv ARCH ‘arch®

in my °.cshrc’ file, and a small shell script ‘arch’ that uses the hostname to decide what type
of computer I am using. On Sun systems ‘arch’ is a system command.

You should then create a subdirectory ‘bin’ of the nme home directory. For each architecture

Y hera) €

xxx that is likely to be of interest you should also create subdirectories xxx of the ‘bin’, ‘ve’, ‘rat’

and ‘int’ subdirectories of the nme home directory.

You should then edit the file ‘Makefile.inc’ in the nme home directory and set the C compiler,
and compiler, linker and pre-processor flags suitably.

Assuming that your command to call GNU make is gmake, running gmake in the nme home
directory should make all three programs, while running it in ‘ve’ will make me, in ‘rat’ will make
gme and running it in ‘int’ will make zme. The binaries will be stored in ‘bin/$ARCH’, which can

Chapter 2: Installation 7

conveniently be included in your path, and separate directories will be used for the object files for
each architecture, so that they can be kept independently up to date.

2.1.2.2 Using the GAP Makefile

To use Martin Schoenert’s ingenious Makefile to build the package, edit ‘Makefile’ in the nme
home directory and set the variables INCDIRGMP and LIBDIRGMP appropriately for your system.
Then type make cc or make gcc according to which compiler you wish to use. By default this
Makefile only makes me and qme, as zme is not used in the GAP share library. To make zme as well,
edit the dependencies of the target all.

This will make the executables as ‘bin/me.exe’, ‘bin/qme.exe’ and (if you edited the makefile
appropriately) ‘bin/zme.exe’. These will be invoked by the scripts which are supplied as ‘bin/me’,
‘bin/qme’ and ‘bin/zme’. If you wish to install the package for use on multiple hardware architec-
tures, you should move the executables to (for example) ‘bin/me.sun’ and replace the script with
one that decides which executable to use.

2.1.3 Compile-time options

There are three compile-time options which can be controlled by editing the file ‘me.h’ in the
distribution. They are

DEBUG When the symbol DEBUG is defined many additional consistency checks and validations
are included in the code. Also, the memory allocation routines in ‘myalloc.c’, which
check for freeing pointers not allocated, overwrite freed memory to prevent access to it
and so on, are used. Setting DEBUG slows the program down substantially and increases
the size of the compiled code.

SCRUT This controls compilation of the scrutinize feature. If SCRUT is selected and enabled
with the —s option on the command line then the calculation performed will be checked
frequently against a correct answer read in. See Section 4.5 [Debugging Options],
page 21. If SCRUT is specified at compile-time but not enabled from the command line
there is a small loss of performance as the checks must be bypassed at run-time.

LOGGING This controls compilation of the code to produce logging and diagnostic messages. If
LOGGING is defined at compile-time, then messages reporting progress will be output,
under the control of the options described in Section 4.3 [Logging and Error Message
Options|, page 17. If logging messages are not needed a small gain in speed, and a rather
larger reduction in code size can be achieved by not defining LOGGING at compile-time.

Chapter 2: Installation 8

By default, LOGGING is defined, but DEBUG and SCRUT are not.

2.2 Pre-requisites

The me program is self-contained, but qme and zme require the GMP multiple-precision arith-
metic library. Specifically, they require version 1.2.99 or later of the library. This is available by
anonymous FTP from sics.se.

The makefiles supplied with the programs make use of non-standard features of GNU make
version 3.63 and will not work with most other make programs or with earlier versions of GNU
make. Scripts are supplied to build the programs from scratch see Section 2.1.1 [Simple Compil-
ation], page 5, but anyone wishing to work on these programs will probably need GNU make see
Section 2.1.2.2 [General Installation], page 7.

The input parser ‘input.tab.c’ is prepared using the GNU parser generator bison from the
grammar file ‘input.y’. If you wish to change the parser in any way you will need to obtain bison.
The supplied parser was prepared with bison version 1.18.

In order to format and read this manual you will need version 2.16 of the TeXInfo package and
either TeX or GNU emacs. Alternatively contact me and I will send you a DVI or PostScript file.

Chapter 3: Input Formats 9

3 Input Formats

3.1 A Presentation File

The basic format of the presentation file is

characteristic . generators . generators not known to be invertible . generators not
known to be involutions . submodule generators . relations .

Anything after the final . is not read in by the program. Accordingly comments may appear
here.

3.1.1 Characteristic

The characteristic is a non-negative integer and must always be present. For me it must be
a prime number less than 256, and indicates the characteristic of the prime field over which the
calculation will be performed. For gme or zme the characteristic must be 0.

The ‘-C’ option may be used to override the characteristic specified in the presentation file
(which must still be given, but will not be checked). See Section 4.4 [Input File Options], page 20.

3.1.2 Generators

The generators part of the presentation defines the names which will be used for the generators
of the algebra being constructed. These names must each be of one of two types:

e Single capital letters such as ‘A’.

e Strings of one or more lower-case letters such as ‘a’ or ‘xyz’.

Lower-case generator names must be separated by a comma, a semi-colon or whitespace.

The following specifications all define three generators ‘A’, ‘B’ and ‘C’:

ABC
A,B,C

Chapter 3: Input Formats 10

A B;C,
AB C

On the other hand, the specification ‘abc’ defines one generator called ‘abc’. To define three
generators ‘a’, ‘b’ and ‘c’ a specification such as ‘ab ¢’, ‘a,b,c’ or ‘a b;c’ is needed.

Once the generators are defined a longest-match scanner is constructed to read strings of gener-
ator names. This is then used to read the generators not known to be invertible and generators not
known to be involutions sections of the presentation (and also used while reading the submodule
generators and relations).

Providing no generator is an initial substring of another (which is very bad practice) no sep-
arators should be needed in generators not known to be invertible or generators not known to be
involutions, although they might add readability.

By default every generator is assumed to be an involution, that is for a generator x, the relation
xx = 11is assumed. This assumption can be overridden by including the generator in one of the lists
generators not known to be invertible or generators not known to be involutions. If a generator x is
included in the first list then the program will make no assumptions about a multiplicative inverse
of x. If a generator x is included in the second list then the program will add an extra generator
x~-1 and assume the relation xx~-1 = 1.

It is an error for a generator to appear in both lists.

Either of these lists may have the special form ‘*’, which indicates that all generators are non-
invertible or not involutions.

Thus, for example a module for the free algebra on generators ‘a’, ‘b’ and ‘c’ would be specified
by:

characteristic. a,b,c.abc..submodule generators.relations.

or

characteristic. a,b,c.*..submodule generators.relations.

while a module for the free group on the same generators would be given by:

characteristic. a,b,c..*.submodule generators.relations.

Chapter 3: Input Formats 11

and a module for the free product of three copies of the cyclic group of order two by:

characteristic. a,b,c...submodule generators.relations.

3.1.3 Relations

The relations section of the presentation contains the relations of the algebra to be constructed
(apart from any relations implied by the generators being invertible of involutions). It may be
empty; if not then it consists of two parts, separated by a colon.

3.1.3.1 Group Type Relations

The first part contains “group type” relators. These are products of invertible generators which
are equal to 1 in the algebra to be constructed. These can be handled more efficiently than general
(algebra) relations, so relations that are of this kind should be given in this section. It is an error
for non-invertible generators to appear in this section.

The following constructions are available to write these products (called group words)

e wl [whitespace] w2 denotes the product of group word w1 and group word w2. The whitespace
is only needed if there is ambiguity in parsing the generator names. For example if ‘a’, ‘b’ and
‘ab’ were all generators then ‘ab’ would represent the generator ‘ab’, while ‘a b’ represented
the product of ‘a’ and ‘b’.

e wl*w2 is equivalent to the product wiw?2.

e w"~ denotes the inverse of group word w.

e wn denotes the nth power of group word w. n must be a positive integer.
e wl~w2 denotes the conjugate of group word wl by w2.

e [wl,w2] denotes the commutator of group words wl and w2.

Conjugation, inversion and powering bind more tightly than multiplication, but parentheses
may be used. Thus ‘AB3’ denotes the word ‘ABBB’, while ‘(AB)3’ denotes ‘ABABAB’.

3.1.3.2 Algebra Relations

The second part of the relations section of the presentation contains more general relations.
These may be either elements of the free algebra generated by the generators, which are equal to 1

Chapter 3: Input Formats 12

in the algebra being constructed, or equations between elements of the free algebra which are true
in the algebra being constructed.

Any group word (see above) may be given as an element of the free algebra, as can an element
of the underlying field given as an integer (or quotient of integers for qme). Elements of the free
algebra can be combined by addition with ‘+’, subtraction (‘-’) or multiplication (‘*¥’). The usual
rules of precedence apply and parentheses may be used to override them.

3.1.3.3 Weight Specifications

Any relator or relation in either part of the relations section may be followed by a weight
specification. This takes the form ‘<w>’ or ‘<w1l,w2>’ and affects the order in which the relations
are used by the program, higher weights meaning that the relation will be used less or later. See
See Chapter 6 [Strategy], page 29 for details of how the weights are applied.

In the first form ‘w’ should be a positive integer and will be the weight used for that relation
in both define and lookahead modes. In the second form ‘w1’ and ‘w2’ should both be positive
integers. ‘w1’ will be the weight used in define mode and ‘w2’ in lookahead mode. For details of
lookahead See Chapter 6 [Strategy|, page 29.

3.1.4 Submodule Generators

The submodule generator section may be of one of two forms. The simpler form may only
be used when the module to be constructed is cyclic (more accurately when its presentation has
just one generator). In this case the submodule generator section may take the same form as the
relations section, consisting of group-type relators and algebra relations. Weight specifications may
be present, but will be ignored.

Note that in this case the submodule generators will actually be forced to fix a vector in the
module constructed, rather then annihilate it. Mathematically, the “real” submodule generators
are obtained from those input by subtracting 1.

If the module is not cyclic then the more general form must be used. This begins with the
number s of module generators enclosed in curly brackets ‘{}’ followed by zero or more submodule
generator entries. Each such entry may be of one of three forms:

Chapter 3: Input Formats 13

3.1.4.1 Submodule Generators in Packed Form

A submodule generator in packed form consists of an s-tuple of elements of the free algebra, each
given in the format specified in Section 3.1.3.2 [Algebra Relations|, page 11, enclosed in parentheses
and separated by commas.

Thus for example, the following presentation specifies the representation of the symmetric group
S_3 obtained by identifying the fixed vectors of two copies of the natural permutation representation.

0.AB..B.{2}(A-1,0),(0,A-1), (1+B+B2,-1-B-B2) .B3, (AB)2: .

3.1.4.2 Submodule Generators in Sparse Form

For brevity, when there are many submodule generators, a generator may be given in sparse

form. This consists of one or more pairs:

module generator number , free algebra element

enclosed in square brackets. The module generator number must be between 1 and s, and the
pairs within a sparse form submodule generator must be given in order of module generator number.
Thus the first submodule generator in the above example could be rewritten ‘[1,A-1]".

3.1.4.3 Universal Submodule Generators

Finally, a series of submodule generators such as the first two in the example above may be
abbreviated as a universal submodule generator. This takes the form ‘[first-last,x]’, where x is
a free algebra element in the usual form, and represents the last - first + 1 separate submodule
generators ‘[first,x]’ through ‘[last,x]’ inclusive. Equivalently, the universal submodule gener-
ator ‘[first-last,x]’ can be read as indicating that the free algebra element x annihilates module
generators first through last. The special case ‘[1-s,x]’ can be further abbreviated to ‘[*,x]’.

Thus the example can be abbreviated to

0.AB..B.{2}[*,A-1], (1+B+B2,-1-B-B2) .B3, (AB) 2: .

Chapter 3: Input Formats 14

3.2 Input for Quotient Construction

When the -Q option is given to me, qme or zme, the extension for input files changes from ‘.pres’
to ‘.qin’ and a completely different format of input is expected.

The input essentially specifies two things:

e A vector space V and a set of matrices, which together specify a representation of a free
algebra.

e A set of vectors in V which generate a sub-module W under the action of the algebra. That
is a set of vectors whose (iterated) images under the matrices span a subspace W of V.

This is achieved by an input file consisting six parts separated by whitespace:

1. a specification of the characteristic as described in Section 3.1.1 [Characteristic], page 9;
2. the dimension of the vector space V as an unsigned decimal integer;

3. astring giving the generator names (used for printing and in some of the output formats). The
names must be single characters, unseparated and terminated by whitespace;

4. an unsigned integer giving the number of generators of W;
5. the vectors which generate W;

6. the matrices giving the action of the free algebra on V. For each basis vector b of V all the
images of b under the matrices (ie the appropriate rows of all the matrices) are given, followed
by all the images of the next basis vector.

The last two sections involve giving vectors as part of the input. These are normally given is a
sparse format, consisting of zero or more pairs ‘i, x(i)’ separated by commas and enclosed in square
brackets. The indices i must be strictly increasing within a vector and the pair ‘i, x(i)’ denotes
that the ith coefficient of the vector is x(i). Unspecified coefficients are taken as zero. Thus in a 5
dimensional space V, ‘[1,1] denotes the vector ‘(1,0,0,0,0)’, ‘[5,-1]" denotes ‘(0,0,0,0,-1)’
and ‘[1,1,2,2,3,3,4,4,5,5] denotes ‘(1,2,3,4,5)".

For me only, a packed format is also available for these vectors (this feature should be available
in all three programs, and hopefully will be in some future release). This is given as a series of field
elements separated by commas and enclosed in parentheses. There must be exactly as many field
elements as the specified dimension of V.

Chapter 4: Command Line Options 15

4 Command Line Options

The programs are controlled at run-time by options on the command line. There are no command
line parameters except options. Options which do not take arguments may be combined, and, with
a few exceptions, options may appear in any order. Thus ‘me -g -i’ is equivalent to ‘me -gi’ and
to ‘me -ig’.

4.1 Strategic Options

The vector enumeration algorithm has some intrinsic flexibility. The exact algorithm used is
controlled by these options. These options have no effect when -Q is also present. See Chapter 6
[Strategy], page 29.

-a +|-lamount Option
The -a option controls the amount of lookahead which takes place. The arguments +
and - enable and disable lookahead (respectively), while a numeric argument amount
specifies the how far ahead to look (in weights). See Chapter 6 [Strategy], page 29 for
the exact details of when lookahead takes place. The default is to look ahead 2 weights.

-e + | - | dim | min:max Option
The option -e controls Early Closing. Early closing is said to occur when there are no
blank entries in the program’s table, so that the table represents a representation of
the free algebra. In this situation the table is usually, though not always, correct, and
it can be beneficial to stop the program and check correctness by other means.

If the table is incorrect, one of the relations will fail to hold on it, and the correct table

will be of smaller dimension.

The argument + enables early-closing at any dimension. The argument - disables early-
closing completely. A single numeric argument dim allows early-closing only at that
dimension, while a pair of numeric arguments min and max separated by a colon, but
not by any whitespace, allows early-closing between dimensions min and max inclusive.

Chapter 4: Command Line Options 16

4.2 Output Options

On successful completion the programs may output their results in various formats, and with
various details included or not. This group of options deals with selecting what information will
be output, in what formats and to what files.

4.2.1 Options to control what information is output

-P Option

-b Option
The -P options controls the recording of pre-images.If this flag is present the program
will keep track of the basis elements in terms of the module generators and words in
the group (or algebra) generators. This information is printed out when the table is
printed (ie when -vs2 is present) and in appropriately formatted output. This option
has no effect when -Q is also present.

The alternative name -b for this option is obsolete and is retained for compatibility.

-i Option
The option enables output of Images. If this flag is present then the images of the
module generators in the output module are included in the output. This is only really
relevant for non-cyclic modules as otherwise the generator is the first basis vector and
can only be deleted if the output module is zero.

4.2.2 Options for Output Formats

These options control For the exact specification of the various output formats see Chapter 5
[Output Formats], page 24. The names of the files to which the variously formatted outputs are
written are derived from a common stem set with the —o option. Section 4.2.3 [Output File Names],
page 17.

-C Option
Enables Cayley format output. If this option is present a Cayley library containing the
information will be written to stem. At present the pre-image information will not be
written even if -P is present. This may be fixed in a future release.

Chapter 4: Command Line Options 17

-g Option
Enables GAP format output. If this option is present a file ‘stem.g’ will be written,
suitable for reading by GAP version 3.1 or later.

-m Option
Enables Meataxe format output. This output is written into a series of files whose
names are obtained by appending ’.’ and the generator names to stem. The images, if
-i was present, are written to ‘stem.IM’. This option is only available for me as there

is no Meataxe format for integers or rationals.

-q Option
Enables plain ASCII output format. The output filename is ‘stem.pa’. This format is
designed to be portable and simple to parse (for a computer).

-B Option
Enables plain binary output format. This is written to ‘stem.pb’ and is essentially just
the binary version of the output generated when -q is selected. It is not likely to be
portable between different hardware architectures or different versions of the software,
but should be very fast to read and write.

-X Option
Enables AXIOM output format. The output file-name is ‘stem.input’.

4.2.3 Output File Names

-0 Option
Sets the output file stem stem. This is used to construct the names of the various
differently formatted output files (see above). The default is meout, unless the -Q
option is present, in which case the default is qout.

4.3 Logging and Error Message Options

As the program runs it prints various messages indicating progress and/or reporting errors. The
level of detail reported, and the destination of these messages can be controlled by the options in
this section. All of the progress messages can be suppressed by removing the compile-time option

Chapter 4: Command Line Options

18

LOGGING, reducing the program size and speeding it up slightly. If this is done then the -v, -1 and

-L options will be ignored with an error message.

-1 file

-v 0| + | (typelevel) ...

Option
Sets the Logging file. This file argument is a compulsory path name and logging output
is directed to that file. The default is to send logging output to standard output.

This option controls the Verbosity of logging.

The argument may take one of the special forms 0 or +. The option -v0 turns off all
logging. No output should then be sent to the log file (unless further -v options are
given). The options -v+ turns on all possible logging messages, producing extremely
copious details of all stages of the calculation.

Otherwise the argument is a series of type level pairs (no whitespace may appear within
the argument). Each type is a single letter, selecting a category of event to be logged,
the level is an unsigned integer indicating how detailed a log is required. At level 0 no
events are logged. The following types are defined:

Controls logging of group and algebra Actions as they are computed. The
default level is 0. All higher levels are equivalent and produce a lot of
output.

Controls logging of Coincidence processing. The default level is 0. At levels
greater than 0 all coincidences are logged as they are stacked and processed
and all equations are logged as they are processed. At level 2 or higher the
vroot subroutine which replaces a vector by its undeleted image is also
logged.

Controls logging of Initialisation of new basis vectors. The default level is
0. At level 1 each new basis vector defined is logged. At levels 2 and higher
the full details of the definition are given.

Controls logging of pacKs of the coset table. The default level is 1. At
levels greater than 0 each pack is logged. At levels greater than 1 each
basis vector relocated during a pack is logged.

Controls logging of Lattice operations (zme only). The default level is 1.
At this level and higher packing of the lattice and pushes of the lattice
are logged. At levels greater than 1 each vector added to the lattice and

Option

Chapter 4: Command Line Options

-L Prefix

other substantial changes, and each vector pushed are logged. At level 3 or
higher the Gauss-Jordan processing that happens as each vector is added
and the effect of coincidences on the lattice are logged.

Controls logging of memory allocated by the routines in ‘allocs.c’ This is
only permitted when DEBUG was defined at compile time. At all levels
greater than 0 the allocation is logged after submodule generators are
pushed. At level 2 or higher it is also logged after every weight increase.
Whenever the allocation is logged certain consistency checks are also per-
formed and any anomalies are reported.

Controls logging of relators Pushed. The default level is 0. At level 1 or
higher it logs each relator pushed from a basis element. At level 2 or higher
it also logs the image of each algebra relator (which will then be forced to
7Z€ero).

Controls logging of Stages in the progress of the program. The default
level is 1. At level 1 or higher the program prints brief messages at major
stages in the progress of the program: after the input file is read; after the
submodule generators are processed and at the end of the run. At level 2
or higher the program also prints the relators as they are read in, and the
whole table at completion. At level 3 or higher the table is also printed
after the submodule generators have been processed.

When the -Q option is also present see Section 4.4 [Input File Options|,
page 20 this suboption has a different effect. At level 1 a message is printed
after the submodule generators have been read in and another on comple-
tion. A level 2 or higher messages are also printed after every hundred sets
of images have been read in.

Controls logging of Weight changes. The default level is 1. At any level
greater than zero it logs every change of weight (See Chapter 6 [Strategy],
page 29).

Option

Use of this option causes the argument string to be printed at the start of every line

of logging output. It can be used if the log information is later to be read into another

program, to cause the messages to be treated as comments.

Note that no space is inserted after the prefix string. If one is needed it should be

supplied as part of the string. For example -L’>#I °.

19

Chapter 4: Command Line Options 20

-W Warnlevel Option
This option controls the level of detail in the warning messages produced by the input
parser in response to incorrect input file syntax.

Whatever the value, the parser will attempt to recover and read the rest of the file in
order to report any further errors. Some errors (such as a repeated generator name) are
ignorable, but most will prevent the actual calculation taking place. After reading the
whole input file the program will continue with the calculation only if no non-ignorable
errors occurred.

At a Warnlevel of 0 no messages are produced. The program will either run or stop
with a non-zero return code.

At a Warnlevel of 1 a message describing each error is printed.

At a Warnlevel of 2 the approximate line number and position of the error is also
reported.

At higher levels the offending line is printed, together with an indication of the location
of the error.

The default level is 2.

4.4 Input File Options

These options specify, or alter the meaning of, the main input file read by the program.

-p Presentation Option
This option specifies the name of the main input file (the presentation). The Present-
ation is extended to a pathname by adjoining .pres, unless the -Q option appears
before the -p, in which case .qin will be adjoined instead (and the input file will be
expected to be in a different format). By default input is read from standard input.
See Chapter 3 [Input Formats]|, page 9 for details of the format of the input files.

Chapter 4: Command Line Options 21

-A Option
This option indicates that the generators may be assumed to commute with one another
(so that computations are taking place in a polynomial ring). Relations of the form XY
= YX will be added for every pair of generators.

-C Characteristic Option
This option overrides the characteristic specified in the input file. The argument Char-
acteristic is the new characteristic, which must be 0 for zme or gqme and a prime between
2 and 251 inclusive for me.

-Q Option
This option switches the program from the default behaviour of reading a .pres
presentation file and constructing the module presented to reading a .qin quotient
specification and constructing the quotient action. It should appear before -p if both
are present.

-n Option
Normally the programs generate the extra relation x=x, for each non-invertible gener-
ator x. This is to ensure that all definitions will be made eventually, so that the table
will close. Otherwise, inputting the natural presentation for the free algebra would
cause no action.

This option suppresses these relations. It is only safe to use when you are sure that
every generator appears as the first letter of (a term of) a relation.

4.5 Debugging Options

Most users should not need these options, and indeed will have compiled the programs so that
they are not available. They have no effect if -Q was specified.

-Ss + | - | Filename Stem Option
This option controls the Scrutinize feature. This is only available if the compile-time
option SCRUT was set and is never available for zme. The scrutinize system maintains
a homomorphism from the module under construction to one read in at the begin-
ning (which should be the correct module). This is used to check all deductions and
coincidences. Any discrepancies found are reported.

Chapter 4: Command Line Options 22

The + argument turns scrutinize on, the - argument turns it off (the default). A
Filename Stem argument turns it on and selects the module to be read in. The Stem
defaults to meout. The actual filename is obtained by adjoining .pb to the stem, and
the module is read in in the plain binary format described in Section 4.2.2 [Options for
Output Formats], page 16.

Option
This option turns on Bison’s own debugging for the input parser. It is only available
when DEBUG was specified at compile-time. Rather copious information is output on
the behaviour of the push-down automaton that parses the presentation.

4.6 Limit Options

This group of options imposes limits of time, space or weights on the program. If a limit is

exceeded the program will exit with a non-zero return code and write no output.

-w MaxWeight Option

This option imposes a limit on the maximum weight of basis element that can be
defined. The default limit is 100. See Chapter 6 [Strategy|, page 29 for details of the
use of weights. This option has no effect when the -Q option is also given as weights
are not used in that case.

-T Time Limit Option

This option imposes a limit on the CPU time used by the program. The program will
stop soon after the Time Limit CPU seconds have been used (Time Limit is given in
floating point). The CPU time is not checked as often as it might be. The default is
to have no limit.

-t Max Dimension | Max Dimension:Reserved Percentage Option

The option limits the dimension of the module being constructed. The program will
attempt to complete the calculation in a smaller space, but may not succeed. The
default limit is very large indeed. This option has no effect when -Q is also given, as
the table size never increases.

By default 5% of the dimension limit is reserved for certain critical definitions (occuring
during coincidence processing). If there is no space for a critical definition when one

Chapter 4: Command Line Options

is needed the program exits with an error. The proportion of reserved space can be
altered using the second form of this option.

23

Chapter 5: Output Formats 24

5 Output Formats

On successful completion the programs may write out the results in various ways. Which
format(s) are used, and what filenames the output is written to are controlled by various command
line options. Section 4.2 [Output Options], page 16.

This chapter describes the format of the files which are written. There are four formats intended
to be read into other systems and two formats intended to be easy for special purpose programs to
read.

5.1 Cayley Format

This format is intended for reading by version 3 of the Cayley computational algebra system pro-
duced by John Cannon and associates at the Department of Pure Mathematics, Sydney University,
Sydney, NSW, AUSTRALIA. Contact john@maths.su.oz.au for details.

The output file is a Cayley library and sets the following variables:

f1d This is set to be the field (or, in the case of zme, ring) over which calculations have
been performed.

vs This is set to be a vector space (or module) over £1d, of the same dimension as the
module constructed by the program.

grp This is matrix group over vs. Its generators have the same names as the generators
specified for the vector enumerator, and their actions on vs are those computed by the

program.

Images This is a matrix with as many rows as there were module generators input to the
enumerator and as many columns as the dimension of the module constructed. It gives
the images in the module constructed of the original module generators. It is only
present if the -i option was selected at run-time.

Lattice This is only present for zme and describes the torsion of the module constructed. It
is a matrix with as many columns as the dimension of the module and a row for each

lattice generator.

VEruntime
This is the CPU time used in vector enumeration, in milliseconds.

Chapter 5: Output Formats 25

This output format has not been tested much except with group algebra presentations over finite
fields. It may not work in other situations. The -P option to write out preimages has no effect on
this output format.

5.2 GAP format

This format produces a file intended to be read by the GAP system, version 3.1 or later. This
system is produced by Lehrstuhl D fur Mathematik, RWTH-Aachen, Aachen, GERMANY and is

available for anonymous FTP from samson.math.rwth-aachen.de.

The output file is a GAP source file which defines the following global variables:

field The field (or ring) over which the enumeration was performed.

VErunTime
The CPU time in milliseconds used by the enumeration.

images_mat
This item is only present if the -i option was given. It consists of a matrix of field
entries with as many columns as the dimension of the module constructed and a row
for each module generator specified in the input file, giving the image of that generator
in the final module.

ggen This item is only present if the -P (or -b) option was given at run-time. For each
generator gen specified in the presentation a global GAP variable ggen is given the
value AbstractGenerator("gen").

prelmages
This item is only present if the =P (or -b) option was given at run-time. It consists of
a list of records, one for each basis vector in (dimension of) the module constructed.
Each such basis vector is the image of one of the free module generators by a product
of generators, and each record has two fields modGen, which contains the number of the
free module generator (starting at 1) and word which contains a word (given in terms
of IdWord, the ggen and their inverses) giving the appropriate product of generators.

gen_gen For each generator gen of the presentation, a global variable gen_gen is set to the
matrix giving the action of gen on the module constructed.

gens The list gens is a list of all the gen_gen.

lattice_mat
This is only produced by zme and contains the lattice that describes the torsion of the
constructed module.

Chapter 5: Output Formats 26

5.3 Meataxe Format

This format is only available with me, as the Meataxe has no facilities for handling integers or
rationals. It is intended to produce input suitable for reading into the Meataxe programs of R.A.
Parker.

In this output format the action of each generator, and the images if -i was given, is written
to separate file. The generator name is appended to the file name stem. See Section 4.2 [Output
Options|, page 16 for more details.

Each matrix is ready to be read in by the meataxe program cv.

The -P option to record pre-images has no effect on this output format.

5.4 AXIOM format

This format produces output suitable for reading into the AXIOM computer algebra system
distributed by NAG, Ltd..

The file produced assigns to the following variables:

fld This is set to be the field or ring over which the enumeration was performed.

VErunTime
This is the CPU time in milliseconds used by the enumeration.

images_mat
This is set to be a matrix of field entries giving the images in the module constructed
of the original free module generators.

rec This is only set if the -P option is given, when it is set to be the type

Record(modGen : PositivelInteger, word : Polynomial Integer).

gen_names
This is only set when the -P option is given. It is of type LIST Symbol and contains
the names of the generators from the presentation file.

prelmagesL
This is only set when the -P option is given. It is of type LIST LIST Any and is used
only to set:

Chapter 5: Output Formats 27

prelmages

gen_gen

gens

This is only set when the -P option is given and the preImagesL coerced to type LIST
rec. It has a member for each basis vector (dimension) of the module constructed.
Each such basis vector is the image of one of the original free module generators under
a product of algebra generators. The modGen field of the record specifies the free
module generator (starting at 1), which the word field is the appropriate monomial in
the symbols corresponding to the generators.

For each generator gen given in the presentation, an AXIOM variable gen_gen is set
equal to the matrix (with entries in £1d) giving the action of the generator on the
module constructed.

This list contains all the gen_gen.

lattice_mat

This is only produced by zme. It is a matrix giving the torsion of the module construc-
ted.

5.5 Plain ASCII format

This format is an unadorned ASCII format intended to be machine read. It consists of ASCII
numbers separated by whitespace.

The first line is a header, consisting of four or five numbers

e The dimension of the constructed module

e The number of algebra generators (not included inverses). That is the number of generators

whose actions appear in this file.

e The number of free module generator images in the file. This will be 0 is the -i option was

not given at run-time, and will otherwise be the number of free module generators in the

presentation.

e A boolean (C style, so 1 for true and 0 for false) entry indicating whether pre-image information

appears in the file (ie whether the -P option was given at run-time).

e For zme only, the number of generators if the torsion lattice.

The next part of the file gives the images of the free module generators, and is only present if

the -i option was given at run-time. If it is present then there is a line for each module generator

giving its image in the module constructed.

Chapter 5: Output Formats 28

These vectors, and others later in the file are given as field elements separated by spaces. There
is no terminator, but the number of field elements expected can be deduced from the header
information. Finite field elements are given as integers between 0 and characteristic-1. Rational
numbers are given as ‘numerator/denominator’. Integers and numerators and denominators of
rationals may be too large to read into any fixed-size type.

The next section, which will only be present if the =P option was given at run-time (which can be
deduced from the header information), gives the pre-images of the basis of the module constructed
in the free module. For each basis vector there is a line giving the free module generator and a word
in the algebra generators. The free module generator is given as an integer (they start at 1), the
algebra generators as integers, in the order in which they are defined in the presentation, starting
at 1, with a negative number denoting the multiplicative inverse of its absolute value. The words
are terminated by a zero.

The next section gives the matrices for the action of the generators. The rows are given as
vectors in the format described above, and the matrices are not separated.

For zme only, the lattice generators are given as a series of vectors.

Finally, the CPU time used, in milliseconds appears on a line by itself.

5.6 Plain Binary Format

This format is essentially identical to the Plain ASCII format described in Section 5.5 [Plain
ASCII format|, page 27, except that the individual entries, instead of being whitespace separated
decimal numbers are fixed-length binary numbers. All numbers are written as unsigned int or
int (for generator numbers in pre-images), except that for qgme and zme, the rational numbers and
integers are written using the mpz_out_raw function of GMP.

Chapter 6: Strategy 29

6 Strategy

The vector enumeration algorithm, as described in On Vector Enumeration, for instance, leaves
unanswered a number of practically important questions about the order in which relations and
submodule generators are used. A set of answers to these questions is known as an enumeration
strategy.

The strategy used by these programs is based on the coset enumeration strategy defined in
Double Coset Enumeration, Journal of Symbolic Computation (12) 1991. This is an HLT-based
strategy (something about which we have no choice for vector enumeration) based on two key ideas,
lookahead, originally due to M.J.T. Guy, and weights due to R.A. Parker.

6.1 Weights

In this approach, every relation of the presentation, every basis vector in the module constructed
and (for zme) every vector in the lattice and every generator, has a weight, which is a positive integer.

The weights of the relations may be given in the presentation file See Section 3.1.3.3 [Weight
Specifications], page 12. Otherwise they are given default values. For a group-type relator, see
Section 3.1.3.1 [Group Type Relations], page 11 the default weight is half the length of the relator.
For an algebra relation, see Section 3.1.3.2 [Algebra Relations|, page 11 the default weight is 3.

For zme the weights of the generators are currently fixed at 2. A mechanism for setting them
will be added to a future release.

The weight of a basis vector or lattice vector created during submodule processing is 1. After
that, there is a current weight, which begins at 2 and increases steadily. At current weight w, all
(basis vector,relation) pairs whose weights total w (or less, if somehow they have not been processed
already) will be processed. New basis vectors and lattice vectors created during this processing will
be assigned weight w.

In zme, there is additional processing, because, as well as the (basis vector, relation) pairs, the
image of every lattice vector under every generator must be computed and forced to lie in the
lattice. At current weight w, every (lattice vector, generator) pair whose weights sum to w (or less)
is processed.

Chapter 6: Strategy 30

There is a maximum weight, and if the current weight reaches the maximum weight without the
calculation being complete then the program stops. The maximum weight is 99 by default, and
can be set from the command line Section 4.1 [Strategic Options], page 15.

The art of setting weights to obtain optimum performance is, unfortunately, just that: an art.
All T can suggest is experimentation, possibly with related, but smaller presentations. Very complex
algebra relations should probably have their weight increased from the default.

Certain relations are adjoined automatically to the presentation. These are given standard
weights. The relations ‘xx=1’, xx~=1 or x=x adjoined for involutary, invertible or arbitrary gener-
ators x have weight 3. The relations xy=yx adjoined for each pair of generators x and y when the
-A flag is present see Section 4.4 [Input File Options], page 20 have weight 2.

6.2 Lookahead

The idea of lookahead is to detect in advance coincidences which can be proved without further
definitions. From time to time, the program shifts into lookahead mode, and attempts to process
some further relations without defining new basis vectors. It then shifts back to the normal state,
called define mode and resumes processing from where it left off.

The program will only change modes when the current weight is about the change. It goes into
lookahead mode if the number of basis vectors has doubled since it last entered define mode (or
since the end of submodule processing if this is the first lookahead). It looks ahead a number of
weights controlled by the command line option -a see Section 4.1 [Strategic Options|, page 15, or
2 weights by default.

A relation may have a different weight in lookahead mode from its weight in define mode.
Indeed the relations xx=1, xx~=1 or x=x, adjoined automatically to the presentation, have weight
6 in lookahead mode, (rather than 3) as their main function is to make sure that all entries in the
table are filled eventually.

Chapter 7: The Source Code 31

7 The Source Code

This chapter is provides a little information about the arrangement and operation of my source
code. It is intended only for those trying to fix local compilation problems or to make small changes
or additions. If you are interested in getting more deeply involved with the innards of the program
please feel free to get in touch with me.

7.1 Generalities

7.1.1 Important macros

The file ‘meint.h’ contains both the external declarations for most of the functions in the
programs and a large number of critical macros. The macros are crucial to the way in which the
three programs are generated from one set of sources, and to the operation of the DEBUG, SCRUT
and LOGGING compile-time flags. Among the more significant ones are:

DIE() In DEBUG mode (when the pre-processor symbol DEBUG) is defined) DIE() prints an
error message indicating the file and line number and calls abort () generating a core
dump. In non-DEBUG mode it simply exits with a non-zero return code.

ASSERT (condition)
In DEBUG mode this macro checks whether condition is true and calls DIE() if it is not.
In non-DEBUG mode it generates no code (in particular condition is not evaluated). This
is the principle method of including consistency checks in the debugging version of the

program.

IFDEBUG (code fragment)
Simply executes code fragment only in DEBUG mode. For example after de-allocating
the contents of a pointer it is good practice to put a NULL in it to avoid referencing the

freed memory.

LOG (condition, code fragment)
This macro generates no code unless the LOGGING pre-processor symbol is defined, in
which case it executes code fragment if condition is true. Typically condition checks
one of the global variables such as logcoin that control the verbosity of logging see
Section 4.3 [Logging and Error Message Options|, page 17.

SC(code fragment)
Executes code fragment only if the SCRUT pre-processor symbol is defined and the global
variable scrut (set by the -s command-line option Section 4.5 [Debugging Options],
page 21) is true.

Chapter 7: The Source Code 32

PS(vector, code for packed, code for sparse)
In me, but not in the other programs, a vector in the module under construction can
be represented in one of two forms (packed and sparse, see Constructing Matrix Rep-
resentations of Finitely Presented Groups). It is often necessary to use separate pieces
of code to deal with the two cases.

When me is being compiled, this macro expands to an if ... else ... statement that
executes the appropriate code in each case. When the other programs are being com-
piled it expands to code for sparse.

7.1.2 Arithmetic

Arithmetic in the underlying field (ring) is provided by macros such as Fadd, Fmul, FOne which
enable much of the coding to be independent of the underlying arithmetic. In some places (mainly
in vector.c) explicit #if .. .#endif structures are used where speed requires special code for the
different programs.

Pre-processor symbols ME, QME and ZME, indicate which programs are being compiled, but in
the interest of flexibility, a separate set GFP, RATIONAL and INTEGRAL are used to indicate which
arithmetic is being used. For the GFP case many of the macros (those dealing with allocating space,
for example) expand to no code, and they all expand to inline code fragments. For the other
arithmetics almost all the macros expand to calls to GMP routines.

7.1.3 Prototyping and Other Language Issues

The file ‘global.h’ attempts to make the code compatible with both ANSI and traditional
C compilers, based on whether the pre-processor symbol __STDC_

is defined. In particular, the
macro PT is defined to either return or ignore its argument, so as to provide proto-typing when it
is allowed. The type pointer is also defined to be either char * or void * as appropriate.

7.2 The Source Files

‘alloca.c’
This is taken from a GNU source, and emulates the BSD library function alloca on
systems where it is not provided. alloca is used only by the parser, so speed is not
critical. On BSD systems use the library function instead.

Chapter 7: The Source Code 33

‘allocs.c’

‘coin.c’

‘comline.c’

‘ilatt

‘input.

‘input

‘input

‘input.

Ny

Ny

‘latt.h’

‘lattice.c’

me.cC

This file contains subroutines to allocate certain types of objects quickly (by allocating
space for them in large groups and then maintaining a free queue). It is used for vector
headers and (except in me) for small blocks requested by GMP.

This file contains the code that maintains the coincidence stacks and processes co-
incidences. Coincidence processing has changed a little from earlier releases and the
published descriptions in that a coincidences is simply stored as a vector to set equal to
0, and the choice of which (if any) basis vector to delete is deferred until the coincidence
is destacked. This is principally for the benefit of zme, but seems beneficial in general.

The important vroot subroutine that replaces a vector by its undeleted image is also
here.

This file processes the options on the command line see Chapter 4 [Command Line
Options|, page 15 and sets global variables appropriately

This file contains macros and declarations used only by ‘lattice.c’. Declarations for
routines exported from ‘lattice.c’ are in ‘latt.h’. This file is only part of zme.

This file contains functions called by the input parser (and a driving routine to call the
parser and tidy the presentation afterwards).

A number of functions and macros are used only at the input end of the program, by
‘input.c’, ‘input.tab.c’ and ‘scanner.c’. They are declared here to avoid further
complicating ‘meint.h’.

.tab.c’

This file contains the parser produced by bison from ‘input.y’. It is called ‘inputtab.c’
under MS-DOS.

This file is the bison grammar file which produces ‘input.tab.c’. It is called
‘inputtab.y’ under MS-DOS.

This file contains the declarations of functions and globals exported by ‘lattice.c’
the routines that manage the torsion lattice in zme.

This file contains the code that manages the torsion lattice used in zme. The exact role
of this lattice will be described in a future publication on the integer vector enumeration
algorithm. In a future release this file may be replaced by one using R.A.Parker’s p-adic
methods to manipulate the lattice.

This file contains a lot of global variables and some miscellaneous subroutines. It is
mostly a graveyard for functions with no other natural home. The routine SetDefaults
which sets default values for many run-time options is here.

Chapter 7: The Source Code 34

‘me.h’ This header file contains features which users might which to change, such as the
compile-time parameters see Section 2.1.3 [Compile-time options]|, page 7 and some
type declarations and limits.

‘meint.h’ This file is the main header file of the entire system. Everything starts from here.

‘memain.c’
This file contains main() and other outer-level routines. The basic sequence of opera-
tions is controlled from here.

‘myalloc.c’
This file provides a debugging version of malloc, free and realloc, and a routine
DumpHeap to report the current state of heap allocation. It records the file and line
from which each block was allocated, pre-loads each allocated block with a nonsense
value (hex E6), and tests freed blocks for consistency. It greatly slows down the program
and is used only is DEBUG mode.

‘myalloc.h’

This is the header file associated with ‘myalloc.c’.

‘out.c’ This file contains the output routines, both those used to output the results of a
successful run and those used to output logging information during a run. The output
routines have been extensively revised since the last release and each output format
is now described by a large data structure and some associated static subroutines.
Hopefully this will make it easier to add new output formats.

‘pack.c’ This file simply contains the subroutine to pack the table and recover the space occupied
by deleted rows.

‘push.c’ This file contains the routines that compute the action of the algebra on the table, and
so the routines used to process the relations. Definition of new basis vectors is also
handled here.

‘scanner.c’

This file contains the lexical analyser which tokenises the input. This cannot be done
with (f)lex, as the analyser has to be changed after reading the initial list of generators.
This file also contains the code that keeps track of the lines of input so as to be able
to report syntax errors properly.

‘scrut.c’ This file contains the code implementing the SCRUT feature. No code from this file is
compiled unless the SCRUT pre-processor symbol is defined (in ‘me.h’).

‘vector.c’
This file contains the basic vector allocation, deallocation and arithmetic subroutines.
It is speed critical.

Chapter 8: Examples 35

8 Examples

Finally we consider a number of simple examples. The presentation files used for these examples
are in the ‘. /examples’ subdirectory of the distribution, as are a number of others.

8.1 The natural permutation representation of S_3

The symmetric group S3 is also the dihedral group D6, and so is presented by two involutions
with product of order 3. Taking the permutation action on the cosets of the cyclic group generated
by one of the involutions we obtain the following presentation file (‘s3.pres’).

0.AB...A:.(AB)3:.

Here 0 is the characteristic; AB specifies two generators A and B (note that ab would specify one
generator ab). The two empty sections ... indicate that both generators are involutions. There is
one “submodule generator” A (actually A-1 is the submodule generator) and one relation (AB)3 =
1.

It is of course, much more sensible to use a normal Todd-Coxeter program to perform this
calculation, as the representation being constructed is a permutation representation.

Running gme -vs2 -ps3 to process this file (the -vs2 simply causes the presentation to be
printed once it has been read) we get:

hqme -vs2 -ps3

Submodule gens

Weight 1 group type A

Relator

Weight 3 group type BB

Weight 3 group type AA

Weight 3 group type ABABAB

Done submodule generators

Starting weight 2 in define mode, 1 alive out of 1

Starting weight 3 in define mode, 1 alive out of 1

Starting weight 4 in define mode, 1 alive out of 1

Looking ahead ...

Starting weight 5 in lookahead mode, 3 alive out of 4

Starting weight 6 in lookahead mode, 3 alive out of 4
...done

Packing 4 to 3

Starting weight 5 in define mode, 3 alive out of 3

Chapter 8: Examples 36

Starting weight 6 in define mode, 3 alive out of 3
Starting weight 7 in define mode, 3 alive out of 3
Closed, 3 rows defined

3 live dimensions

If we also add the -g option to get GAP format output then the program writes a file ‘meout.g’
containing:

field := Rationals;
VErunTime := 16;

gen_A := field.onex*[[1,0,0],
[0,0,1],

[0,1,01];

gen_ B := field.onex*[[0,1,0],
[1,0,0],

[0,0,11];

gens := [gen_A,gen_B];

8.2 A Quotient of a Permutation Representation

The permutation representation constructed in Section 8.1 [A permutation representation],
page 35 fixes the all-ones vector (as do all permutation representations). We see easily enough
that this is 1+B+BA times the module generator (the vector (0,0,0)). Accordingly we can write
down the following presentation for the quotient module (‘s3a.pres’):

0.AB...A:0=1+B+BA. (AB)3:.

Knowing that we want a dimension 2 module we can turn on early-closing see Section 4.1

[Strategic Options], page 15 and run gqme -ps3a -e2 -c (we will take Cayley output this time) with
the following result:

%qme -ps3a -e2 -c

Read Input

Done submodule generators

Starting weight 2 in define mode, 2 alive out of 3
Packing 3 to 2

Early Closing

Closed, 2 rows defined

2 live dimensions

Here we see the advantage of early-closing when the final dimension is known. The output file
in this case is ‘meout’:

Chapter 8: Examples 37

LIBRARY meout;

fld : rationals;

vs : vector space (2,fld);
grp : matrix group (vs);
grp.generators :

A = MAT(
1,0:
-1,-1),
B = MAT(
0,1:
1,0);
VEruntime = 16;

8.3 A Non-cyclic Module

If we take the direct product of two copies of the permutation representation constructed in
Section 8.1 [A permutation representation], page 35, we can identify the fixed vectors in the two
copies in the following presentation:

0.AB...{2}[*,A-1],[1,1+B+BA] = [2,1+B+BA].(AB)3:.

which we can run with qme -ps3b to get

gqme -ps3b

Read Input

Done submodule generators
Starting weight 2 in define mode,
Starting weight 3 in define mode,
Starting weight 4 in define mode,
Starting weight 5 in define mode,
Closed, 7 rows defined

Packing 7 to 5

5 live dimensions

alive out of 7
alive out of 7
alive out of 7
alive out of 7

oo 01 O

In this case it is interesting to look at the images of the module generators and pre-images of the
basis vectors. We choose AXIOM format and rerun the program with gme -vO -Pix -e5 -ps3b.
This produces nothing on the standard output, but writes the file ‘meout.input’ as follows (some
indentation and spacing has been added for ease of reading):

fld := FRAC INT

VErunTime := 16

images_mat := matrix([[1,0,0,0,0],_
[0,1,0,0,011) :: MATRIX fld

Chapter 8: Examples 38

rec := Record(modGen : PositiveInteger, word : Polynomial Integer)
gen_names : LIST Symbol := [A,B]

prelmagesL : LIST LIST Any := [_

[1, 1]1,_
[2, 1],_

[1, B],_

[1, BxAl,_
[2, Bl]

prelmages := prelmagesL :: LIST rec

gen_A := matrix([[1,0,0,0,0],_
[0,1,0,0,0],_
[0,0,0,1,01,_
[0,0,1,0,0],_
[1,-1,1,1,-1]11) :: MATRIX fld
gen_B := matrix([[0,0,1,0,0],_
[0,0,0,0,1],_
(1,0,0,0,01,_
[0,0,0,1,0],_
[0,1,0,0,0]]) :: MATRIX fld

gens := [gen_A,gen_B]

From the images_mat section of this file we see that the two module generators are just the first

and second basis vectors.

From the prelmages section we see that the five basis vectors are images of the following elements
of the free two-generator module for the free two-generator algebra: (1,0), (0,1), (B,0), (BA,0) and
(0,B).

8.4 A Monoid Representation

The Coxeter monoid of type B_2 has a transformation representation on four points. This can be
constructed as a matrix representation over GF(3), from the following presentation (‘mond8.pres’):

3.gena genb.*..:gena = 1
: genagena = gena , genbgenb = genb,
(genagenb)2 = (genbgena)?2.

This presentation uses lower-case generator names, so there are two generators gena and genb.
The space separating them in the initial list of generators is needed to prevent them being read as
one generator genagenb. The * on the first line indicates that both generators are not (known to
be) invertible. Indeed, we go on to specify that they are idempotents.

Chapter 8: Examples

39

In the relations no space between generator names is needed as the longest-match scanner can

always sort out what we mean. Some space might have improved readability however.

We can process this with ‘me’ (since we are in positive characteristic):

Jme -vs2 -pmond8 -g -e4

Submodul
Weight
Relator
Weight
Weight
Weight
Weight
Weight

e
3

W www

3

gens
algebra type gena=1

algebra type genb=genb
algebra type gena=gena

algebra type
algebra type
algebra type

Done submodule generators
Starting weight
Starting weight
Starting weight

Looking ahead ..

Starting weight
Starting weight

...don

e

Packing 7 to 4

Starting
Starting
Starting
Starting
Starting
Starting

weight
weight
weight
weight
weight
weight

2
3
4

o o -

0 ~NO O,

9

in
in
in

in
in

in
in
in
in
in

define
define
define

mode,
mode,
mode,

1 alive out of
1 alive out of
1 alive out of

lookahead mode, 4 alive out
lookahead mode, 4 alive out

define
define
define
define
define

mode,
mode,
mode,
mode,
mode,

4 alive
4 alive
4 alive
4 alive
4 alive

out
out
out
out
out

of
of
of
of
of

genaxgenb*gena*genb=genb*gena*genb*gena
genb*genb=genb
genakgena=gena

© © DD

10 in define mode, 4 alive out of 9
Closed, 9 rows defined
Packing 9 to 4
4 live dimensions

It is clear that the relations genb=genb and gena=gena have no effect, since other relations will

force the table to be completed. We could therefore have used the -n option see Section 4.4 [Input

File Options], page 20, to save a small amount of effort.

The output file from this calculation is:

field := GF(3);

VErunTim

gen_gena :

e

= 16;
field.onex[[1,0,0,0],

[0,0,1,0],
[0,0,1,0],
0,0,0,111;

gen_genb :

field.onex[[0,1,0,0],

Chapter 8: Examples 40

[0,1,0,0],
[0,0,0,1],
[0,0,0,111;
gens := [gen_gena,gen_genb];

and the matrices are clearly non-invertible.

8.5 An Integer Module with Torsion

The algorithm for integer module enumeration will be described fully in a forthcoming paper,
however one problem which arises is dealing with the information that a generator takes a basis
vector to a non-integer multiple of itself. This implies (if the result is to be finite dimensional) that
the basis vector is a torsion vector, but does not exactly define the torsion. A further relation is
needed to resolve the problem. As an example, consider the presentation (in ‘tors.pres’):

0.X.x,.:2xX = 1.:X7=1.

Here the submodule generator implies that X acts as 1/2 on the module generator (the first basis
vector). This leads to an extending lattice which is finally terminated by the relation. The module
then collapses and is seen to be one-dimensional with 127-torsion.

The output from the run is:

zme -ptors -g

Read Input

Done submodule generators

Starting weight 2 in define mode, 2 alive out of 2
Pushing lattice at weight 2

Starting weight 3 in define mode, 2 alive out of 2
Pushing lattice at weight 3

Starting weight 4 in define mode, 2 alive out of 2
Pushing lattice at weight 4

Starting weight 5 in define mode, 1 alive out of 8
Pushing lattice at weight 5

Starting weight 6 in define mode, 1 alive out of 8
Pushing lattice at weight 6

Starting weight 7 in define mode, 1 alive out of 8
Pushing lattice at weight 7

Closed, 8 rows defined

Packing 8 to 1

Packed lattice from 8 to 1

1 live dimensions

Chapter 8: Examples 41

and the output file ‘meout.g’ contains:

field := Integers;

VErunTime := 16;

gen_X := field.onex[[64]];

gens := [gen_X];

lattice_mat := field.onex[[127]];

So that we our module has 127-torsion and X acts on it as 64 (which is 1/2 mod 127).

8.6 Quotient Construction Example

Finally, we look at an example of the use of the program with the -Q option to construct
quotients of representations. As our input we take the deleted permutation representation of the
alternating group A6, which has degree 5. The matrices giving the action are:

The submodule is generated by such vectors as (1,1,0,0,0). We can write this information
into an input file ‘a6.qin’ (it is envisaged that these files would normally be machine generated)
as follows:

2 5 AB

3
[1,1,2,1]
[1,1,3,1]
[2,1,4,1]
[2,1]
[0,1]
[0,1]
[4,1]
[1,1]
[1,1]
[3,1]
[2,1]
[4,1]
(1,1,1,1,1)

Chapter 8: Examples 42

Here the first two lines are header information, the next three are submodule generators, and
the remainder are the rows of the matrices (suitable formatted). This can be read by me -Q -vs2

and produces the following output:

Jme -Q -pa6 -vs2
Read submodule generators 2 live dimensions
Read 0 sets of images
2 alive 2 blanks
All read in 1 alive

With -ig as well the output file ‘qout.g’ is:

field := GF(2);

VErunTime := 16;

images_mat := field.omex[[1],
[1] b

[1] b

(11,

[111;

gen_A := field.onex[[1]];
gen_B := field.onex[[1]];
gens := [gen_A,gen_B];

Note that the images_mat section contains non-trivial information (that all the basis vectors in

the original presentation have image 1 in the quotient.

8.7 A Quotient of a Polynomial Ring

The quotient of a polynomial ring by the ideal generated by some polynomials will be finite-
dimensional just when the polynomials have finitely many common roots in the algebraic closure of
the ground ring. For example, three polynomials in three variables give us the following presentation
for the quotient of their ideal (‘poly.pres’):

0.ABC.*..:
A+B+C=0,
AB+BC+CA = 0,
ABC=1..

We run this with the -A option to indicate that all the generators commute. We obtain:

% qme —-A -ppoly -vs2
Submodule gens

Chapter 8: Examples

w

Weight
Weight
Weight
Relator
Weight 2
Weight 2
Weight 2

w w

Starting
Starting
Starting
Starting
Starting
Closed, 2
Packing 2

algebra type ABC=
algebra type AB+BC+CA=0

1

algebra type A+B+C=0

algebra type BC=CB
algebra type AC=CA
algebra type AB=BA
Done submodule generators

weight
weight
weight
weight
weight
0 rows
0 to 6

in define
in define
in define
in define
in define
defined

OO WN

6 live dimensions

mode,
mode,
mode,
mode,
mode,

OO O

alive
alive
alive
alive
alive

out
out
out
out
out

of
of
of
of
of

11
20
20

Thus we see that these polynomials have six common roots.

43

We could determine them by

simultaneously diagonalising the matrices giving the action of the generators on the quotient.

Concept Index

Concept Index

A

Abelian algebras. ... 21
Algebra relations ... 11
Architectures, hardware............................. 6
Arithmetic....... ..o 8, 32
ASSERT ..o 31
AXIOM. . 17, 26

Basis vectors defined, limit......................... 22
Bison 8
Build script........oo 5
C

Cayley ..o 16, 24
CharacteristiC.o.ueee i 9
Characteristic, over-riding........... 21
Closing, early........c.oviuiiiiiiiii i 15
Code, structure and conventions 31
Command-line options................ooiiii... 15
COmMMENTS .« ettt e 9
Commutator.ovuut e 11
Compilation ... 5
Compilation, general o 6
Compilation, options........ ... 7
Compilation, simple......o 5
ConJUEALE .« vttt 11
CPU time lmit ... 22
Critical definitions, space reserved for.............. 22
Cyclicmodulesol 12

DEBUG ... 7, 31
DEBUG-mode........c.oooiiiiiiiiiiiiiii i 7
Debugging options............ooiiiiiiiiiiii... 21
Debugging, bison il 22
Diagnostic messages oL 17
DIE . 31
Dimension limit........... ..o o i 22
Directories....... ... o i 5

44
Distribution i 5
Documentationco i i 8
E
Early-closing........ ... oo i 15
Error messages i 17
F
Field specification., 9
File, log ... 18
Flags, command-line..................... 15
Free algebra elements.............. 11
G
GAP . 17, 25
Generator NAaMES.ovvutt ittt 9
Generators not invertible............ 10
Generators not involutions......................... 10
Getting hold of the programs........................ 5
GMP . 8, 32
Group relators. ... 11
Group WOrdS. . ..ottt 11
H
Hardware architectures................... 6
|
IFDEBUG. ..o e 31
Images of module generators....................... 16
Input files ... 9, 14, 20
Installationo, 5
Internals........ ..o 31
Invertible generators..................iiiia 10
Involutary generators.................oooiiiiiiiL 10
L
Level, warning........... oo 20
LOG . 31
Logprefixo 19

Concept Index

loggINg .. oo 7
Logging ... 17
LOGGING 7, 31
Lookahead 15, 30

M

Macros ..o vvve i 31
Make programc.ooiiiiiiiiiiiiii... 6
Make Programs 8
Makefileoo 2
Meataxevvvu 17, 26
MeoUb 17
Modules, cyclic ... 12
Modules, non-cyclic................ ..ot 12
Multi-precision.cooeiiiiiiiiiii .. 8
Multiple architectures.................iiia.. 6

N

New features. ... 2

Non-cyclic modules ... 12

O

Options, command-line 15
Options, order..........c.oiiiiiiiniiiiienan 15
OUbPUL -« vttt 16
Output filenames ...t 17
Output files ... 24
Output formats. ... 24

P

Packed and Sparse Vectors......................... 32
Packed form of submodule generators 13
Papers...... .o 2
Parser.... ... 8
Plain ASCITo 17,27
Plain binary oo 17, 28
Polynomial rings.......... i 21
Pre-images o 16
Precedence 11
Prefix for log messages......... 19
Presentation o it 9, 20
Proto-typing......... .. 32
P 32

45
P 32
Q
Q - the rational field o oL 9
QOUb . .o 17
Quotient constructing......... i i 21
Quotient construction.............. ..., 14
R
References 2
Relations.........oo i i 11
Relators...... ..o 11
Reserved percentagel 22
runtime. ... i 2
S
SO 31
Scrutinize 21, 31
Scrutuinize 7
SEPATAtOrS . . .\ttt e 9
Source Code.ttt 31
Sparse form of submodule generators............... 13
Stem for output file names......................... 17
=Y <Y P 29
Submodule generatorsl 12
T
Table size limit ... i 22
Texinfooouii 8
Time, CPU, Hmit ..., 22
U
Universal submodule generators.................... 13
\V
Verbosity of messages.........ccovviiiiiiiiii.. 18
Version 3, new features............... ... 3
Version 3.01, new features........................... 3
Version 3.02 and 3.02, new features.................. 3
Version 3.04, new features................coivvuun.. 2

\%\%

Warnings, control of oL 20

Concept Index

Warnlevel...... 20
Weights 12, 22, 29

46

Options Index 47

Options Index

- e APt 21
- W 15 TO 17
P 20 TP 20
b 16 P 16
e 17 T 17
B e 16 TR 14,21
N 21 T 21
B 15 A 22
e 16 e 22
e 16 TV 18
e T 18 TH 22
L 19 T 19
S 17 e S PP 17

Table of Contents

Vector Enumeration.............. 1
1 Introduction 2
1.1 What's New. ..o e 2

1.1.1 What’s New in Version 3.04.......... i, .. 2

1.1.2 What’s New in Versions 3.02 and 3.03.................... 3

1.1.3 What’s New in Version 3.01 3

1.1.4 What’s New in Version 3............oouiiiiiiiiine .. 3

2 Installation....... 5
2.1 Installation Procedure.o 5

2.1.1 Simple Compilation, 5

2.1.2 General Installation...........coiiiiiiiiiiin. 6

2.1.2.1 Using GNU Make..........covviiiiiiiiin.. 6

2.1.2.2 Using the GAP Makefile 7

2.1.3 Compile-time options, 7

2.2 Pre-reqUisitescoiiiii 8

3 Input Formats................... 9
3.1 A Presentation File..........oo i 9

3.1.1 CharacteriStiC.t 9

3.1.2 GeneratorS. 9

3.1.3 Relations 11

3.1.3.1 Group Type Relations 11

3.1.3.2 Algebra Relations..................ooooiiaL. 11

3.1.3.3 Weight Specifications 12

3.1.4 Submodule Generators................coiiiiiiiiii... 12

3.1.4.1 Submodule Generators in Packed Form......... 13

3.1.4.2 Submodule Generators in Sparse Form 13

3.1.4.3 Universal Submodule Generators............... 13

3.2 Input for Quotient Construction............ L. 14

4 Command Line Options 15
4.1 Strategic Optionso 15

4.2 Output OptionSvet et 16

4.2.1 Options to control what information is output........... 16

4.2.2 Options for Qutput Formats 16

4.2.3 Output File Names ..., 17

4.3 Logging and Error Message Options, 17

4.4 Input File Optionsoouiiii e 20

4.5 Debugging Options. ...t 21

4.6 Limit Options.oouuiiiii i 22

5 Output Formats..................................... 24
5.1 Cayley Format ... 24

5.2 GAP format ... 25

5.3 Meataxe Format i 26

5.4 AXIOM formatoonii i 26

5.5 Plain ASCII formatttt i e 27

5.6 Plain Binary Format 28

6 Strategy...... 29
6.1 Weights. ..o 29

6.2 Lookahead i i 30

7 The Source Code.............. i, 31
7.1 Generalitieso 31

7.1.1 Important macros..........c.ooeeeeeeeeeeieiiinnnnnnn.. 31

7.1.2 Arithmetic...... ..o 32

7.1.3 Prototyping and Other Language Issues................. 32

7.2 The Source Files i e 32

8 Examples 35
8.1 The natural permutation representation of S3.................... 35

8.2 A Quotient of a Permutation Representation...................... 36

8.3 A Non-cyclic Module.......... ..o i 37

8.4 A Monoid Representationcoiiiiiiiiiiinea... 38

8.5 An Integer Module with Torsion................ 40

8.6 Quotient Construction Example........... 41

8.7 A Quotient of a Polynomial Ring................, 42
Concept Index............. 44

Options Index 47

