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The character tables of symmetric groups were already known to Frobenius. Mean-
while many people have contributed to the representation theory of symmetric
groups and related topics. A self contained overview of the theory is given in the
book Representation Theory of the Symmetric Group [4] by James and Kerber. We
will use this book as a guideline for an implementation of the character tables of
the series of Weyl groups of type A, B, and D and some related groups. We will
also prove two theorems about character values of wreath products with symmetric
groups (see 4.4) and Weyl groups of type D (see 5.1). For the exceptional Weyl
groups of type Go, Fy, Eg, E7 or Fg we will identify the characters as they are
stored in the GAP library with their labels in Carter’s book Finite Groups of Lie
Type: Conjugacy Classes and Complex Characters [2].

This text is also available in a form which contains the definitions of all functions
described below and which can be used as input file for GAP.

1 Case A: The Symmetric Group.

The Weyl group of type A,_1 is isomorphic to the symmetric group .S,, on n points.
Write an element 7w € S, as a product of disjoint cycles in the natural permutation
representation of S, on n points. Then the cycle structure of 7 is described by a
partition of n which consists of the lengths of the cycles of m ordered decreasingly.
(Here fixed points are considered as cycles of length 1.) Recall that a partition of
a positive integer n is a descending series of positive integers, whose sum is n. We
will write a partition enclosed in brackets. For example, [4,2,1] is a partition of 7.
Partitions in GAP can be represented by lists. The empty partition will be denoted

by [].
It is easy to check the following

Lemma 1.1 ([4], (1.2.6)) Two elements of S, are conjugate if and only if they
have the same cycle structure.

Note that on the other hand for every partition of n there is an element of S, with
that cycle structure. Thus the partitions of n parametrize the conjugacy classes of
Syn. Since we are dealing with character tables we are more interested in conjugacy
classes than in single elements. By abuse of notation we will refer to both an element



of S, and its conjugacy class via w. The exact meaning will always be clear from
the context.

The combinatorial basis for the construction of the character table of symmetric
groups will be a mechanism to produce all partitions of a positive integer n. There
is a function Partitions in the GAP library that might be used to compute these
labels. But let us write our own function partitions1 to see what kind of problems
can arise and how they can be solved. This strategy will be very useful when in
a later section we will find an efficient way to construct the character table of a
symmetric group.

In order to obtain a recursive description of sets of partitions we will introduce as a
second parameter a limit on the size of the parts of a partition.

Let B;* denote the set of all partitions of & with maximal part less than or equal
to m for nonnegative k, m. Moreover let BJ" for any m be the set which consists of
only the empty partition [ ]. Then B} is obtained as the union of the sets [i] - B}, _,
for 1 <4 < min(k,m) where [i] - Bl_, denotes the set of all partitions from B} _,
preceded by an additional i-cycle. The set P, of all partitions of n then equals B;.

We will write a function pm which computes a set B} according to the above obser-
vations by several calls to pm(k-i, i). We make pm local to a function partitions1
which then simply calls pm(n, n) in order to return all partitions of n.

partitionsl:= function(n)
local pm;

pn:= function(k, m)
local i, t, res;

# trivial case.
if k¥ = 0 then

return [[]1];
fi;

# form the union.
res:= [];
for i in [1..Minimum(k, m)] do
for t in pm(k-i, i) do
Add(res, Concatenation([i], t));
od;
od;
return res;
end;

# call subroutine.
return pm(n,n);

end;

This function partitions does exactly what we wanted, but for bigger values of
n it seems to be very time consuming. Note that in GAP the value of the variable
time gives in milliseconds the time spent by the last command. The times given
here are obtained on a DEC station 5000/120.

gap> partitions1(6);
[ [ 1) 1, 1’ 1, 1, 1 ], [ 2, 1’ 1, 1’ 1 ], [ 2, 2’ 1, 1 ]’



[2,2,27]1,[3,1,1,11,[3,2,11,[3,31, [4, 1,11,
(4,21, [5,11,[61]1]
gap> partitions1(20);; time;
2008
The problem to construct all partitions of a given n is solved by the above recursion.
But to make an efficient algorithm we have to look closer at what is going on.
It seems that the local function pm may be called several times with the same
arguments. This means that especially for bigger values of n some work is done twice
or even more often. To avoid such behavior we might wish to store all values ever
computed by pm in an array or something similar. Moreover it would be desirable
to get rid of the many function calls caused by the recursion. We will solve both
problems in a rather pretty way. Instead of a local function we will use a list pm to
store exactly those sets of partitions which are needed. These sets are iteratively
constructed as follows.

The set B} of all partitions of k with maximal part less than or equal to m can also
be obtained as the union of the set B,T_l of all partitions of £ with maximal part
< m — 1 and the set [m]- B  of all partitions of £ —m with maximal part < m
preceded by an additional part m.

Obviously for m > k every set B}* equals the set P} of all partitions of k. Hence

the set P, of all partitions of n can be constructed from the sets B:fir}e(k’n_k) for

0 < k < n by adding a part k respectively.

Since min(k,n — k) < n/2 we will have to construct the necessary sets Bj" for
0 < m < n/2. Starting with the (empty) sets Bj) (except that B = {[ ]}) we
construct the sets B}* for m < k < n —m by using the above observations. This
yields the following recursion free function partitions.

partitions:= function(n)
local m, k, pm, t, s, res;

if n = 0 then
return [[]];
fi;

pm:= List([1..n-1]1, x->[1);
for m in [1..QuoInt(n,2)] do

# add the m-cycle.
Add(pm[m], [m]);
for k in [m+1..n-m] do
for t in pm[k-m] do
s:= [m];
Append(s, t);
Add(pm[k], s);
od;
od;
od;

# collect.
res:= [];
for k in [1..n-1] do
for t in pm[n-k] do
s:= [k];



Append (s, t);
Add(res, s);
od;
od;
Add(res, [nl]);

return res;

end;

Here we have also replaced the call of the function Concatenation by the more low
level construction s:= [m]; Append(s, t);. The function partitions computes
the same results as partitionsl but in a more acceptable time for bigger values
of n and the new function even isn’t much more complicated than the old one.
This should serve as a lesson to avoid recursions in time critical functions whenever
possible.

gap> partitions(6) = partitions1(6);

true
gap> partitions(20);; time;
113
gap> Partitions(20);; time;
238

Note that the same algorithm can be used to compute the number of partitions
of a given n. Substituting the construction of sets of partitions in the function
partitions by a counting mechanism we get a function nrpartitions which shows
the control structure of the general algorithm in the most compact way.

nrpartitions:= function(n)
local m, k, res;

res:= List([1..n-1], x->0);
for m in [1..QuolInt(n, 2)] do
res[m] := res[m]+1;
for k in [m+1..n-m] do
res[k] := res[k] + res[k-m];
od;
od;

return Sum(res)+1;

end;

Now let us construct the character table of S, as a generic table. A generic char-
acter table in GAP is a record similar to an ordinary character table. It does,
however, not contain the actual values of characters, powermaps, etc., but func-
tions that define these values in dependency of special parameters. The function
CharTableSpecialized takes a generic table and a special parameter in order to
construct an ordinary character table. After defining the generic table of S,, in a
record sym, for instance, the command

gap> CharTableSpecialized(sym, 8);

will return the ordinary character table of Sg. For a proper work a generic table
should have the fields which we will install and explain now.



We begin by initializing the record sym with the record fields name and order. The
name of the table shall be "Symmetric" and the order of the corresponding group
shall be computed by the function Factorial since the order of S, is n!.

sym:= rec(name:= "Symmetric", order:= Factorial);

The name for a special table i.e. for the table of .S,, for a given n shall be Sn. This
is managed by a function in the record field specializedname which assigns to each
n the corresponding string.

sym.specializedname:= (n-> ConcatenationString("S", String(n)));

In a record field text there may as well be some explaining text to identify the
table.

sym.text:= "generic character table for symmetric groups";

Moreover we tell the record sym that it is a generic character table and install a
function domain which describes the valid parameters of the generic table.
sym.isGenericTable:= true;
sym.domain:= (n-> IsInt(n) and n > 0);

All remaining record fields will contain lists whose entries then will be the functions

for the different parameter ranges. Since there is only one parameter range in the

case of S, these lists will all have length 1. We will prepare the bare lists now.
sym.classparam:= []; sym.charparam:= []; sym.centralizers:= [];
sym.orders:= []; sym.powermap:= []; sym.irreducibles:= [[]];

The fundamental guide through a generic table are the parametrizations of the
classes and the characters which are to be stored in the record fields classparam
and charparam. We already know that the classes of the symmetric group are
labelled by partitions.

sym.classparam[1] := partitions;

The function CharTableSpecialized will use this function in order to produce a
list of parameters for the classes of a symmetric group.

The order of an element with cycle structure 7 for some partition 7 of n is just
the least common multiple of the cycles or the parts of 7 (see [4], (1.2.14)). The
evaluation of the orders in a generic table, however, expects two parameters, so we
cannot just let Lcm be the entry in the place orders[1].
sym.orders[1]:= function(n, 1bl)
return Lcm(1bl);
end;

The function CharTableSpecialized will call this function for every parameter 1bl
in the list of class parameters in order to produce a list of orders of representatives
of the classes.

The order of the centralizer of an element @ € S,, can best be stated in terms of
numbers of cycles of equal length. Let a;(7) denote the number of cycles of length
i of w. Then the vector a(m) = (a1(m), az(w),...) is called the type of 7. The order
of the centralizer of 7 is computed by the following formula.

Lemma 1.2 ([4], (1.2.15)) |Cs, (n)| = Hi‘“(”)ai(w)!.



This number is determined (maybe not in the most efficient way) by the following
function.

sym.centralizers[1]:= function(n, pi)
local k, last, p, res;

res:= 1; last:= 0; k:= 1;
for p in pi do

res:= res * p;

if p = last then

k:= k+1;
res:= res * k;
else
k:=1;
fi;
last:= p;

od;

return res;

end;

The powermap is also completely determined by the partitions. There is in fact a
function PowerPartition in the GAP library that determines the partition corre-
sponding to the k-th power of a permutation with cycle type 7. This is simply done
by replacing each part [ of m by d = ged(l, k) parts [/d.

PowerPartition:= function(pi, k)
local res, i, d, part;

res:= [];

for part in pi do
d:= GcdInt(part, k);
for i in [1..d] do

Add(res, part/d);

od;

od;

Sort(res);

return Reversed(res);

end;

We can use this function in the generic table. It has to be extended in order to
return not only the power but also the number of the parameter range which is
always 1 in this case.
sym.powermap[1] := function(n, k, p)
return [1, PowerPartition(k, p)];
end;

Having described all necessary components of the table head we now turn to the
characters. For a partition a = [avg, ..., ] of n let S, = Sy, X -+ X S,,, denote
the corresponding Young subgroup of .S,,. Moreover let & denote the associated
partition of o which is obtained from « by transposing the corresponding Young
diagram (see [4], (1.4.2), (1.4.3)). The following function AssociatedPartition
computes the associated partition of a partition a.



AssociatedPartition := function(alpha)
local i, j, mu;

mu:= List([1..alpha[1]], x->0);
for i in alpha do
for j in [1..i] do
mulj]:= muljl+1;
od;
od;

return mu;

end;

For a partition « let x® denote the common constituent of 1§Z and egg, the trivial
character of S, and the sign character of S; induced to S,. Then x¢ is in fact an
irreducible character of S,, and

Proposition 1.3 ([4], (2.1.11)) The characters x run through a complete system
of pairwise different and irreducible characters of Sy, if o runs through all partitions

of n.

Hence the characters of .S, are labelled by partitions of n, too.
sym.charparam[1] := partitions;

The most interesting part is the computation of the character values. A nice way to
describe the character values of S, in terms of partitions is given by the Murnaghan—
Nakayama formula. We need some further notation to state it. At each node (i, 7)
of the Young diagram of a partition « of n (that is for each ¢, j with «; > j) there
is a hook which consists of all nodes to the right of (¢, ) and all nodes below (3, 7).
Its hooklength (the number of nodes involved in the hook) is denoted by hg;. All
nodes below (7, j) form the leg of the hook with leglength [i;. Removing the hook
from the diagram results in a diagram of another partition only if the rows of the
diagram are sorted again. The same diagram is obtained if instead of the hook itself
the corresponding rim hook (denoted by R%) is removed from the original diagram
(see [4], (2.3.18-20)).

Theorem 1.4 (Murnaghan—Nakayama formula [4], (2.4.7)) Let « be a par-
tition of n and let m € Sy, with ax(mw) > 0 for a fired k < n. Let p € S,,_ be of type
a(p) where

_Joag(m) =1 ifi=k,
ailp) = { a; () otherwise.

Define X!l = 1. Then

X m) = > (=1)x T (p).

h%:k

Here the sum is taken over all nodes (i,j) in the tableau of o, where the corner of
a hook of length k is found.



We will now implement that formula in a straightforward way just to show how easy
even such a seemingly complicated formula can be handled in GAP. Then we will
improve the program step by step.

The formula tells us that we need three little functions in advance, the functions
hooklength, leglength and unrimmed which will return the hooklength and the
leglength of a hook and the partition which results from removing a rim hook.

Here is a function leglength which returns the leglength of a hook at the node
(7,7) in a partition a.
leglength:= function(alpha, i, j)

local 11, 1p, k;

k:= i+1;

lp:= Length(alpha);

11:= 0;

while k <= 1lp and alphalk] >= j do
11:= 11 + 1;
k:= k+1;

od;

return 11;

end;

A short extension of this last function may serve as the function hooklength which
returns the hooklength of a hook at the node (i, j) in a partition «.

hooklength:= function(alpha, i, j)
local hl, 1lp, k;

hl:= alphali] - j + 1;

if hl <= 0 then
return O;

fi;

k:= i+1;

lp:= Length(alpha);

while k <= 1lp and alphalk] >= j do

hl:= hl + 1;
k:i=k + 1;
od;
return hl;
end;

The following function unrimmed will return the partition which results from a by
removing the rim hook Rf;. Removing a rim hook from a Young tableau is the same
as removing the hook itself and sorting the list of numbers to give again a partition.

unrimmed:= function(alpha, i, j)
local k, 1lp, rho;

lp:= Length(alpha);



rho:= [];

for k in [1..i-1] do
rho[k] := alphalk];

od;

k:=1i;

# a special case first.
if j = 1 then
while k < 1p and alphalk+1l] >= j+1 do
rho[k] := alphal[k+1] - 1;
k:= k+1;
od;

# don’t add trailing zeros.
return rho;

fi;

while k < lp and alphalk+1l] >= j do
rho[k] := alphalk+1] - 1;
k:= k+1;

od;

rhol[k]:= j-1;

for k in [k+1..1p] do
rho[k] := alphalk];
od;

return rho;

end;

Now we are in a position to write the function chil which computes single character
values. This function can be implemented almost in the same way as it is written
down as a formula. The formula even tells us which local variables are needed. For
the value of k we will take the longest cycle of 7 in order to continue the recursion
in the smallest possible subgroup.
chil:= function(n, alpha, pi)

local i, j, k, rho, val;

# termination condition.

if pi = [] then

return 1;

fi;

# get length of longest cycle.
k:= pil[1];

# construct rho.
rho:= Sublist(pi, [2..Length(pi)l);

val:= 0;

# loop over the Young diagram.
for i in [1..Length(alpha)] do



for j in [1..alpha[il] do
if hooklength(alpha, i, j) = k then

# enter recursion.
val:= val + (-1)"leglength(alpha, i, j)
* chil(n-k, unrimmed(alpha, i, j), rho);
fi;
od;
od;

# return the result.
return val;
end;
Then we install the function in the record field irreducibles of sym.
sym.irreducibles[1] [1]:= chil;

Voila. We now can use this generic table to produce character tables of symmetric
groups for specialized values of n. Let’s try Sy as a first example.

gap> s4:= CharTableSpecialized(sym, 4);
rec( name := "S4", order := 24, centralizers := [ 24, 4, 8, 3, 4

1, orders := [ 1, 2, 2, 3, 4 ], powermap :=
r,r01,1,1, 4,31, [1,2,3, 1,57 1], irreducibles :=
rrie, -1,1,1,-11, 03, -1,-1,0,11,[2,0,2, -1,0]1,
(3,1, -1,0,-121, [1, 1, 1,1, 117117, classparam :=
(s, 02,2,10,2171,01,02,12,1171,01,[2,211,
[1, [3, 111, [1, [ 41171, irredinfo := [ rec(
charparam := [ 1, [ 1, 1, 1, 1 11 ), rec(
charparam := [ 1, [ 2, 1, 11 1), rec(
charparam := [ 1, [ 2, 21 1), rec(
charparam := [ 1, [ 3, 111 ), rec(
charparam := [ 1, [ 41 1)
1, text := "computed using generic character table for symmetric g\
roups", classes := [ 1, 6, 3, 8, 6 ], operations := CharTableOps )

Among other checks for consistency the orthogonality relations are tested by the
function TestCharTable. The function DisplayCharTable prints a formated ver-
sion of a character table.

gap> TestCharTable(s4);

true
gap> DisplayCharTable(s4);
sS4

2 3 2 3 . 2

3 1 . 1

la 2a 2b 3a 4a
2P la 1la la 3a 2b
3P 1a 2a 2b la 4a

X.1 1-1 1 1-1
X.2 3-1-1 1
X.3 2 2 -1

X4 3 1-1 . -1
X.5 11 1 1 1

10



Note that due to the chosen parametrization of the characters the trivial character
is not the first but the last character of our table. But this doesn’t matter since
there is no place in GAP where it is assumed that the trivial character is the first
one.

The computation of tables for larger values of n takes considerably more time. Let
us try Sg as next example.

gap> s8:= CharTableSpecialized(sym ,8);; time;

11843

Now it is time to think about possible speed up of time critical functions. The worst
case of the recursion is when 7 consists of only cycles of length one, that is when
7 is the identity and the character value in question is the degree of the character.
But the character degree of x® may be computed directly as the quotient of the
order of S,, and the product of all hook lengths of «.

Proposition 1.5 ([4], (2.3.21)) Let « be a partition of n. Then

n!

(6%
1) = .
) I1: ; hij

The corresponding GAP function is immediately written down.

symdegree:= function(n, alpha)
local i, j, prod;

prod:= 1;
for i in [1..Length(alpha)] do
for j in [1..alphalil] do
prod:= prod * hooklength(alpha, i, j);
od;
od;

return Factorial(n) / prod;

end;

There is another almost trivial case. If m consists of only the n-cycle there is no
need for further recursion. The character value then depends only on the existence
of an n—hook (there is at most one!) in « and its leg parity.

Proposition 1.6 ([4], (2.3.17)) Let o be a partition of n. Then

. [ ) fa=m-n10<r<n-1
X ((1""’n))'_ { 0 otherwise.

Denote by I(«) the length of the partition « (i.e. the number of parts). If there
is an n-hook then it must be all of «, that is ay +I(a) — 1 = n. In that case the
leglength of the hook is given by I(«) — 1.

These two new insights are now worked into a new function chi2. They will thereby
replace the termination condition if pi = [1 ... of chil.

11



chi2:= function(n, alpha, pi)
local i, j, k, rho, val;

# get length of longest cycle.
k:= pi[1];

# degree case.
if k = 1 then

return symdegree(n, alpha);
fi;

# almost trivial case.
if k = n then
if hooklength(alpha, 1, 1) = k then
return (-1)"(Length(alpha)-1);
else
return O;
fi;
fi;

val:= 0;
rho:= Sublist(pi, [2..Length(pi)l);

# loop over the Young diagram.
for i in [1..Length(alpha)] do
for j in [1..alphalil] do
if hooklength(alpha, i, j) = k then

# enter recursion.
val:= val + (-1)"leglength(alpha, i, j)
* chi2(n-k, unrimmed(alpha, i, j), rho);
fi;
od;
od;

# return the result.
return val;

end;

Assigning the new function chi2 to its place in the generic table will replace the
old function chil in the record sym. The later function is, however, still available
under its name chil.

sym.irreducibles[1] [1]:= chi2;
If we now try Sg again we will see that we saved two third of the time by only slight
changes.

gap> s8:= CharTableSpecialized(sym ,8);; time;

4132

Four seconds is almost acceptable (it takes longer to restore the table of Sg from
the library). But Sy is still a small table with only 22 classes and characters. And
we want to be able to compute larger tables in acceptable time. So let’s have a look
at the profile in order to find out where the time is spent.

gap> Profile(true);
gap> s8:= CharTableSpecialized(sym, 8);;

12



gap> Profile(false);
gap> Profile();

count time percent time/call child function
1509 1507 21 0 4734 chi2
7192 1432 20 0 1739 hooklength
15707 575 8 0 420 Length
344 413 5 1 1404 Gcd
1025 389 5 0 446 unrimmed
356 296 4 0 817 symdegree
3408 274 3 0 5145 Add
712 184 2 0 393 ForAll
1025 165 2 0 213 leglength
899 157 2 0 288 Sublist
367 148 2 0 375 DefaultRing
88 145 2 1 1743 PowerPartition

Almost half of the time is spent in the functions chi2 (21 percent of the total time)
and hooklength (20 percent). Moreover we see that hooklength is called 7192
times for only 1509 calls of chi2. (This was even worse with the old chil where
hooklength was called 18486 times for 7826 calls of chil, so our first changes met
the right place.) If we now look back at the code of chi2 we will see where this
comes from.

# loop over the Young diagram

for i in [1..Length(alpha)] do

for j in [1..alpha[i]] do
if hooklength(alpha, i, j) = k then

These nested for loops around the call of hooklength are a mathematically exact
picture of the above Murnaghan—Nakayama formula. But what they will cause the
computer to do is obviously too much. There is no need to run trough the whole
Young diagram for « every time and ask for the hooklength. There is, for example,
at most one hook of length £ on each row of a diagram.

The functions leglength and unrimmed also seem very awkward. Ask an expert
and you will find out that a more comfortable way to deal with hooks and leglengths
is the concept of beta sets (see [4], (2.7)).

A beta set is a set of numbers which arises from a partition by reversing the order
and adding a vector [0,1,2,...] of the same length. Since the reversed partition is
allowed to have leading zeros, its beta set is not uniquely determined. Each beta
set, however, determines a unique partition. For example a beta set for the partition
[4,2,1] is given by [1, 3, 6], another one by [0, 1,3, 5, 8]. In order to remove a k—hook
from the corresponding Young diagram the beta-numbers are placed as beads on k
strings.

[ ]

: i —
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To find a removable k-hook now simply means to find a free place for a bead one
step up on its string, the hook is then removed by lifting this bead. (You see how
this process can produce leading zeros.)

For the implementation of the Murnaghan—Nakayama formula this means a sub-
stantial simplification. We no longer have to loop over the two dimensional Young
diagram but only over the corresponding beta set and find beads which can be moved
k positions downward. We even do no longer need a function hooklength. Further-
more observe that the leglength of a hook equals exactly the number of passed beads
by a down moving bead.

So we will now change the concept and represent the partitions referring to the
characters by beta sets. In GAP we will represent a beta set by a set. The first
function we will need is the function BetaSet which converts a partition into a beta
set.

BetaSet:= function(alpha)
local i, la, beta;

la:= Length(alpha);
beta:= [];
for i in [0 .. la-1] do
Add (beta, alphalla-i] + i);
od;

return beta;

end;

There should also be a function which converts a beta set into a partition but we
will not need such a function here.

Next we have to write a new version of symdegree which deals with beta sets instead
of partitions. For every bead in a beta set all free positions have to be found to which
this bead can be moved down. The first free place is determined by the smallest
number greater or equal to zero which is not contained in the beta set. The function
symdegreebeta will first find this offset o which is zero for all beta sets constructed
by BetaSet.

symdegreebeta:= function(n, beta)
local i, j, o, prod;
prod:= 1;

# determine offset.

o:= 0;

while betalo+1] = o do
0:= o+l;

od;

# find all beads.
for i in [o+1..Length(beta)] do
prod:= prod * (betalil - o);

# find other free places.
for j in [o+1..betal[i]l-1] do

14



if not j in beta then
prod:= prod * (betalil-j);
fi;
od;

od;

return Factorial(n)/prod;

end;

Since it is so easy to remove a rim hook from a beta set by just moving a bead
there will be no special function for that purpose in the new function chi3. In this
version we will also use the fact that not really the leglength of a hook is needed
but only its parity. We will not write a special function for this computation.

chi3:= function(n, beta, pi)
local i, j, k, o, gamma, rho, val, sign;

# get length of longest cycle.
k:= pi[1];

# degree case.
if k=1 then

return symdegreebeta(n, beta);
fi;

# determine offset.

o:= 0;

while betalo+1] = o do
0:= o+1;

od;

# almost trivial case.
if k¥ = n then
if n + o in beta then
return (-1)~(Size(beta)+o+1);
else
return O;
fi;
fi;

rtho:= Sublist(pi, [2..Length(pi)l);
val:= 0;

# loop over the beta set.
for i in beta do
if i >= k+o and not i-k in beta then

# compute the leg parity.
sign:= 1;
for j in [i-k+1..i-1] do
if j in beta then
sign:= -sign;
fi;
od;

# compute new beta set.
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gamma:= Difference(beta, [i]);
AddSet (gamma, i-k);

# enter recursion.
val:= val + sign * chi3(n-k, gamma, rho);
fi;
od;

# return the result.
return val;

end;

Note that it would be a fatal mistake just to move down beads in the beta of the
function. Then different branches of the recursion would work with the same beta
that was changed from very different places.

Since chi3 expects a beta set as the parameter for the character but the parameters
still are partitions we have to wrap it before it is installed in the record sym.
sym.irreducibles[1] [1]:= function(n, alpha, pi)
return chi3(n, BetaSet(alpha), pi);
end;

Again we check the time needed for the character table of Sg and find out that again
we saved a considerable amount.

gap> s8:= CharTableSpecialized(sym, 8);; time;

2719

The record sym we defined in this section is part of the GAP library under the name
CharTableSymmetric. It is returned by the command CharTable ("Symmetric")
and, for instance, the command CharTable ("Symmetric", 5) will return the char-
acter table of S5 by applying CharTableSpecialized to this record.

The functions which are installed there can be used by other functions. This is done,
for example, by CharTableSpecialized. But it is also possible to construct only
parts of a character table with these functions. We will do this in the next section
where the generic character table of alternating groups is obtained by restricting
certain characters from symmetric groups. After that we will return to symmetric
groups once more.

2 Alternating Groups.

The alternating group A, on n points is a normal subgroup of index two of the
symmetric group S,. So it is very easy to derive its character table from that of
the symmetric group by Clifford theory. This is a quick but unusual approach since
Clifford theory normally is used to obtain characters of the bigger group from those
of the normal subgroup.

We begin by initializing a record alt with a name and a function for the order of
an alternating group.

alt:= rec(name:= "Alternating");
alt.order:= function(n)
return Factorial(n)/2;
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end;

The specialized name of the table of A,, shall be An. The fields text, domain, and
isGenericTable are filled in a similar way as in the preceding section.
alt.specializedname:= (n-> ConcatenationString("A", String(n)));

alt.text:= "generic character table for alternating groups";
alt.isGenericTable:= true;

alt.domain:= (n-> IsInt(n) and n > 2);

Moreover we will initialize the remaining lists of functions which will have length
one in this case, too.

alt.classparam:= []; alt.charparam:= []; alt.centralizers:= [];
alt.orders:= []; alt.powermap:= []; alt.irreducibles:= [[1];

The alternating group is the kernel of the homomorphism from the symmetric group
into {1, —1} which maps each permutation to its sign. The sign of a permutation
is the parity of the number of transpositions you need to write the permutation as
their product. An n-cycle needs n — 1 transpositions so its sign is (—1)"~!. The
sign can be computed from the cycle type and therefore from the partition which
labels a class. This is done by the function SignPartition which takes a partition
as its argument and returns the sign of an element with such a cycle structure.

SignPartition := function(pi)

return (-1) " (Sum(pi) - Length(pi));
end;

Next thing to investigate: Which classes do split in A,,7 If a class does not split then
an element of that class has exactly as many conjugates in A, as it has in S,,. Since
the order of the group equals the product of the length of the class and the order of
the centralizer of that element this means on the other hand that the centralizer of
such an element in A, is only half as big as in S,,. Consequently a class of \S;, splits
if and only if the centralizer of one of its elements in .S, lies completely in A,,.

So we have to consider centralizers of permutations in symmetric groups. Writing
an element g of S;, as a product of disjoint cycles we see that every power of every
single cycle lies in the centralizer of g. If g contains an even cycle then this cycle
lies in the centralizer of g but not in A,. So let us assume that g only consists of
odd cycles. If g contains two cycles of the same length then there is a product of
that many transpositions interchanging these two cycles and centralizing g. Again
this product of an odd number of transpositions does not lie in A,. So assume that
g is a product of cycles with pairwise different odd lengths. Then the centralizer of
g is exactly the group generated by the single cycles of g which is a subgroup of A,
since all cycles are odd. This yields the following

Lemma 2.1 ([4](1.2.10)) The conjugacy class of elements of Sy, with cycle struc-
ture 7 splits into two A, -classes of equal size if and only if n > 1 and the parts of
w are pairwise different and odd.

The following function will return the list of class parameters for A,,. Instead of the
partition it will return a pair of a partition and a sign in the case of split classes. It
has a local function pdodd which determines whether a partition consists of pairwise
different, odd parts.
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alt.classparam([1] := function(n)
local labels, pi, pdodd;

pdodd:= function(pi)
local i;
if pil1] mod 2 = O then
return false;
fi;
for i in [2..Length(pi)] do
if pi[i] = pili-1] or pil[il] mod 2 = O then
return false;
fi;
od;
return true;
end;

labels:= [];
for pi in Partitions(n) do
if SignPartition(pi) = 1 then
if pdodd(pi) then
Add(labels, [pi, ’+’1);
Add(labels, [pi, ’-’1);
else
Add (1abels, pi);
fi;
fi;
od;

return labels;

end;

We will also prepare a short function issplit which recognizes whether a label
belongs to a split class.
issplit:= function(1lbl)
return Length(lbl) = 2 and not IsInt(1bl[2]);
end;

The order of an element in A, is still determined by its cycle structure. But we
have to check whether the label contains an additional sign.

alt.orders[1] := function(n, 1bl)
if issplit(1bl) then
1bl:= 1bl[1];
fi;
return Lcm(1bl);
end;

In most cases the centralizer of an element in A, is half as big as its centralizer in
Sy, except for the split classes.

alt.centralizers[1]:= function(n, 1bl)
local cen;
if issplit(1lbl) then
return sym.centralizers[1](n, 1bl[1]);
else
return sym.centralizers([1](n, 1bl)/2;
fi;
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end;

The computation of the powermap then has to consider some special cases and is
slightly more complicated than in the case of .S;,. On the nonsplit classes everything
works like in the symmetric group. On the split classes we have to check whether
the power of the element will be of a smaller order. This happens if and only if the
prime divides one of the parts of the label. In that case this part will be replaced by
several smaller parts, hence the resulting class is not a split class and labelled only by
a partition. If the prime and the order of the element are coprime we have to check
via the character values whether the two classes of this split pair are interchanged
by the powermap. So we first have to investigate the character values.

The sign character o of S, describes the homomorphism from S, to the multiplica-
tive group {—1, 1} with kernel A4,,. Hence the characters x and oy will restrict to the
same character of A,, for every character x of S,. Tensoring with the sign character
o acts on the labelling partitions by transposing the corresponding Young diagram.
The characters x and oy will even restrict to an irreducible character of A, unless
the partition of y equals its associated partition. In that case the restriction of y
to A, will be the sum of two irreducible characters.

Theorem 2.2 ([4], (2.5.7)) Let « be a partition of n > 1.

1. If a is different from its associated partition & then x*|a, = x%|a, is irre-
ducible.

2. If a is self-associated then x| a, = x%|a, splits into two irreducible and con-
Jugate characters x§ and x* of Ap.

The following function will compute the labels for the characters of A,. It will
collect a list of labels from the set of all partitions of n. Self-associated partitions
will be entered twice together with an additional sign. The labels for the characters
are chosen in such a way that issplit can be applied to them, too. From every
pair of associated partitions only the smaller one (according to the GAP ordering of
its objects which is in this case lexicographic) will be entered in the list of labels.

alt.charparam([1]:= function(n)
local alpha, labels;

labels:= [];
for alpha in partitions(n) do
if alpha = AssociatedPartition(alpha) then
Add(labels, [alpha, ’+°]1);
Add(labels, [alpha, ’-’]1);
elif alpha < AssociatedPartition(alpha) then
Add(labels, alpha);
fi;
od;
return labels;
end;

With these informations we can use the functions developed for symmetric groups
to compute large parts of the character table of alternating groups. The remain-
ing question is: What happens with the split characters on the split classes? The
following nice result shows that things are not very complicated in this case.
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The Young diagram of a self-associated partition « is symmetric with respect to its
main diagonal. This means that the diagram consists of hooks with equal leglength
and hooklength along the diagonal. Let h(a) = [h{}, h5s, . ..] denote the correspond-
ing hook partition. Note that h(«) consists of pairwise different odd parts, hence
it describes a split conjugacy class of S,,. It turns out that only the character values
of x* on this class need a special investigation while all other character values of
x& are half the value of x“.

The character value x*(h(«)) in S, is immediately computed by the Murnaghan—
Nakayama formula (1.4).

Lemma 2.3 ([4], (2.5.12)) If « is a self-associated partition of n and k denotes
the length of the main diagonal of the Young diagram of o then

X (h(a)) = (~1)"=P/2
The interesting character value is then given by

Theorem 2.4 ([4], (2.5.13)) If « is a self-associated partition of of n > 1 then
the values of X% are

X (h(a)s) = 5 (x“(h(a)) - eé\/x“(h(oz)) Hhs;) ,

for a suitable numbering of the constituents of x®|4, , while on all other classes of
A, with cycle structures v # h(a) we have

and x“(7) is an even integer.

There is a function ER in the GAP library which computes square roots of integers
in terms of cyclotomic numbers. But there is a more appropriate way to describe
the above character value, which lies in a quadratic extension of the rationals. The
ATLAS irrationalities by (see [3], p. xxvii) describe the most common character
values from those fields.

|

These expressions are very close to the above character values. Note that for a
suitable choice of € and ¢ such that edx®(h(a)) = —1 we have

X2 (h(0)s) = —x"(h(a)) - 5 (1 + @ (hla)) th;-) -
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Denote [[h$ by N and observe that by (2.3) always (—1)""%)/2 = x*(h(a)) =
N(mod4). Then we have

N | —x®(h(a)) - b for e =46
xe (h(a)s) = { onc(h(a) (1 ibe) otherwise,

for a suitable labelling of the constituents of x®|4,, that might be different from
that in (2.4). The values by are computed by the GAP function EB.

Now we can completely describe the powermap of alternating groups. The question
whether two split classes are exchanged by a p-th powermap can be reduced to the
question whether the two irrational character values on that class are p-th Galois
conjugates, that is whether —b*Np =1+ by.

alt.powermap[1] := function(n, 1bl, p)
local val, prod;

# split case.
if issplit(1bl) then
prod:= Product(1bl[1]);

# coprime case needs complicated check.
if prod mod p <> O then
val:= EB(prod);
if val+l = -GaloisCyc(val, p) then
if 1bl[2] = ’+’ then
return [1, [1bl[1], ’-’11;

else
return [1, [1bl[1], ’+°1]1;
fi;
else
return [1, 1bl];
fi;
else
return [1, PowerPartition(1bl[1], p)];
fi;
fi;

# ordinary case.
return [1, PowerPartition(lbl, p)];

end;

Due to the less homogeneous parametrization of the classes and the characters of
the alternating groups the function that computes the character values will have to
distinguish several cases. But we will use the function sym.irreducibles[1] [1]
from the symmetric group. This will work with either function in that place. Since
the value of x® is even on all uncomplicated classes for a split o we will not have to
check whether 7 equals the hook partition of «. The classes with the special values
are detected by a value of 1 or —1 for .

alt.irreducibles[1] [1]:= function(n, alpha, pi)
local val;

if issplit(alpha) then
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if issplit(pi) then
val:= sym.irreducibles[1] [1] (n, alpha[1], pil[1]);
if val in [-1, 1] then
if alpha[2] = pi[2] then
val:= -val * EB(Product(pil[1]));

else
val:= val * (1 + EB(Product(pil[1])));
fi;
else
val:= val/2;
fi;
else
val:= sym.irreducibles[1] [1] (n, alpha[1l], pi)/2;
fi;
else

if issplit(pi) then
val:= sym.irreducibles[1] [1] (n, alpha, pil[1]);
else
val:= sym.irreducibles[1] [1] (n, alpha, pi);
fi;
fi;

return val;

end;

Now we can use this generic table with the function CharTableSpecialized.
gap> ab:= CharTableSpecialized(alt, 5);
rec( name := "A5", order := 60, centralizers := [ 60, 4, 3, 5, 5

1, orders := [ 1, 2, 3, 5, 5], powermap :=
r,01,1,3,5,41,[1,2,1,5,471,,[1,2,3,1,1]
= [

], irreducibles : [+, 1,1, 1,11, [ 4, 0, 1, -1, -11,
[5,1, -1, 0,01, [3, -1, 0, -E(5)-E(5)"4, -E(5)"2-E(5)"3 1],
[ 3, -1, 0, -E(6)"2-E(5)"3, -E(B)-E(B)" 4 1 1, classparam :=
cfs1,02,1,1,1,2171,01,02,2,111,0[1,[3,1,171]1,
[1, L[5, >+ 11, [1, L [51, 111, irredinfo :=
[ rec(
charparam := [ 1, [ 1, 1, 1, 1, 1 11 ), rec(
charparam := [ 1, [ 2, 1, 1, 1 11 ), rec(
charparam := [ 1, [ 2, 2, 11 1] ), rec(
charparam := [ 1, [ [ 3, 1, 1], °+ 1 1), rec(
charparam :=[1, [ 3 1, 11, -2 11)
], text := "computed using generic character table for alternating\

groups", classes := [ 1, 15, 20, 12, 12
1, operations := CharTableOps )

Even if the function TestCharTable returns true for this character table there is
no guarantee that it really is a correct character table. But the displayed version
can easily be compared with the known character table of As and we see that at
least in this case the result is correct.

gap> TestCharTable(a5);

true
gap> DisplayCharTable(a5) ;
A5

2 2 2 .

3 1 1
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la 2a 3a ba bb
2P 1a 1la 3a b5b ba
3P 1a 2a 1la 5b ba
5P 1la 2a 3a 1la 1la

X.1 1 1 1 1 1
X2 4 . 1 -1 -1
X.3 5 1-1 . .
X.4 3 -1 . A xA
X.6 3-1 . =xA A
A = -E(B)-E(5)"4

= (1-ER(5))/2 = -bb

The character table of the alternating group of degree 8 is constructed in about one
second.

gap> a8:= CharTableSpecialized(alt, 8);; time;

1152

The record alt we defined in this section is part of the GAP library where it is called
CharTableAlternating. A call of CharTable with first argument "Alternating"
will refer to that record.

This technique of restricting a known generic character table to a normal subgroup
of index two will be applied again in section 5.

3 Symmetric Groups Revisited.

We have found many improvements for the way to compute single character values of
symmetric groups. And the resulting function chi3 is pretty fast. Nonetheless there
can be done more if one is interested in the whole character table. There seem to be
many calls to chi3 with the same arguments during the computation of a complete
character table. So much of the work is done more than once. We might now
consider administrative tricks to store all values that are computed and if a value is
wanted a second time rather use the stored value than do the computation again.
This reminds much of the problems we had in the first section with the construction
of the set of all partitions. There we found a nice way to avoid multiple computations
of some values. Why should this not work with the character values.

So let us have a closer look a the original formula

X(m) = D (=1 (p)

hi=k

to see what it means for the whole matrix of character values. Let 7 be the partition
[4,2,1] of 7, for instance. If we decide to let k = 4 regardless of « then the formula
claims that every character value of that class of S7 is computed from some character
values of the class p = [2,1] of S3. In other words: The column [4,2,1] of the
character table of S7 arises from the column [2,1] of S3 via some combinatorial
mechanism encoded in the labels of the characters.
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More generally every column of the character table of S, corresponding to a partition
with maximal part k arises from a column of the character table of S,_; whose
corresponding partition has a maximal part less than or equal to min(k,n — k). But
this is only a restatement of the rules for sets of partitions that we found in the first
section. There we used these rules for a recursion free construction of all partitions
of n with the function partitions.

In order to get a recursion free construction of the character table of S,, we will have
to describe the combinatorial mechanism which connects the columns of different
symmetric groups. For that purpose let scheme be a list of length n. For every
partition a of some m < n and every k < m this list shall contain the information,
which partitions result from « by removing a k-hook and what the leg parity of that
hook is. Suppose that i is the position of « in the list of all partitions of m. Then
scheme [m] [i] [k] will be a list of numbers. The absolute value of such a number
then is the position in the list of all partitions of m — k of a partition that results
from « by removing a k-hook, and the sign of this number will be the corresponding
leg parity. If scheme [m] [1] [k] is the complete list of all such numbers then this is
all the information that is needed.

The following function InductionScheme will construct the multi-dimensional array
scheme. Again we prefer beta sets to find all the hooks. In order to identify a beta
set in a list of beta sets in a standard form leading zeros have to be removed when
they arise. The local function hooks will run over a single beta set 3, encode every
hook it encounters and add this to scheme.

InductionScheme := function(n)
local scheme, pm, i, beta, hooks;

pm:= [J;

scheme:= [];

# how to encode all hooks.
hooks:= function(beta, m)
local i, j, 1, gamma, hks, sign;

hks:= [];

for i in [1..m] do
hks[il:= []1;

od;

for i in beta do
sign:= 1;

for j in [1..i] do
if i-j in beta then
sign:= -sign;
else
if j = m then
Add(hks([m], sign);
else
gamma:= Difference(beta, [i]);
AddSet (gamma, i-j);

# remove leading zeros.
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if i = j then

1l:= 0;
while gamma[l+1] = 1 do
1:= 1+1;
od;
gamma:= Sublist(gamma, [1+1..Length(gamma)]) - 1;

fi;

Add(hks[j], sign * Position(pm[m-j], gamma));
fi;
fi;
od;

od;
return hks;
end;

# collect hook encodings.
for i in [1..n] do
pmli]:= List(Partitions(i), BetaSet);
scheme[i]:= [];
for beta in pm[i] do
Add(scheme[i], hooks(beta, i));
od;
od;

return scheme;

end;

Let t denote the column of p in the character table of S, _;. Then the Murnaghan—
Nakayama formula can be restated in the following efficient way.

X% (m) = Y. sen(f)tfabs(f)].

f€Escheme[n][i][k]

Now the matrix of character values can be constructed by exactly the same algorithm
as the one we used in section 1 for the partitions of n. Just that adding of a cycle
to known partitions is replaced by computing a new column of a character table
according to the last version of the Murnaghan—Nakayama formula. This is done by
the local function charCol which constructs a new column for S, from the known
column t of S,,_ by looking for k-hooks.

IrrS:= function(n)
local scheme, pm, i, m, k, t, col, np, res, charCol;
scheme:= InductionScheme(n);
# how to construct a new column.
charCol:= function(m, t, k)
local i, col, pi, val;
col:= [];
for pi in scheme[m] do

val:= O;
for i in pil[k] do
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if i < 0 then

val:= val - t[-i];
else
val:= val + t[i];
fi;
od;
Add(col, val);
od;
return col;

end;

# construct the columns.

pm:= List([1..n-1], x> [1);

for m in [1..QuoInt(n,2)] do
Add(pm[m], charCol(m, [1], m));

for k in [m+1..n-m] do
for t in pm[k-m] do
Add(pm[k], charCol(k, t, m));
od;
od;
od;

# collect and transpose.
np:= Length(scheme[n]);
res:= List([1..npl, x> [1);
for k in [1..n-1] do
for t in pm[n-k] do
col:= charCol(n, t, k);
for i in [1..np] do
Add(res[i], coll[il);
od;
od;
od;

col:= charCol(n, [1], n);
for i in [1..np] do

Add(res[i], col[il);
od;

return res;

end;

With this method we can compute really big character tables in a short time as long
as there is enough storage memory available on the computer. The following times
were achieved in an 8 megabyte GAP. (Sy already has 627 conjugacy classes and
characters.)

gap> IrrS(8);; time;

429
gap> IrrS(20);; time;

163770

This function IrrS is installed in the field matrix of the record sym where the
function CharTableSpecialized will find and use it rather than to compute every
single character value with the function chi3 if the whole character table is to be
constructed.
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sym.matrix:= IrrS;;

Try to figure out how these techniques can be applied to the computation of the
character table of alternating groups.

4 Case B: Wreath Products.

The Weyl group of type B,, can be described as the wreath product of a cyclic group
of order 2 with the symmetric group S,,. Both the classes and the characters of B,
are parametrized by pairs of partitions.

We will solve the problem of the computation of the character tables of these groups
in the more general context of wreath products of arbitrary groups with symmetric
groups.

Let G be a finite group with r conjugacy classes represented by (g¢1,...,¢,) and
character table ® = (¢;(g;)). Denote by X,, the wreath product of G with the
symmetric group S,. The elements of X,, are of the form (f;7v) = (f1,..., fn;7)
with f; e Gfori=1,...,n and v € 5,. For such an element 7 of X,, and a k-cycle
k= (§,jk,...,jx""1) denote by

g((f;7), k) = fjfjmlfjm2 T fjﬁ—(k—l)

the cycle product of m and k. Note that g(m, k) € G. Let m be the cycle structure
of v as defined in section 1. This partition 7 will now be split into r partitions
(m',...,7") according to the following rule. If the cycle product g((f;~v), k) is con-
jugate to g; in G then its corresponding part in 7 will belong to 7%. This procedure
will result in an r-tuple of partitions of n which describes the cycle structure
of (f;7). Now the same statement as is section 1 holds.

Proposition 4.1 ([4], (4.2.8)) Two elements of X,, are conjugate if and only if
they have the same cycle structure.

Note that on the other hand for every r-tuple of partitions of n there is an element
of X,, with that cycle structure. Thus the classes of X,, are parametrized by the
r-tuples of partitions of n. The function PartitionTuples that constructs the set of
r-tuples of partitions of n is composed in the same way as the function partitions.
This time we have to be careful about the positions in the r-tuple where an m-cycle
is to be inserted. To the partition which consists of only the m-part now correspond
all those r-tuples of partitions which have an m-part in one place and the empty
partition in all other places. Moreover for each m we have to keep track of a position
where the last m-cycle has been added to a tuple. Only in this place and in higher
positions more m-cycles are allowed. So we will construct the auxiliary tuples as
records with fields for the actual tuple and the position information. Only in the
last step where we collect these tuples and add a k-cycle we will omit the position
field.

PartitionTuples:= function(n, r)
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local m, k, pm, i, t, tl, s, res, empty;

# the empty partition tuple.
empty:= rec(
tup:= List([1..r], x> [1),
pos:= List([1..n-1], x-> 1));

# trivial case.
if n = 0 then

return [empty.tup];
fi;

pm:= List([1..n-1], x> [1);
for m in [1..QuoInt(n, 2)] do

# the m-cycle in all possible places.
for i in [1..r] do

s:= Copy(empty) ;

s.tuplil := [m];

s.pos[m]:= i;

Add(pm[m], s);

od;

# add the m-cycle to everything you know.
for k in [m+1..n-m] do
for t in pm[k-m] do
for i in [t.pos[m]..r] do
t1:= Copy(t);
s:= [m];
Append(s, t.tuplil);
tl.tupli]:= s;
tl.pos[m]:= i;
Add(pm[k], t1);
od;
od;
od;
od;

# collect.
res:= [];
for k in [1..n-1] do
for t in pm[n-k] do
for i in [t.pos[k]..r] do
t1l:= Copy(t.tup);
s:= [k];
Append(s, t.tupl[il);
t1[il:= s;
Add(res, t1);
od;
od;
od;

# finally the n-cycle.

for i in [1..r] do
s:= Copy(empty.tup);
s[il:= [nl;
Add(res, s);

od;
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# return the result.
return res;

end;

The size of the centralizer is best stated in terms of cycles of equal length. Let
r € X, have cycle structure 7 = (7!,...,7") and let a;;(x) be the number of k-
parts of 7¢. The matrix a(z) := (a;x(x)) is called the type of . The order of the
centralizer of an element in X,, depends on the orders of the centralizers in G and
is given by the following formula.

Lemma 4.2 ([4], (4.2.10)) Let x € X,, be of type a(x). Then

Cx, ()] = [ am(2)! (k|Ca(gi)]) ).
i,k

The corresponding GAP function, however, deals with r-tuples of partitions and is a
generalization of the function which computes the sizes of centralizers in section 1.
Here the parameter sub_cen is the list of the orders of the centralizers in G.

CentralizerWreath := function(sub_cen, ptuple)
local p, i, j, k, last, res;

res:= 1;
for i in [1..Length(ptuple)] do
last:= 0; k:= 1;
for p in ptuple[i] do
res:= res * sub_cen[i] * p;
if p = last then

k:= k+1;
res:= res * k;

else
k:= 1;

fi;

last:= p;

od;
od;

return res;

end;

The powermaps of the wreath product X,, depend on the powermaps of G. They
can be described cycle by cycle. If the length k of a cycle in 7? is divisible by the
prime p then this cycle is replaced by p copies of k/p. Otherwise this cycle is moved
to 7/ where gf is conjugate to g; in G.

The function PowerWreath computes the r-tuple of partitions corresponding to the
p-th power of an element with cycle structure ptuple. Here sub_pm is assumed to be
the p-th powermap of the group G.

PowerWreath := function(sub_pm, ptuple, p)

local power, k, i, j;
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power:= List(ptuple, x-> [1);
for i in [1..Length(ptuple)] do
for k in ptupleli] do
if k mod p = 0 then
for j in [1..p] do
Add (power[i], k/p);
od;
else
Add (power [sub_pm[il], k);
fi;
od;
od;

for k in power do

Sort(k, function(a,b) return a>b; end);
od;
return power;

end;

The r-tuples of partitions are also used as labels for the irreducible characters of
the wreath product X,,. Let a = (a!,...,a") be an r-tuple of partitions of n. The
irreducible character x* belonging to this r-tuple of partitions can be described as
a tensor product.

For every 1 < ¢ < r we take |a°| copies of the irreducible character ¢. of G. The
product

,
IT ¢
c=1

of these characters is a character of the normal subgroup G™ of X,, which can in a
natural way be extended to its inertia group

Ta:Talx---xTaT%X|a1|><--~><X‘ar|

giving the irreducible character
r —_—
I1e
c=1

of T,. By Clifford theory all irreducible characters of T, extending [[\_; ¢%* are
obtained as tensor products with irreducible characters of the inertia factor

Ta/Gn = S|a1\ X oo X S‘ar|.

Inducing such a character up to X,, yields an irreducible character of X,,. Moreover
every irreducible character of X, is of the form

T X'n
X = <H¢>§C®x°‘c> :

c=1
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Proposition 4.3 ([4], (4.4.3)) The characters x® run through a complete system
of pairwise different and irreducible characters of X,, if a runs through all r—tuples
of partitions of n.

The following generalization of the Murnaghan—Nakayama formula allows the eval-
uation of the character x“ of X, on the element 7 described by its type and thereby
establishes the relationship between classes and characters of X, in terms of r-tuples
of partitions of n.

Theorem 4.4 Let a = (al,...,a") with 3, || = n be an r—tuple of partitions of
n and let m € X, with ay(7w) > 0 for firted k < mn, t < r. Let p € X,,_j be of type
a(p) where

oy ) aw(m) =1 ifi=t, j =k,
aij(p) = { a;;(m) otherwise.

Define !} = 1. Then

2@ g) Y (D) T ().

haé =k

Proof. This formula is proved by a direct computation which first reveals the place
where the ordinary Murnaghan—Nakayama formula (1.4) can be applied and then
collects the results together to give the desired formula. Write xy* as an induced
character,

=21 (FTex) )

where the sum ranges over all coset representatives o in X,, /T, with 77 € T;,. The
coset representatives o can be chosen as elements of the complement S, of G™ in
X,,. Then write m = kp for a suitable p which satisfies the hypothesis of the theorem
and split the sum into parts according to whether k% lies in the direct factor T,s of
the inertia factor Ty,. Extracting the factor of the character corresponding to Tys
we obtain

ZZ¢Ia\a H¢Ia\a

s=1 o c#s

where o runs over those coset representatives which satisfy 77 € T, and k7 € Tjs
and where p = p1p2 such that (kp1)? is the projection of 77 on Tys.

The extracted factor ¢\sa3\ X ((kp1)?) can be evaluated as follows. First observe
that

A (k1)) = BEE) BT (07) = 64 (90) 0l T ()
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by ([4], (4.3.9)) and the choice of x. The remaining part of the factor is essentially a
character of the symmetric group S,s| and the Murnaghan-Nakayama formula 1.4
can be applied,

s 1¢°  q—Ro’
X ((kp1)7) = D (=) x5 (o).
ho’ =k
ij

Putting the results together again we have

) =3 6ela) S (-5 ST (<z>'® xaﬁ) ()
s=1 o c

he’ =k
©j

for a sum over certain coset representatives o which defines the induced character
X (p) and ao = v — Riajs. This observation completes the proof. O

An implementation of this general formula will be given on page 37. Before that we
will install the generic character table for Weyl groups of type B.

The Weyl group of type B, is a special case of a wreath product with a symmetric
group. It is isomorphic to the wreath product of a cyclic group of order 2 with a
symmetric group. If we take the known fixed values from the character table of the
cyclic group of order 2 we can implement a generic table wlb without any further
dependencies.

wlb:= rec(name:= "WeylB");

wlb.order:= (n-> 2°n * Factorial(n));

wlb.specializedname:= (n-> ConcatenationString("W(B",String(n),")"));

wlb.text:= "generic character table for Weyl groups of type B";
wlb.isGenericTable:= true;

wlb.domain:= (n-> IsInt(n) and n > 0);

As before we install the lists of other functions.

wlb.classparam:= []; wlb.charparam:= []; wlb.centralizers:= [];
wlb.orders:= []; wlb.powermap:= []; wlb.irreducibles:= [[]];

The classes and the characters are labelled by pairs of partitions.

wlb.classparam[1]:= function(n)
return PartitionTuples(n, 2);
end;

wlb.charparam[1] := function(n)
return PartitionTuples(n, 2);

end;

The orders of the elements are computed from the labels in the following way (s. [4],
(4.2.12)).

wlb.orders[1] := function(n, 1bl)
local ord;

ord:= 1;

if 1b1[1] <> [] then
ord:= Lem(1bl[1]);

fi;

if 1b1[2] <> [] then
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ord:= Lecm(ord, 2 * Lem(1b1[2]));
fi;

return ord;

end;

The centralizers are determined by the function CentralizerWreath.
wlb.centralizers[1]:= function(n, 1bl)
return CentralizerWreath([2, 2], 1bl);
end;

The function which constructs the powermap has to distinguish two cases, depending
on whether the prime is odd. If the prime p equals 2 then PowerWreath is called
with the second powermap of the cyclic group of order 2, otherwise with the identity
mapping
wlb.powermap[1] := function(n, 1bl, p)
if p = 2 then
return [1, PowerWreath([1, 1], 1bl, 2)];
else
return [1, PowerWreath([1, 2], 1bl, p)];
fi;
end;
As in section 1 the Murnaghan—Nakayama formula enables a straightforward imple-
mentation psil of the character values.

psil:= function(n, alpha, pi)
local i, j, k, s, t, delta, rho, res;

# termination condition.
if n = 0 then

return 1;
fi;

# negative cycles first.
if pi[2] <> [] then

t:= 2;
else

t:=1;
fi;

# get length of longest cycle.
k:= pil[t][1];

# construct rho.
tho:= Copy(pi);
tho[t]:= Sublist(pilt]l, [2..Length(pilt1)1);

res:= 0;

# loop over the young diagram.
for s in [1, 2] do
for i in [1..Length(alphals])] do
for j in [1..alphals][i]l] do
if hooklength(alphals], i, j) = k then
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delta:= Copy(alpha);
deltals] := unrimmed(alphals], i, j);

# enter recursion.
if s = 2 and t = 2 then
res:= res - (-1)"leglength(alphals], i, j)
* psil(n-k, delta, rho);
else
res:= res + (-1)"leglength(alphals], i, j)
* psil(n-k, delta, rho);
fi;
fi;
od;
od;
od;

# return the result.
return res;

end;

wlb.irreducibles[1] [1]:= psil;

Once again a generic character table is complete and we can compute as a small
example the character table of the Weyl group of type Bs.

gap> b3:= CharTableSpecialized(wlb, 3);

rec( name := "W(B3)", order := 48, centralizers :=
[ 48, 16, 16, 48, 8, 8, 8, 8, 6, 6 ], orders :=
[1,2,2,2,2,4,2, 4,3, 6], powermap :=

r,01,1,1,1,1,3,1,3,9,91,
[1, 2, 3, 4, 5,6, 7,8, 1, 4] 1, irreducibles :=
(1,1, 1,1, -1, -1, -1, -1, 1, 117,
(3,1, -1, -3, -1, -1, 1,1, 0, 01,
(s, -1, -1, 3, -1, 1, -1, 1, 0, 01,
(1, -1, 1, -1, -1, 1, 1, -1, 1, -1 17,
[2,2,2,2,0,0,0,0, -1, -11,
[s, -1, -1, 3, 1, -1, 1, -1, 0, 01,
(3 1, -1, -3,1,1, -1, -1, 0, 01,
[ 2, -2, 2, -2, 0, 0, 0, O, -1, 11,
L1, 1,1, 1,1, 1,1, 1,1, 11,
r+ -1,1, -1, 1, -1, -1, 1, 1, -1 1 ], classparam :=
tfs+,C0C2,1,21, 0310303, 01, 001,21, 01111,
t+,cC21, 02,2732 1,0¢,CC 1,01,1,1111,
(1, 002,201, 017171, 0+, 0021, 02111,
t+, 00271, 011171, 0¢+,C0C 101,02 1111,
(1, 0031, 017171, C01,CC 71, [31111, irredinfo :=
[ rec(
charparam := [ 1, [ [ 1, 1, 11, [ 11 1), rec(
charparam := [ 1, [ [ 1, 11, [ 1111), rec(
charparam := [ 1, [ [ 1], [ 1, 1111), rec(
charparam := [ 1, [ [ 1, [ 1, 1, 111 1), rec(
charparam := [ 1, [ [ 2, 11, [ 111), rec(
charparam := [ 1, [ [ 11, [ 211 1), rec(
charparam := [ 1, [ [ 21, [ 11 11), rec(
charparam := [ 1, [ [ 1, [ 2, 1111), rec(
charparam := [ 1, [ [ 31, [ 111), rec(
charparam := [ 1, [ [ 1, [ 3111)
], text := "computed using generic character table for Weyl groups\
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of type B", classes := [ 1, 3, 3, 1, 6, 6, 6, 6, 8, 8
1, operations := CharTableOps )

As usual the new table is checked for consistency and displayed.
gap> TestCharTable(b3);

true

gap> DisplayCharTable(b3);

W(B3)
2 4 4 4 4 3 3 3 3 1 1
3 1 1 1 1

la 2a 2b 2c 2d 4a 2e 4b 3a 6a
2P 1a l1la 1a 1a 1a 2b 1la 2b 3a 3a
3P la 2a 2b 2c 2d 4a 2e 4b la 2c

i1 1 1-1-1-1-1 1 1
1-1-3-1-1 1 1
-1-1 3-1 1-1 1 . .
-1 1-1-1 1 1-1 1-1

11 1 1 1 1 1 11
-11-1 1-1-1 1 1-1

ol a T B T B - B - ]
= O 00N O WN -
P R, NWWNDEFEWWER

N

N

N

|

—

|

—

The construction of the character table of the Weyl group of type Bg with this
generic table needs roughly two minutes. This group has 65 classes.

gap> b6:= CharTableSpecialized(wlb, 6);; time;

114833

The function psil can be improved by using better termination conditions similar
to those in phi2 in section 1. We will not do that but present now a version which
deals with pairs of beta sets instead of pairs of partitions.

psi2:= function(n, beta, pi)
local i, j, k, 1b, o, s, t, gamma, rho, sign, val;

# termination condition.
if n = 0 then

return 1;
fi;

# negative cycles first.
if pi[2] <> [] then

t:= 2;
else
t:=1;

fi;

# get length of longest cycle.
k:= pilt][1];

# construct rho.
rho:= Copy(pi);
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rho[t]:= Sublist(pilt]l, [2..Length(piltl)1);
val:= 0;

# loop over the beta sets.
for s in [1, 2] do

# determine offset.

o0:= 0;

1b:= Length(betal[s]);

while o < 1b and betals][o+1] = o do
0:= o+1;

od;

for i in betals] do
if i >= k+o and not i-k in betals] then

# compute the leg parity.
sign:= 1;
for j in [i-k+1..i-1] do
if j in betals] then
sign:= —-sign;
fi;
od;

# consider character table of C2.

if s =2and t =2 then
sign:= -sign;

fi;

# construct new beta set.

gamma:= Copy(beta) ;

SubtractSet (gammal[s], [i]);
AddSet (gamma[s], i-k);

# enter recursion.
val:= val + sign * psi2(n-k, gamma, rho);
fi;
od;
od;

# return the result.
return val;

end;

wlb.irreducibles[1] [1] := function(n, alpha, pi)
return psi2(n, [BetaSet(alphal[1]), BetaSet(alpha[2])], pi);

end;
The construction of the character table of the Weyl group of type Bg now is slightly
faster.

gap> b6:= CharTableSpecialized(wlb, 6);; time;

90857

The record wlb we have just defined is called CharTableWeylB in the GAP library.
It will be used by the function CharTable if it is called with "WeylB" as a first
argument.
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Only slight changes are necessary to obtain from the function psi2 the more general
function CharValueWreathSymmetric which computes a single character value of a
wreath product.

CharValueWreathSymmetric := function(sub, n, beta, pi)
local i, j, k, 1b, o, s, t, r, gamma, rho, sign, val;
# termination condition.
if n = 0 then
return 1;
fi;
r:= Length(pi);

# negative cycles first.

t:i=r1;

while pilt] = [] do
t:= t-1;

od;

# get length of longest cycle.
k:= pi[t][1];

# construct rho.
rho:= Copy(pi);
rho[t] := Sublist(pilt], [2..Length(piltl)]);

val:= 0;

# loop over the beta sets.
for s in [1..r] do

# determine offset.

o:= 0;

1b:= Length(betals]);

while o < 1b and betals][o+1] = o do
0:= o+1;

od;

for i in betals] do
if i >= k+o and not i-k in betal[s] then

# compute the leg parity.
sign:= 1;
for j in [i-k+1..i-1] do
if j in betals] then
sign:= -sign;
fi;
od;

# consider character table of subgroup.
sign:= sub.irreducibles[s] [t] * sign;

# construct new beta set.
gamma:= Copy(beta) ;
SubtractSet (gammal[s], [i]);
AddSet (gamma[s], i-k);
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# enter recursion.
val:= val +
sign * CharValueWreathSymmetric(sub, n-k, gamma, rho);
fi;
od;
od;

# return the result.
return val;

end;

Along the lines of PartitionTuples one can now write a function IrrX which con-
structs the character table of a wreath product with a symmetric group in a recursion
free fashion.

IrrX:= function(tbl, n)

local i, j, k, m, r, s, t, pm, res, col, scheme, np, charCol, hooks,
pts, partitioms;

r:= Length(tbl.irreducibles[1]);

# encode partition tuples by positions of partitions.
partitions:= List([1..n], Partitions);
pts:= [1;
for i in [1..n] do
pts[i] := PartitionTuples(i, r);
for j in [1..Length(pts[il)] do

np:= [[1, [1];
for t in pts([il [j] do
s:= Sum(t);

Add(np[1], s);
if s = 0 then
Add(np[2], 1);
else
Add(np[2], Position(partitions[s], t));
fi;
od;
pts[il [j]1:= np;
od;
od;

scheme:= InductionScheme(n);

# how to encode a hook.
hooks:= function(np, n)
local res, i, k, 1, ni, pi, sign;

res:= [];
for i in [1..r] do

res[i]:= List([1..n], x> []1);
od;

for i in [1..r] do
ni:= npl[1]1[il; pi:= npl[2][il;
for k in [1..ni] do
for 1 in scheme[ni] [pi] [k] do
np[1][i]:= ni-k;
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if 1 < 0 then
np[2] [i]:= -1;

sign:= -1;
else

np[2] [i]:= 1;

sign:= 1;

fi;
if k = n then
Add(res[i] [k], sign);

else
Add(res[i] [k], sign * Position(pts[n-k], np));
fi;
od;
od;
np[1][i]:= ni; np[2] [i]:= pi;
od;
return res;
end;

# collect hook encodings.

res:= [];
for i in [1..n] do
res[i]l:= [];

for np in pts[i] do
Add(res[i], hooks(np, i));
od;
od;
scheme:= res;

# how to construct a new column.
charCol:= function(n, t, k, p)
local i, j, col, pi, val;

col:= [];
for pi in scheme[n] do
val:= 0;
for j in [1..r] do
for i in piljl[k] do
if i < 0 then
val:= val - tbl.irreducibles[j][p] * t[-il;
else
val:
fi;
od;
od;
Add(col, val);
od;
return col;
end;

val + tbl.irreducibles[j][p] * t[il;

# construct the columns.
pm:= List([1..n-1], x->[1);
for m in [1..QuoInt(n,2)] do

# the m-cycle in all possible places
for i in [1..r] do
s:= [1..n]*0+1;
s[m]:= i;
Add(pm[m], rec(col:= charCol(m, [1], m, i), pos:= s8));

39



od;

# add the m-cycle to everything you know
for k in [m+1..n-m] do
for t in pm[k-m] do
for i in [t.pos[m]..r] do
s:= Copy(t.pos);
s[m]:= i;
Add(pm[k], rec(col:= charCol(k, t.col, m, i), pos:= s8));
od;
od;
od;
od;

# collect and transpose.
np:= Length(scheme[n]);
res:= List([1..npl, x> [1);
for k in [1..n-1] do
for t in pm[n-k] do
for i in [t.pos[k]..r] do
col:= charCol(n, t.col, k, i);
for j in [1..np] do
Add(res[jl, colljl);
od;
od;
od;
od;

for i in [1..r] do
col:= charCol(n, [1], n, i);
for j in [1..np] do
Add(res[jl, colljl);
od;
od;

return res;

end;

IrrX is called MatCharsWreathSymmetric in the GAP library. It can also be used
for a fast computation of the matrix of character values in wlb. We only have to give
as a first argument a record which contains in the field irreducibles the matrix of
character values of the cyclic group of order 2.

wlb.matrix:= (n-> IrrX(rec(irreducibles:= [[1, 1], [1, -1]11), n));
Now the character table of the Weyl group of type Bg can be constructed in three
seconds.

gap> b6:= CharTableSpecialized(wlb, 6);; time;

3004

This section ends with the function CharTableWreathSymmetric which computes
the character table of a wreath product of a group with character table sub with a
symmetric group on n points.

CharTableWreathSymmetric := function(sub, n)

local i, j, tbl, r, nccl, parts, p, pm, spm;
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# initialize.
tbl:= rec(
order:= sub.order"n * Factorial(n),
name:= ConcatenationString(sub.name, "wrS", String(n)),

centralizers:= [],
classes:= [],
orders:= [],

powermap:= [],
operations:= CharTableOps) ;

# the table head.
r:= Length(sub.orders);
parts:= PartitionTuples(n, r);
tbl.classparam:= parts;
tbl.irredinfo:= [];
nccl:= Length(parts);
for i in [1..nccl] do
tbl.centralizers[i]:=
CentralizerWreath(sub.centralizers, parts[i]);
tbl.classes[i]:= tbl.order / tbl.centralizers[i];
pm:= 1;
for j in [1..r] do
if parts[il[j] <> [] then
pm:= Lem(pm, sub.orders[j] * Lem(parts[i][§1));
fi;
od;
tbl.orders([i]:= pm;
tbl.irredinfo[i] := rec(charparam:= parts[i]);
od;

# the powermap.
for p in Set(Factors(tbl.order)) do
pm:= [J;
if IsBound(sub.powermap[p]) then
spm:= sub.powermap [p];
else
spm:
fi;
for i in [1..nccl] do
pm[i] := Position(parts, PowerWreath(spm, parts[i], p));
od;
tbl.powermap[p] := pm;
od;

Parametrized(Powermap(sub, p, rec(quick:=true)));

# the character values.
tbl.irreducibles:= IrrX(sub, n);

return tbl;

end;

With this function we can for example compute the character table of the wreath
product S30.55.

gap> s3:= CharTableSpecialized(sym, 3);;

gap> s3wrs2:= CharTableWreathSymmetric(s3, 2);

rec( order := 72, name := "S3wrS2", centralizers :=
[ 72, 12, 18, 8, 6, 18, 12, 4, 6 ], classes :=

[1, 6, 4, 9, 12, 4, 6, 18, 12 ], orders :=
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[1, 2, 3,2,6, 3, 2, 4, 6], powermap :=
r,r01123,1,3,6,1,4,61,[1,2,1,4,2,1,7,38,7]1]
1, operations := CharTableOps, classparam :=
tctfs+,21, 01,0131, C0C11, 011, C 11,
crt+31,C 21, 0+32,0C 1, 01,201,0 11,
cc 1, c0+31, 01231, 0C 121,01, 01,1711,
tft21, 01,0171, CC 11,021,011,
LT 1,0 1, 02171171, irredinfo := [ rec(
charparam := [ [ 1, 11, [ 1, [ 1 1), rec(
charparam := [ [ 11, [ 11, [ 11), rec(
charparam := [ [ 11, [ 1, [ 111), rec(
charparam := [ [ ], [ 1, 11, [ 11), rec(
charparam := [ [ 1, [ 11, [ 111), rec(
charparam := [ [ 1, [ 1, [1, 11 1), rec(
charparam := [ [ 21, [ 1, [ 11), rec(
charparam := [ [ 1, [ 21, [ 11), rec(
charparam := [ [ 1, [ 1, [ 211 ) ], irreducibles :=
[, -1,1,1, -1,1, -1,1, -11,
[ 4, -2,1,0,1, -2,0,0,01, [2,0,2, -2,0,2,0,0,01,
[ 4,0, -2,0,0,1, -2,0,11, [4, 2,1, 0, -1, -2, 0, 0, 01,
L1, 1,1, 1, 1,1, -1, -1, -1 1,
(1, -1, 1, 1, -1, 1, 1, -1, 11,
[ 4,0, -2,0,0,1,2,0,-11,0[1,1,1,1,1,1,1,1, 1]
1)
gap> TestCharTable(s3wrs2);
true
gap> DisplayCharTable(s3wrs2);
S3wrs2
2 3 21 3 11 2 2 1
3 21 2 . 1 2 1 1

la 2a 3a 2b 6a 3b 2c 4a 6b
2P 1a 1a 3a l1la 3a 3b 1a 2b 3b
3P 1la 2a la 2b 2a la 2c 4a 2c

X.1 1-1 1 1-1 1-1 1-1
X2 4-2 1 . 1-2

X.3 2 2 -2 2 .

X.4 4 -2 1 -2 1
X6 4 2 1 -1 -2 . . .
X.6 11 1 1 1 1-1-1-1
X.7 1-1 1 1-1 1 1-1 1
X.8 4 . -2 .12 .1
X.9 11 1 1 1 1 1 1 1

The first argument, however, can be any character table not necessarily one of a
symmetric group.

5 Case D.

The Weyl group of type D,, is a normal subgroup of index two in the Weyl group of
type B;,. As in the case of the alternating group its character table can be derived
from that of the Weyl group of type B, by mainly using Clifford theory. We will
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therefore perform the same steps as in section 2 to define a generic character table
wld for Weyl groups of type D.

We begin as usual by initializing the record wld.

wld:= rec(name:= "WeylD");

wld.order:= (n-> 2" (n-1) * Factorial(n));

wld.specializedname:= (n-> ConcatenationString("W(D",String(n),")"));
wld.text:= "generic character table for Weyl groups of type D";
wld.isGenericTable:= true;

wld.domain:= (n-> IsInt(n) and n > 0);

wld.classparam:= []; wld.charparam:= []; wld.centralizers:= [];

wld.orders:= []; wld.powermap:= []; wld.irreducibles:= [[]];

The classes of a Weyl group of type D are labelled by pairs of partitions like in case
B. Classes of B, belonging to D,, are exactly those with label (71, m3) where 79 has
an even length. (Here we assume that my corresponds to the element of order two
in the cyclic group of order two.) A class (1, m2) of B, will split into two classes of
equal length in D,, if and only if w9 is the empty partition and 7 consists of only
even parts (i.e. m; = 2 -7 for some partition 7 of n/2). You see that this can only
happen if n is even. In that case we will write a sign instead of the empty partition
for o in order to distinguish the two classes of D,,. So the class parameters of D,
are obtained as follows.

wld.classparam([1]:= function(n)
local classes, pi;

classes:= [];
for pi in PartitionTuples(n, 2) do
if Length(pi[2]) mod 2 = 0 then
if pi[2] = [] and ForAll(pi[1], x-> x mod 2 = 0) then
Add(classes, [pil1l, ’+’1);

Add(classes, [pil1], °-’1);
else

Add(classes, pi);
fi;

fi;
od;

return classes;

end;

The orders of the elements in D,, are of course the same as in B,, but we have to
take care of the parametrization of the split classes.

wld.orders[1] := function(n, 1bl)
local ord;

ord:= 1;

if 1bl1[1] <> []1 then
ord:= Lem(1bl[1]);

fi;

if 1b1[2] <> [] and IsList(1bl[2]) then
ord:= Lecm(ord, 2*Lcm(1bl[2]));

fi;
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return ord;

end;

The orders of the centralizers in D,, are half of the orders of the centralizers in B,
except for the split classes.

wld.centralizers[1] := function(n, 1bl)
if not IsList(1bl[2]) then
return CentralizerWreath([2,2], [1bl[1], [11);
else
return CentralizerWreath([2,2], 1bl) / 2;
fi;
end;

Again the powermap has to distinguish two cases. Moreover it has to handle the
special labelling of the split classes. If a power of a split class is again a split class
we decide to keep the sign of the label.

wld.powermap[1] := function(n, 1bl, p)
local power;

if not IsList(1bl[2]) then
power:= PowerPartition(1bl[1], p);
if ForAll(power, x-> x mod 2 = 0) then
return [1, [power, 1bl[2]]]; # keep the sign.
else
return [1, [power, [111;
fi;
else
if p = 2 then
return [1, PowerWreath([1, 1], 1bl, 2)];
else
return [1, PowerWreath([1, 2], 1bl, p)];
fi;
fi;
end;

The characters x(@122) and y(@2:21) will restrict to the same irreducible character of
D,, for oy # ao. The characters X(a’o‘) of B,, will restrict to a sum of two irreducible
characters Xf’a) and X(_a’a) of D,. Note that in this case « is a partition of n/2
and again that this can only happen if n is even. We will in that case replace the
second occurrence of « in the label by a sign to distinguish these two characters of

D,,. The following function computes these character labels.

wld.charparam[1] := function(n)
local alpha, labels;
labels:= [];

for alpha in PartitionTuples(n, 2) do
if alpha[1] = alpha[2] then
Add(labels, [alphalll, ’+’1);
Add(labels, [alphalll, ’-’1);
elif alpha[1] < alpha[2] then
Add(labels, alpha);
fi;
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od;

return labels;

end;

Last thing to do: the character values. But first we have to answer the question:
What happens to the split characters on the split classes? As it turns out there is
no such nice correspondence between the split classes and the split characters as in
the case of alternating groups. But things are not very complicated here, too. We
simply have to correct the restricted characters from By, by character values of S, 5.

Theorem 5.1 Letn > 0 be an even integer and o, w be partitions of n/2. Then the

character value Xs_f"a) on a class (27, [ ])+ is determined by the following formula.

X (2, [ D) = 0@ @, [ ) + 02Oy (),

Proof. From [6] (2.45) we see that the characters are described as follows. We take
s = n/2 copies of the trivial character 1 and also s copies of the sign character e
of S3. Their product 1°¢® describes a character of the elementary abelian normal
subgroup S¥ of B,,. Restrict this character to the intersection 2 of S§ and D,, which
is a normal subgroup of D,,. Then extend the character to its inertia group 71" with
inertia factor isomorphic to the wreath product S5 ¢.S2. This gives the character

(15¢%) I3

of the inertia group. Furthermore we take the character y*x® of S5 x S and extend
it to its inertia group in S Sy which is S5 S3. This character is to be tensored
with either the trivial or the sign character of Ss. Then the characters Xf ) can

be described as

- Dn

ngé:a) — ((1565) 5 ® XaXa ® 1) ,
- D,

X = ((1563) 5 OXXT ® 6)

We already know that the sum of these two characters yields character values of the
character x(®® of B,,. We will now investigate the difference. Take a representative
x of the class (2m,[ ]) of B, for some partition 7 of n/2. We may assume that
is an element of the complement S, and that it has a matrix representation of the

form
0 X
I 0

where X is a suitable permutation matrix with cycle structure m and I denotes the
n/2 x n/2 identity matrix. Then write the character values as a sum of character
values of the inertia group T
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6 XM @) = (T T @W@(l—e))“ (x)
= 100 @) Y e () ) © TR © (1= €)().

Y~z

Here the sum runs over those conjugacy class representatives y of 7" which are
conjugate to x in D,,. The factor ®(1 — €)(y) will be 0 for those y with matrix

representation
P 0
0 P

for some signed permutation matrices Py, P, such that the whole matrix has cycle
structure 27. But the only other representative of conjugacy classes of T' that is
conjugate to x in D, is x itself. Hence there is only one summand, the factor
(1%€%) |5(x) will be 1 and with x*x%(x) = x“(7) we have for the difference of the
character values

(a,0)  (v,@) T ‘Can(x)| 5.5 1. o)z ::’(ZDn(x)| aln
O =x2) (@) = Cr )] (1%¢%) [5(x) @x X% (z) @ (1 —¢€)(z) Cr o] 2x%(m).

Finally observe that by (4.2)

|CDn(37)" Cs, ()] |Cs,(2m)] _ TL20)%™ai(r)! }H2ai(n) _ ol(m)—1.

Cr(@)]  |Csasy (@) 2(Cs,(m)] — 2[[;i%@ai(m)! 2

i
This completes the proof of Theorem 5.1. O

Thus the computation of the character values of D,, can be done with the functions
that are already available. We start with a character value in B, and for the split
characters on the split classes this value will be corrected according to the above
theorem.

wld.irreducibles[1] [1]:= function(n, alpha, pi)
local delta, val;

if not IsList(alpha[2]) then
delta:= [alphal1], alphal[1]];
if not IsList(pi[2]) then
val:= wlb.irreducibles[1] [1] (n, delta, [pil[1], [11)/2;
if alpha[2] = pi[2] then
val:= val + 2" (Length(pi[1])-1) *
sym.irreducibles[1] [1] (n/2, alphal1l], pil[1]1/2);
else
val:= val - 2" (Length(pi[1])-1) *
sym.irreducibles[1] [1] (n/2, alphal1l]l, pil[1]1/2);
fi;
else
val:= wlb.irreducibles[1] [1] (n, delta, pi)/2;
fi;
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11;

192, centralizers

wlb.irreducibles[1] [1](n, alpha, [pil1],

wlb.irreducibles[1] [1] (n, alpha, pi);

"W(D4)", order

val:
else
val:
= CharTableSpecialized(wld, 4);

if not IsList(pi[2]) then

else
fi;
fi;
return val;
gap> d4:
rec( name

end;
As an example we can now compute and display the character table of the Weyl

group of type Djy.
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[1, 6, 1, 12, 24, 12, 6, 6, 12, 32, 32,
CharTableOps )

"computed using generic character table for Weyl groups\

24, 24 ], operations

gap> TestCharTable(d4) ;

of type D", classes
true

], text



gap> DisplayCharTable(d4) ;
W(D4)

la 2a 2b 2c 4a 2d 2e 2f 4b 3a 6a 4c 4d
2P 1a l1la la l1la 2a la la la 2b 3a 3a 2e 2f
3P 1la 2a 2b 2c 4a 2d 2e 2f 4b la 2b 4c 4d

X.1 3-1 3-1 1-1 3-1-1 -1 1
X.2 3-1 3-1 1-1-1 3-1 1 -1
X.3 4 . -4 -2 2 . 1 -1

X.4 i 1 1-1-1-1 11 1 1 1-1-1
X.5 6 -2 6 -2 -2 2 .

X.6 8 -8 -1 1

X.7 3 3 3-1-1-1-1-1-1 1 1
X.8 3-1 3 1-1 1 3-1-1 1 -1
X.9 3-1 3 1-1 1-1 3-1 -1 1
X.10 2 2 2 .02 2 2-1-1

X.11 4 . -4 2 -2 . 1 -1

X112 3 3 3 1 1 1-1-1-1 -1 -1
X.13 i 1111111 111 11

The computation of the character table of the Weyl group of type Dg (with 37
classes) needs half a minute.

gap> d6:= CharTableSpecialized(wld, 6);; time;

30850

The record wld is called CharTableWeylD in the GAP library. This record will be
used by the function CharTable to compute a character table if it is called with first
argument "WeylD". Try to find a way how the fast computation of character values
in B,, can be used in case D.

6 Cases E, F, G: Exceptional Weyl Groups.

There are five irreducible Weyl groups we have not covered yet. However, since this
is a (rather) finite set we can treat them one by one. For each of these groups we
will present a function which recovers the table from the GAP library. Moreover
this function will for each irreducible character of the table add some information in
the record field irredinfo which identifies the irreducible character with its label
in Carter’s book [2] (p. 411 ff.).

Such a label consists of two integers, the degree of the character and the first occur-
rence of the character as constituent in a symmetric power of the reflection character.
The reflection character may be recognized from the character table as the character
satisfying the following two conditions. Its degree d is the rank of the Weyl group
(e.g. 6 in the case of Fg) and there is a class of involutions with character value
d — 2 (since the generating reflections of the Weyl group have eigenvalues 1 and one
eigenvalue —1 in the reflection representation).

A quite efficient way to compute these labels is given by the concept of Molien
series. The Molien series My, ,(2) in the ring of formal power series over the integers
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is defined to be the generating function of the multiplicities of x as constituent of
the d-th symmetric power 9@ of ¢ and according to Molien can be computed as
(see [7], p. 230)

_ (=D)Y & x(g)det D(g)
My (2 ‘(;yjiz det (1 ( ) |Gl iz det(zI — D(g))

where D is a matrix representation with character x and if €1 (D(g)), . . ., €4(1)(D(9))
denote the eigenvalues of D(g) then

(1)
det(zI — D(g)) = [[ (z — ei(D(g))).

=1

The eigenvalues corresponding to a character are determined by the GAP function
Eigenvalues.

The Weyl group of type Fg has order 51.840 and 25 conjugacy classes. It is iso-
morphic to an extension of the simple group Uy (2) by a cyclic group of order two
(see [3], p. 26 and cf. [1], p. 228). The character of the reflection representation is
X.4 and the generating reflections are contained in class 2c. Its character table is
restored by the following GAP function.

wle6:= function()
local i, tbl, 1bl;

tbl:= CharTable("U4(2).2");
tbl.name:= "W(EB)";

1bl:= [0, 36, 9, 1, 25, 10, 5, 17, 4, 16, 2, 20, 6, 12, 3, 15, 8, 7,
8, 5, 11, 4, 13, 6, 10];

for i in [1..Length(1bl)] do
tbl.irredinfo[i] .1label:= [tbl.irreducibles[i][1], 1bl[i]];

od;

return tbl;

end;

The Weyl group of type E7 has order 2.903.040 and 60 conjugacy classes. It is
isomorphic to a direct product of the simple symplectic group Sg(2) with a cyclic
group of order two (see [3], p. 46 and cf. [1], p. 229). If the character table is con-
structed like below then the reflection character is X.4 and the generating reflections
are contained in class 2c. Its character table can be constructed by the following
function.

wle7:= function()
local i, s, c, tbl, 1bl;

CharTable("S6(2)");
CharTable("Cyclic", 2);

tbl:= CharTableDirectProduct(s, c);
tbl.name:= "W(E7)";
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1bl:= [0, 63, 46, 1, 28, 7, 6, 33, 36, 3, 2, 37, 22, 13, 4, 31, 30,
3, 18, 9, 12, 15, 26, 5, 6, 21, 12, 15, 4, 25, 6, 21, 10, 17, 22,
5, 20, 7, 6, 21, 10, 13, 16, 9, 18, 9, 8, 17, 16, 7, 14, 11, 14,
9, 8, 15, 10, 13, 12, 11];

for i in [1..Length(1bl)] do

tbl.irredinfo[i].label:= [tbl.irreducibles[i][1], 1bl[il];

od;

return tbl;

end;

The Weyl group of type Eg has order 696.729.600 and 112 conjugacy classes. It is
isomorphic to 2.0¢ (2).2 (see [3], p. 85 and cf. [1], p. 228). The reflection character is
not uniquely determined by the above conditions. But the character table has a table
automorphism which allows to choose between the characters X.68 and X.69. We
take X.68 as the reflection character. The generating reflections then are contained
in class 2f. The character table of this group is restored by

wle8:= function()
local i, tbl, 1bl;

tbl:= CharTable("2.08+(2).2");
tbl.name:= "W(E8)";

1bl:= [0, 120, 8, 68, 2, 74, 32, 8, 56, 4, 64, 24, 12, 36, 4, 52,
20, 8, 44, 14, 38, 12, 36, 6, 46, 20, 16, 28, 6, 42, 20, 14, 26,
22, 12, 32, 10, 34, 20, 8, 38, 20, 8, 32, 10, 34, 18, 16, 28, 18,
10, 28, 16, 10, 30, 18, 14, 22, 18, 16, 22, 12, 26, 12, 24, 14,
22, 1, 91, 19, 49, 3, 63, 7, 55, 25, 7, 43, 9, 39, 5, 47, 19, 13,
31, 9, 39, 19, 13, 33, 11, 29, 7, 37, 17, 23, 13, 25, 19, 9, 31,
13, 25, 17, 11, 27, 15, 21, 13, 23, 15, 21];

for i in [1..Length(1bl)] do

tbl.irredinfo[i] .label:= [tbl.irreducibles[i] [1], 1bl[il];
od;

return tbl;

end;
The Weyl group of type Fj is a solvable group of order 1.152. It has 25 conjugacy
classes and its character table is accessible via the name "W(F4)". The reflection
character can be chosen to be X.17. The generating reflections then lie in classes
2d and 2f.

wlfd:= function()

local i, tbl, 1bl;

tbl:= CharTable("W(F4)");
tbl.name:= "W(F4)";

1bl:= [0, 24, [12,2], [12,1], [4,1]1, [1e6,2], [4,2], [16,1], 8,
6,11, 6,21, 2, [6,2], [6,1]1, 10, 4, 1, 13, [7,2], [7,1],
(3,11, [9,2], [3,2], [9,1], 5];
for i in [1..Length(1bl)] do
tbl.irredinfo[i] .1label:= [tbl.irreducibles[i][1], 1bl[i]];
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od;

return tbl;

end;
The following sequence of commands will sort this character table in exactly the
same way as it is printed in [2] (p. 413).

gap> f4:= wlf4();;

gap> SortClassesCharTable(f4,

> (4,6,10,8,5,9,7)(12,22,15,25,20,16) (13,23,14,24,19,18,17)) ;;
gap> SortCharactersCharTable(f4,

> (2,4,3)(5,7)(6,8)(10,14,12)(11,15,13) (18,20,19) (21,23) (22,24) ; ;

The Weyl group of type G2 is isomorphic to the dihedral group Dj2 of order 12 with
6 conjugacy classes. Its character table is constructed from the generic character
table for dihedral groups. The character of the reflection representation is X.5 and
and the generating reflections are contained in the classes 2b and 2c.

wlg2:= function()
local i, tbl, 1bl;

tbl:= CharTable("Dihedral", 12);
tbl.name:= "W(G2)";

1bl:= [0, 6, [3,1], [3,2], 1, 2];
for i in [1..Length(1bl)] do

tbl.irredinfo[i].label:= [tbl.irreducibles[i][1], 1bl[il];
od;

return tbl;

end;

The following function will recover the list of labels from one of the above tables.
LabelsWeyl:= function(tbl)

local i, 1bl;
1bl:= [];
for i in tbl.irredinfo do
Add(1bl, i.label);
od;
return 1bl;
end;

Note that by checking these tables for the exceptional Weyl groups and the formulae
in earlier sections the character values of all Weyl groups are rational.
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