
Computing finite soluble quotients

Alice C. Niemeyer

March 1993

Abstract

A finite soluble quotient algorithm which computes power conjugate presentations for finite sol-

uble quotients of finitely presented groups is described. A version of this algorithm has been

implemented in C and is available as the ANU Soluble Quotient Program.



Polycyclic presentations are a natural way of describing polycyclic groups as they exhibit

a polycyclic series of the group. From a computational point of view they are also very useful,

since they allow the computation (by collection) of a normal word for every element in the

group. This enables the computation of products and inverses of group elements. Algorithms

using such descriptions for polycyclic groups are an integral part of the computational group

theory systems Cayley (Cannon, 1984) and GAP (Schönert et al., 1993). Not every soluble

group is polycyclic, but every finite soluble group is polycyclic. Baumslag, Cannonito, and

Miller (1981a, 1981b) describe an algorithm which decides whether a given soluble group is

polycyclic. It has been partly implemented by Sims (1990).

In this paper attention is restricted to finite soluble groups. Often a finite soluble group

arises as a quotient of a finitely presented group. The task of a soluble quotient algorithm is

to compute a polycyclic presentation for such a quotient. Clearly there are soluble quotient

algorithms, but the problem is to describe an algorithm performing well in practice. A number

of proposals for a finite soluble quotient algorithm have been made – these include those by

Wamsley (1977), Leedham-Green (1984) and Plesken (1987). The latter has been developed,

analysed and implemented by Wegner (1992).

Here the aim is to outline a new finite soluble quotient algorithm which computes a

power conjugate presentation for a finite soluble quotient of a finitely presented group. New

features are the use of a vector enumerator and the intermediate presentations considered.

With respect to the latter it has some similarities to the p -quotient algorithm (Havas &

Newman, 1980) and the nilpotent quotient algorithm (Nickel, in preparation). A version of

this algorithm has been implemented in C and is available as the ANU Soluble Quotient

Program. A more detailed description (including proofs) of the algorithm is in preparation.

The attention now is on the details of the algorithm. To begin with the kinds of polycyclic

presentations to be considered are described more precisely. Let G be a finite soluble group

and let the series G = G0 ≥ G1 ≥ · · · ≥ Gn = {1} be a composition series for G with cyclic

factors of prime order. Choose elements ai ∈ G for 1 ≤ i ≤ n such that Gi−1 = 〈Gi, ai〉; let

pi be the order of the factor Gi−1/Gi. Then A = {a1, . . . , an} is a generating set for G and

the set

R = {api

i = vii, a
aj

k = vjk | 1 ≤ i ≤ n, 1 ≤ j < k ≤ n},

where vij is a word in the generators aj+1, . . . , an, is a defining set of relations for G.

The presentation {A | R} is called a power conjugate presentation for G. On the other

1



hand, a power conjugate presentation {A | R} of a group G exhibits the composition series

G = G0 ≥ G1 ≥ · · · ≥ Gn = 〈1〉, where Gi−1 = 〈ai, . . . , an〉 for 1 ≤ i ≤ n. A word

w(a1, . . . , an) in the generators is normal if it is of the form ae11 · · · aenn with 0 ≤ ei < pi.

Collection relative to a power conjugate presentation (see e.g. Leedham-Green & Soicher,

1990) consists of computing a normal word representing the same element of G as a given

arbitrary word in the generators. Multiplication of two elements of G amounts to computing

a normal word for their product, given by concatenation, and the inversion of a group element

amounts to computing a normal word for its formal inverse. In general, there may exist many

normal words representing a given group element. If the normal word is unique, the power

conjugate presentation is consistent. In this case two group elements are equal only if they

are represented by the same normal word. For the finite soluble group G the order is then
∏n

i=1 pi. It will be assumed from now on that the words vij in a power conjugate presentation

are normal.

Let G be a group and p a prime. The series G = Pp
0 (G) ≥ Pp

1 (G) ≥ · · · with

Pp
i (G) = [Pp

i−1(G), G]
(

Pp
i−1(G)

)p
for i ≥ 1 is called the lower exponent-p central series

of G. If there exists an integer c ≥ 0 such that Pp
c (G) = 〈1〉, then the smallest such integer

is called the exponent-p class of G.

Those finite soluble quotients of a finitely presented group G for which the algorithm

to be presented computes a power conjugate presentation are described now more pre-

cisely. Let L = [(p1, c1), . . . , (pk, ck)] be a list of pairs consisting of a prime, pi, and a

non-negative integer, ci, with pi 6= pi+1. For 1 ≤ i ≤ k and 0 ≤ j ≤ ci define the list

Li,j = [(p1, c1), . . . , (pi−1, ci−1), (pi, j)]. Define L1,0(G) = G. For 1 ≤ i ≤ k and 1 ≤ j ≤ ci

define the subgroups

Li,j(G) = Ppi

j (Li,0(G))

and for 1 ≤ i < k define the subgroups

Li+1,0(G) = Li,ci
(G)

and L(G) = Lk,ck
(G). Note that for j < ci

Li,j(G) ≥ Li,j+1(G).

The chain of subgroups

G = L1,0(G) ≥ L1,1(G) ≥ · · · ≥ L1,c1
(G) = L2,0(G) ≥ · · · ≥ Lk,ck

(G) = L(G)

2



is called the soluble L-series of G. For a given i the series Li,0(G) ≥ · · · ≥ Li,ci
(G) is

an initial segment of the lower exponent-p central series of Li,0(G) and Li,0(G)/Li,ci
(G)

is a pi -group of exponent pi -class at most ci. The soluble quotient algorithm presented

here computes a power conjugate presentation for the quotient G/L(G) which exhibits a

composition series of this quotient which is a refinement of the soluble L -series.

For mathematical and algorithmic reasons power conjugate presentations with an added

feature are considered. Let {A | R} be a power conjugate presentation for a finite soluble

group H with A = {a1, . . . , an}. Let d be the minimal number of generators in A required

to generate H. Assume there exists a d -element subset X of A such that X generates H

and for each generator a ∈ A\X there is at least one relation of R having a as the last

generator on the right hand side and occurring with exponent 1. Choose exactly one of these

relations and call it the definition of a. The presentation {A | R} together with chosen

definitions for the generator in A\X is called labelled. Let G be a group with generating set

{g1, . . . , gb} and τ an epimorphism of G onto H. For i = 1, . . . , b let wi be the normal word

equivalent to τ(gi). If a ∈ X is the last generator in at least one wi occurring with exponent

1 and we have chosen one such wi, we call this the definition of a. For each a ∈ X there is a

maximal k and a maximal c such that a ∈ Lk,c(H). We call τ a labelled epimorphism if each

generator a ∈ X has a definition τ(gi) = wi and a is the only generator which occurs in wi

and does lie in Lk,c(H). If {A | R} is a labelled power conjugate presentation for the group

H and τ a labelled epimorphism from G to H, then every generator in A has a definition

either as an image under τ or as a relation in R. Further we can read off a preimage in G

for each a ∈ A under τ. Thus we can compute a preimage in H for each g ∈ G under τ.

Now the input and output of the finite soluble quotient algorithm are given precisely.

The finite soluble quotient algorithm described here takes as input:

1) a finite presentation {g1, . . . , gb | r1(g1, . . . , gb), . . . , rm(g1, . . . , gb)} for a group G ;

2) a list L = [(p1, c1), . . . , (pk, ck)], where pi is a prime, pi 6= pi+1 and ci a positive integer.

The output is:

1) a labelled power conjugate presentation for H = G/L(G) exhibiting a composition series

refining the soluble L -series of this quotient;

2) a labelled epimorphism τ : G։H.

Our algorithm proceeds by computing power conjugate presentations for the quotients

G/Li,j(G) in turn. Without loss of generality assume that so far a power conjugate pre-

sentation for G/Li,j(G) has been computed for j < ci. We compute a power conjugate

3



presentation for G/Li,j+1(G). The group Li,j(G)/Li,j+1(G) is a pi -group. The basic step

takes as input:

1) the finite presentation for G;

2) a labelled power conjugate presentation for the finite soluble quotient K ∼= G/Li,j(G)

of G with j < ci which refines the L -series of K.

3) a labelled epimorphism θ : G։K.

The output is:

1) a labelled power conjugate presentation for the finite soluble group G/Li,j+1(G), denoted

by H, exhibiting a composition series refining the L -series of H;

2) an epimorphism φ : H։K;

3) a labelled epimorphism τ : G։H with τφ = θ.

If during the basic step it is discovered that Li,j(G) = Li,j+1(G), then Li+1,0(G) is set

to Li,j(G).

The basic step is illustrated by the following diagram, where the input is described on

the left and the output is described on the right. Put p = pi, let P denote Li,0(K), and P̂

denote Li,0(H). If j = 0 then P is trivial. The elementary abelian p -group kerφ is denoted

by M. The group P̂ acts trivially on M, thus P̂ is a central extension of P by M, and P̂

is a p -group of exponent-p class at most one larger than the exponent-p class of P.

θ φ τ

G K H G

P θ−1

P P̂ P τ−1

ker θ 〈1〉 M

〈1〉 ker τ

The basic step is now described in more detail. Let {A | R} be the input consistent

power conjugate presentation for K, where A = {a1, . . . , an} and

R = {api

i = vii, a
aj

k = vjk | 1 ≤ i ≤ n, 1 ≤ j < k ≤ n}.

Then {A | R} is a power conjugate presentation for K with respect to a composition series

which refines the soluble L -series. Therefore there is an r such that {a1P, . . . , arP} generates

4



K/P and {ar+1, . . . , an} generates P. In order to obtain a power conjugate presentation for

H a presentation {Â | R̂} for an extension, K̂, of K which has H as a factor group,

is determined first. The group K̂ can be viewed as a generalised covering group and the

presentation {Â | R̂} as a generalised power conjugate presentation. Let s be the sum of the

number of relations in R which are not definitions and the number of generators of G whose

images under θ are not definitions. Note that s = (n− 1)n/2 + b. Introduce new generators

{y1, . . . , ys} and define Â = {a1, . . . , an} ∪ {y1, . . . , ys}. We obtain R̂ in the following way:

1) initialise R̂ to contain all relations of R which are definitions;

2) modify each non-defining relation u = v of R to read u = vyt for some t ∈ {1, . . . , s}

and add the modified relation to R̂, different non-defining relations are modified by

different yt ;

3) add all relations of the form [yi, y
g
j ] = 1 for all normal g = w(a1, . . . , ar) and all relations

ypi = 1 to R̂ for 1 ≤ i, j ≤ s;

4) add all relations y
aj

i = yi for j > r to R̂ for 1 ≤ i ≤ s.

Define a map σ from {g1, . . . , gb} to the group K̂ by gσi = gθi yt if gθi is non-defining and

gσi = gθi if gθi is defining. This uses up the remaining elements of {y1, . . . , ys}.

The subgroup M = kerφ can be characterised as follows. It is the maximal F p K -

module by which K can be extended so that P acts trivially on M and the extension is an

epimorphic image of G and, where P is non-trivial, has the same generator number as K.

Thus M is an F p (K/P )-module. Let Y be the free F p (K/P )-module on {y1, . . . , ys}. Then

M is a homomorphic image of Y. The kernel of the homomorphism from Y onto M can be

computed effectively. In order to see this, the group K̂ is studied in more detail. Consider

the subgroup 〈y1, . . . , ys〉 of K̂ embedded into the additive group of Y.

One can collect in the group K̂ relative to {Â | R̂}. The definition of a normal word can

be generalised for this presentation in the following way. A word in Â is normal if it is of

the form w(a1, . . . , an) ·Π
s
i=1y

fi
i , where w(a1, . . . , an) is a normal word in {a1, . . . , an} and

fi is an element of F p (K/P ). The following steps can be applied to any non-normal word in

K̂.

1) replace a word yfj y
f ′

i with f, f ′ ∈ F p (K/P ) and i < j by the word yf
′

i yfj ;

2) replace a word yfi y
f ′

i with f, f ′ ∈ F p (K/P ) by the word yf+f ′

i ;

3) replace a word yfj ai with f ∈ F p (K/P ) by the word aiy
(fai)
j ;

4) replace a word api

i for 1 ≤ i ≤ n by the word v, where api

i = v is a relation in R̂;

5) replace a word ajai for i < j by the word aiv, where aai

j = v is a relation in R̂.

5



In each step a word is replaced by a word representing the same element of K̂. After applying

a finite number of these steps to any non-normal word it is replaced by a normal word. Rules

1), 2) and 3) use the fact that Y is an F p (K/P )-module. Note that 4) and 5) resemble

collection steps in a collection algorithm, where the power conjugate presentation is used to

determine the replacement.

The following theorem, which is sometimes referred to as the “Consistency Theorem”,

allows us to describe the kernel of the homomorphism from Y onto M in a way suitable for

computation. It considers certain non-normal words in K̂. A non-normal word containing

subwords in parentheses is replaced by a normal word by a collection process which applies

at least one collection step to each subword in parentheses before proceeding. A non-normal

word containing subwords in square brackets is replaced by a normal word by a collection

process which replaces the subwords in square brackets by normal words before proceeding.

Theorem

Let Y be the free F p (K/P )-module on {y1, . . . , ys} and {Â | R̂} the presentation for the

extension K̂ of K as defined above. Let S be the set of elements of Y obtained by collecting

[

(ak aj) ai
] [

ak (aj ai)
]

−1
for 1 ≤ i < j < k ≤ n,

[

(apk) aj
] [

ap−1
k (ak aj)

]

−1
for 1 ≤ j < k ≤ n,

[

(aj ai) a
p−1
i

] [

aj (a
p
i )
]

−1
for 1 ≤ i < j ≤ n,

[

(api ) ai
] [

ai (a
p
i )
]

−1
for 1 ≤ i ≤ n.

Let T = {ri(g
σ
1 , . . . , g

σ
b ) | 1 ≤ i ≤ m} be the set of elements of Y obtained by evaluating the

relators of G in the images of the generators of G under the map σ.

M is isomorphic to Y/(S ∪ T ) F p (K/P ).

A proof for a very similar theorem can be found in Sims (to appear).

The technique of vector enumeration is used to compute a basis for the F p (K/P )-module

M needed to obtain a power conjugate presentation for F/S. Its use in this context has been

suggested by Leedham-Green (private communication, 1991). Here an implementation of

such an algorithm, called vector enumerator, developed by Linton (1991) is used. In this

context his vector enumerator takes as input a consistent power conjugate presentation for

K, the set of free generators for Y, and the set S ∪ T. The output is an F p -basis for M ; an

expression in this basis for the image under the generators of K/P of any basis element; and

6



expressions for the images of the F p (K/P )-generators of Y in terms of the basis elements.

This output is used to obtain a consistent power conjugate presentation for the extension H

of K by M, an epimorphism τ from G to H and an epimorphism φ from H to K. In some

cases additional work is necessary to transform the presentation and the epimorphism τ into

a labelled presentation and a labelled epimorphism.

The ANU Soluble Quotient Program is an implementation of this algorithm written in

C. It is available from the author. The table below gives the results of sample runs of the

program. Under “Order” the order of the computed soluble quotient is listed and under

“Time” the cpu time in seconds that the algorithm took on a Sparc Station 10/31 is given.

Presentation L Order Time

{a, b | a3, b6, (ab)6, (a−1b)6} [(3, 2), (2, 2)] 2182 · 33 218

{a, b | (ab)2b−6, a4b−1ab−9a−1b} [(2, 1), (3, 1), (2, 2), (3, 2)] 24 · 34 59

{a, b | ab2(ab−1)2, (a2b)2a−1ba2(bab)−1} [(3, 1), (2, 2), (5, 2)] 23 · 3 · 53 77

{a, b | ab2a−1b−1a3b−1, ba2b−1a−1b3a−1} [(3, 2), (2, 2)] 28 · 33 2

In the first example 134 seconds of the 218 seconds were spent in the vector enumerator.

Acknowledgments: I thank Dr L.G. Kovács, Dr C.R. Leedham-Green, Dr M.F. Newman,

Dr Werner Nickel and Dr E.A. O’Brien for many encouraging discussions and generous help.

References

G. Baumslag, C.F. Miller III, F.B. Cannonito (1981a), “Computable algebra and group em-

beddings.”, J. Algebra, 69, 186–212.

G. Baumslag, C.F. Miller III, F.B. Cannonito (1981b), “Some recognizable properties of

solvable groups”, Math. Z., 178, 289–295.

John J. Cannon (1984), “An Introduction to the Group Theory Language, Cayley”, Com-

putational Group Theory, (Durham, 1982), pp. 145–183. Academic Press, London, New

York.

George Havas and M.F. Newman (1980), “Application of computers to questions like those

of Burnside”, Burnside Groups, Lecture Notes in Math., 806, (Bielefeld, 1977), pp.

211–230. Springer-Verlag, Berlin, Heidelberg, New York.

C.R. Leedham-Green (1984), “A Soluble Group Algorithm”, Computational Group Theory,

(Durham, 1982), pp. 85–101. Academic Press, London, New York.

7



C.R. Leedham-Green and L.H. Soicher (1990), “Collection from the left and other strategies”,

J. Symbolic Comput., 9, 665–675.

S.A. Linton (1991), “Constructing Matrix Representations of Finitely Presented Groups”, J.

Symbolic Comput., 12(4 & 5), 427–438.

Werner Nickel (in preparation), “A Nilpotent Quotient Algorithm”.

W. Plesken (1987), “Towards a Soluble Quotient Algorithm”, J. Symbolic Comput., 4, 111–

122.

Martin Schönert et al. (1993), GAP – Groups, Algorithms and Programming, version 3 re-

lease 2. RWTH, Aachen: Lehrstuhl D für Mathematik.

Charles C. Sims (1990), “Implementing the Baumslag-Cannonito-Miller Polycyclic Quotient

Algorithm”, J. Symbolic Comput., 9(5 & 6), 707–723.

Charles C. Sims (1994), Computing with finitely presented groups. Cambridge University

Press.

J.W. Wamsley (1977), “Computing soluble groups”, A. Dold & B. Eckmann (Eds.), Group

Theory, Lecture Notes in Math., 573, (Canberra 1975), pp. 118–125. Springer-Verlag,

Berlin, Heidelberg, New York.

Alexander Wegner (1992), The Construction of Finite Soluble Factor Groups of Finitely

Presented Groups and its Application, PhD thesis. St. Andrews.

Alice C. Niemeyer

alice@pell.anu.edu.au

School of Mathematical Sciences

Australian National University

Canberra ACT 0200

Australia.

8


