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Abstract

An algorithm computing power conjugate presentations for finite soluble quo-

tients of finitely presented groups is described. An implementation of this algo-

rithm is available.

1 Introduction

Polycyclic groups are characterised by the fact that they have a polycyclic

series, which is a descending series of subgroups, such that each one is normal in

the previous one and their quotient is cyclic (see Segal, 1983, or for computational

aspects Sims, 1994). Polycyclic presentations describe polycyclic groups by ex-

hibiting a polycyclic series of the group. They are very important for computing

in the group since they allow the practical computation (by collection) of a normal

word for every element in the group. Algorithms using such descriptions for finite

polycyclic groups are, for example, described in Laue et al. (1984) and form an

integral part of the computational group theory systems Cayley (Cannon, 1984)

and GAP (Schönert et al., 1993).

Every polycyclic group is soluble and every finite soluble group is polycyclic.

However not every soluble group is polycyclic. Baumslag, Cannonito, and Miller

(1981a, 1981b) describe an algorithm which decides whether a soluble group given

by a finite presentation is polycyclic. It has been partly implemented by Sims

(1990). Here attention is focused on finite soluble groups. Polycyclic presentations

for finite soluble groups are better known as power conjugate presentations.

The task of a finite soluble quotient algorithm is to compute power conjugate

presentations for finite soluble groups described as quotients of finitely presented

groups. A number of proposals for finite soluble quotient algorithms have been

made, for instance by Wamsley (1977), by Leedham-Green (1984) and by Plesken

(1987). The last algorithm has been developed, analysed and implemented by

Wegner (1992).

Algorithms for computing power conjugate presentations for p -groups or for

nilpotent groups described as quotients of finitely presented groups exist. For p -

groups see for example Havas and Newman (1980) or Celler et al. (1993) and for

nilpotent groups see Sims (1994) or Nickel (in preparation).

Here a new finite soluble quotient algorithm is presented in detail. For a brief

description of the algorithm see Niemeyer (to appear). New features are the use

of vector enumeration and the intermediate presentations considered.

We now turn to the background required for the description of the algorithm.

Let G be a finite soluble group and let G = G0 ≥ G1 ≥ · · · ≥ Gn = {1} be a
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composition series for G with factors of prime order. Choose elements ai ∈ G for

1 ≤ i ≤ n such that Gi−1 = 〈Gi, ai〉; let pi be the order of the factor Gi−1/Gi.

Then A = {a1, . . . , an} is a generating set for G. Choose words vjk in the elements

aj+1, . . . , an for 1 ≤ j ≤ k ≤ n such that api

i = vii for 1 ≤ i ≤ n and a
aj

k = vjk
for 1 ≤ j < k ≤ n and let R be the set consisting of these relations. Then R is

a defining set of relations for G. The presentation {A | R} is a power conjugate

presentation for G. A power conjugate presentation {A | R} of a group G exhibits

the composition series G = G0 ≥ G1 ≥ · · · ≥ Gn = 〈1〉, where Gi−1 = 〈ai, . . . , an〉

for 1 ≤ i ≤ n. The order of G is at most
∏n

i=1 pi and therefore G is finite. A

word w(a1, . . . , an) in the generators is normal if it is of the form ae11 · · · aenn with

0 ≤ ei < pi. Note that we only consider words in the elements of A, that is these

words do not contain inverses of the generators.

In what follows “word” means semigroup word. A normal word u in A

is equivalent to a word w in A if u and w are the same element of the group

defined by {A | R}. The fundamental importance of power conjugate presentations

arises from the observation that, given a word w in the generators A, the power

conjugate presentation {A | R} can be used to compute an equivalent normal

word. It is assumed that the words vjk in a power conjugate presentation are

normal. If the right hand side of some relation is the identity then the relation is

written as a relator by just listing the left hand side.

If a word is not normal it has a non-normal subword minimal in the partially

ordered set of non-normal words. This subword is of the form api or of the form

ajai with j > i . Collection of a word consists of a sequence of steps each of which

chooses a minimal non-normal subword and replaces it. A subword of the form

api is replaced by vii and a
aj

k is replaced by akvjk (see also Celler et al., 1993).

For normal words the sequence of collection steps is empty. Otherwise a minimal

non-normal subword is chosen and replaced. Each further step is applied to the

result of the previous step. The words resulting from these steps are equivalent to

the given word. For an account of collection see for example Havas and Nicholson

(1976), or Leedham-Green and Soicher (1990).

A fundamental result is that every collection (independent of the choices of

minimal non-normal subwords) of a non-normal word results in a normal word after

a finite number of steps (see for example Sims, 1994). A normal word resulting

from collecting the word w will be denoted (w ); it may depend upon the choices

made in the process. Multiplication of two elements of G amounts to computing

a normal word for the product given by concatenation.

In general, there may exist many normal words representing a given group

element. If each element is represented by a unique normal word, then the power

conjugate presentation is consistent. In this case two group elements are equal

only if they are represented by the same normal word. For the finite soluble group

G, given as above, the order is then equal to
∏n

i=1 pi.
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The following result is due to Wamsley (1977). In summary it states that

a power conjugate presentation is consistent if certain words, called consistency

test words, can be collected in “sufficiently different” ways and still yield the same

normal word. These consistency test words are ak ajai with 1 ≤ i < j < k ≤ n,

apkaj , with 1 ≤ j < k ≤ n, aja
p
i , with 1 ≤ i < j ≤ n, and ap+1

i with 1 ≤ i ≤ n.

Theorem 1 Let G be a finite soluble group given by the power conjugate pre-

sentation {A | R}. Then the presentation {A | R} is consistent if and only if the

following equations hold:

(

(ak aj) ai
)

=
(

ak (aj ai)
)

for 1 ≤ i < j < k ≤ n,
(

(apk) aj
)

=
(

ap−1
k (ak aj)

)

for 1 ≤ j < k ≤ n,
(

(aj ai) a
p−1
i

)

=
(

aj (a
p
i )
)

for 1 ≤ i < j ≤ n,
(

(api ) ai
)

=
(

ai (a
p
i )
)

for 1 ≤ i ≤ n.

In practice we are interested in describing groups by consistent power conju-

gate presentations. In this context power conjugate presentations which exhibit

a refinement of a specific series of a given group are considered. The algorithm

described here can be viewed as a generalisation of the prime quotient algorithm

described by Havas and Newman (1980) and by Celler et al. (1993). Let G be a

group and p a prime. The prime quotient algorithm works with a series

G = Pp
0 (G) ≥ Pp

1 (G) ≥ · · · with Pp
i (G) = [Pp

i−1(G), G]
(

Pp
i−1(G)

)p
for i ≥ 1

called the lower exponent-p central series of G. If there exists an integer c ≥ 0

such that Pp
c (G) = 〈1〉, then G is a p -group and the smallest such integer is

called the exponent-p class of G. It repeats a basic step which, given a consistent

power conjugate presentation of G/Pi(G), computes a consistent power conjugate

presentation of G/Pi+1(G).

In the next section a series is defined that takes the role of the lower exponent-

p central series in the context of finite soluble groups. The power conjugate pre-

sentations exhibiting this series are described.

2 The soluble L-series

Let G be a group. Let L = [(p1, c1), . . . , (pk, ck)] be a list of pairs con-

sisting of a prime, pi, and a non-negative integer, ci, with pi 6= pi+1 and

ci positive for i < k. For 1 ≤ i ≤ k and 0 ≤ j ≤ ci define the list

Li,j = [(p1, c1), . . . , (pi−1, ci−1), (pi, j)]. Set L1,0(G) = G. For 1 ≤ i ≤ k and

1 ≤ j ≤ ci let

Li,j(G) = Ppi

j (Li,0(G))
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and for 1 ≤ i < k let

Li+1,0(G) = Li,ci
(G)

and L(G) = Lk,ck
(G). Note that Li,j(G) ≥ Li,j+1(G) holds for j < ci.

The chain of subgroups

G = L1,0(G) ≥ L1,1(G) ≥ · · · ≥ L1,c1
(G) = L2,0(G) ≥ · · · ≥ Lk,ck

(G) = L(G)

is called the L-series of G. If L(G) = 〈1〉 then G is an L-group. If ck > 0 and

L̃(G) 6= 〈1〉 for L̃ = [(p1, c1), . . . , (pk, ck − 1)] then G is a strict L-group.

Note that in the definition of strict L -group the exponent-pk class of Lk,0(G)

is determined but not necessarily the exponent-pi class of Li,0(G). For every finite

soluble group G there exists a (not necessarily unique) list L such that G is a

strict L -group.

For a given i the series Li,0(G) ≥ · · · ≥ Li,ci
(G) is an initial segment of the

lower exponent-pi central series of Li,0(G) and Li,0(G)/Li,ci
(G) is a pi -group of

exponent-pi class at most ci.

We use the following notation.

L+p =

{

[(p1, c1), . . . , (pk, ck + 1)] if p = pk,

[(p1, c1), . . . , (pk, ck), (p, 1)] if p 6= pk.

Then L(G)/L+p(G) is an elementary abelian p -group. Further

L−p =

{

[(p1, c1), . . . , (pk−1, ck−1)] if p = pk,

[(p1, c1), . . . , (pk, ck)] if p 6= pk.

Let {A | R} be a power conjugate presentation for a finite soluble group H

with A = {a1, . . . , an}. Let d be the minimal number of generators in A required

to generate H. Assume there exists a d -element subset X of A such that X

generates H and for each generator a ∈ A\X there is at least one relation of R

having a as the last generator on the right hand side and occurring with exponent

1. Choose exactly one of these relations and call it the definition of a. The fact

that this relation is the definition of a is emphasised by using ’=:’ instead of ’=’ in

the relation. The colon is on the same side of the relation as the generator defined

by this relation. The presentation {A | R} together with chosen definitions for

the generator in A\X is called labelled. Let G be a group with generating set

{g1, . . . , gb} and τ an epimorphism of G onto H. For i = 1, . . . , b let wi be the

normal word equivalent to τ(gi). If a ∈ X is the last generator in at least one wi

occurring with exponent 1 and we have chosen one such wi, we write τ(gi) =: wi

and call this the definition of a. For each a ∈ X there is a maximal k and

a maximal c such that a ∈ Lk,c(H). We call τ a labelled epimorphism if each
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generator a ∈ X has a definition τ(gi) =: wi and a is the only generator which

occurs in wi and does lie in Lk,c(H). If {A | R} is a labelled power conjugate

presentation for the group H and τ a labelled epimorphism from G to H, then

every generator in A has a definition either as an image under τ or as a relation

in R. Further we can read off a preimage in G for each a ∈ A under τ. Thus

we can compute a preimage in H for each g ∈ G under τ. The cardinality of X

is called the generator number of G with respect to {A | R} . Even though the

generator number depends on the power conjugate presentation the reference to

the presentation is often omitted.

The following is a labelled consistent power conjugate presentation for S4,

the symmetric group on 4 letters:

{ a, b, c, d | a2 =: c,

ba = b2c, b3,

ca = c, cb =: d, c2,

da = cd, db = cd, dc = d, d2 }.

The relations a2 = c and cb = d are the definitions of c and d, respectively. Note

that this notation implicitly characterises the set X as the subset of A whose

elements do not occur as the last element of a right hand side of a definition. In

the example, X is the set {a, b}.

Consider the group G having the finite presentation

{x, y | x8, y3, (x−1y)2, (yx3yx)2 = x4}.

Then the map τ from G to S4 defined by τ(x) =: a and τ(y) =: b is a labelled

epimorphism. The elements of X have definitions as images of τ, whereas the other

elements in A have definitions in the relations of the power conjugate presentation

for S4.

3 The L-covering group

Let L be the list [(p1, c1), . . . , (pk, ck)], where ci is a non-negative integer for

1 ≤ i ≤ k, and let K be an L -group with generator number d. Let F be the free

group of rank d and let θ be an epimorphism of F onto K. Let p be a prime and

denote L−p(K) by P and let FP be the preimage in F of P under θ.

Let K be a finite strict L -group with generator number d. A group H is a

p-descendant of K if H has generator number d and H is an L̃ -group, where for

some non-negative integer n

L̃ =

{

[(p1, c1), . . . , (pk, ck + n)], if p = pk,

[(p1, c1), . . . , (pk, ck), (p, n)] if p 6= pk.
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and L̃−p(H) is isomorphic to K. If H is a strict L+p group, that is n = 1, then

H is an immediate p-descendant of K.

Note that if K is a p -group these definitions are the same as in O’Brien

(1990).

Theorem 2 Let K be a finite strict L-group with generator number d and p

a prime. There exists an L+p -group K̂ with generator number d such that every

immediate p-descendant of K is isomorphic to a quotient of K̂.

Proof: Let F be the free group of rank d and let R be the kernel of the epi-

morphism θ of F onto K. Let FP be the preimage under θ in F of P = L−p(K).

Define S to be [R,FP ]R
p and define the group K̂ to be F/S. Then S ≤ R and

K̂ is a d -generator group. Let H be an immediate p -descendant of K and let

ν be an epimorphism of H onto K. Then there exists an epimorphism θ̂ from

F to H such that θ̂ν = θ. Since Rθ̂ ≤ ker ν it follows that Rθ̂ is an elementary

abelian p -subgroup of H, which is central in FP θ̂. Hence Sθ̂ = [Rθ̂, FP θ̂](Rθ̂)p is

the identity in H and thus H is a homomorphic image of F/S.

If p is not pk then P is the identity and FP is R. Therefore S = [R,R]Rp

and R/S is the relation module of F/R (see Gruenberg, 1976).

The group K̂ = F/S with S = [R,FP ]R
p is the L-covering group of K with

respect to the prime p. A consistent power conjugate presentation {Â | R̂} for K̂

is an L-covering presentation of {A | R}.

It should always be clear from the context which prime p is chosen. Therefore

K̂ is called the L -covering group of K without reference to p. If L is the list [(p, c)]

then an L -group K is a p -group and the L -covering group K̂ is the p -covering

group K∗ of K. O’Brien (1990) shows that K∗ is isomorphic to F/[R,F ]Rp.

The L -covering group F/S is the largest extension of F/R by an elemen-

tary abelian p -group such that the extension has the same generator number as

F/R and FP /R acts trivially on the elementary abelian p -group. Note that the

generator number of FP /S may be larger than the generator number of FP /R.

The p -covering group (FP /R)∗ of FP /R is the largest extension of FP /R by an

elementary abelian p -group which has the same generator number as FP /R and

FP /R acts trivially on the elementary abelian p -group.

The following theorem asserts that the isomorphism type of F/S is indepen-

dent of the choice of the homomorphism θ from F to K and thereby independent

of its kernel R. It is valid also for the case that L−p(F/R) is trivial.

Theorem 3 Let R1 and R2 be normal subgroups of F such that F/R1 and

F/R2 are L-groups. Furthermore, let U1 and U2 be subgroups of F such that for

i ∈ {1, 2}
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1) Ri ≤ Ui,

2) Ui/Ri ≤ L−p(FP /Ri),

3) Ui/Ri is characteristic in F/Ri,

and there exists an isomorphism ϕ of F/R1 onto F/R2, which maps U1/R1 onto

U2/R2. Then F/[R1, U1]R
p
1 is isomorphic to F/[R2, U2]R

p
2 by an isomorphism

which takes R1/S1 to R2/S2 and U1/S1 to U2/S2.

Proof: Let {a1, . . . , ad} be a free generating set for F. Define Si to be

[Ri, Ui]R
p
i for i ∈ {1, 2}. Let ν be the canonical epimorphism of F/S1 onto

F/R1. Then νϕ is an epimorphism from F/S1 onto F/R2. Let bi ∈ F such that

(biS1)νϕ = aiR2. Define a homomorphism ρ : F → F/S1 mapping ai to biS1.

The map ρνϕ is an epimorphism from F onto F/R2. Since ρνϕ agrees on each

ai with the natural projection of F onto F/R2 and since the ai generate F,

ρνϕ is the natural projection. Thus R2ρνϕ = 1, and R2ρ ≤ ker νϕ = R1/S1

and U2ρνϕ = U2/R2, so U2ρ ≤ (U2/R2)ϕ
−1ν−1 = (U1/R1)ϕ

−1 = U1/S1. It fol-

lows that S2ρ = ([R2, U2]R2
p)ρ is a subgroup of [R1/S1, U1/S1](R1/S1)

p. Since

the elements of R1/S1 are of order p and commute with U1/S1, we have that

S2 ≤ ker ρ. Hence F/S1 is isomorphic to a factor group of F/S2. Similarly F/S2

is isomorphic to a factor group of F/S1, and therefore F/S1
∼= F/S2.

If the subgroup Ui is chosen to be L−p(Fp/Ri) then the theorem asserts that

given a d -generator L -group G with P = L−p(G), the choice of the epimorphism

θ : F → G and thus the choice of R = ker θ does not influence the isomorphism

type of F/S. We can also choose Ui = Ri and thus the choice of the epimorphism

θ also has no impact on the isomorphism type of F/[R,R]Rp.

4 An L-covering algorithm

The task of the L -covering algorithm is to determine a labelled consistent

power conjugate presentation for the L -covering group of a soluble L -group K.

• The input of the L -covering algorithm is a labelled consistent power conjugate

presentation for a soluble L -group K and a prime p.

• The output is a consistent power conjugate presentation for the soluble group

K̂, the L -covering group of K with respect to the prime p.

The L -covering algorithm presented here first computes a finite presentation for

K̂. It is shown that one can define a normal form for the elements in K̂ and that

the finite presentation can be used like a power conjugate presentation to compute

normal forms of elements of K̂. Applying a theorem which is a generalisation of

Theorem 1 allows the determination of a module presentation for the kernel of the

natural epimorphism of K̂ onto K. A vector space basis for this F p K -module is
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computed by an algorithm, called vector enumeration, and this in turn enables

the determination of a labelled consistent power conjugate presentation for K̂.

The individual steps of the algorithm are illustrated by reference to the ex-

ample of the symmetric group on 4 letters, S4. A consistent power conjugate

presentation for this group was given in Section 2. For this example let L be the

list [(2, 1), (3, 1), (2, 1)] and let p be the prime 2.

4.1 A finite presentation for the L-covering group

A finite presentation {Ã | R̃} for K̂ = F/S is obtained in the following

way. Let {A | R} be the labelled consistent power conjugate presentation for the

L -group K, where A is the set {a1, . . . , an} and

R = {api

i = vii, a
aj

k = vjk | 1 ≤ i ≤ n, 1 ≤ j < k ≤ n}.

Then {A | R} is a power conjugate presentation for K with respect to a compo-

sition series which refines the soluble L -series. Therefore there exists an r such

that {a1P, . . . , arP} generates K/P and {ar+1, . . . , an} generates P. Let s be

the number of relations in R which are not definitions. Then s = (n− 1)n/2+ d.

Introduce new generators {y1, . . . , ys} and define Ã = {a1, . . . , an}∪ {y1, . . . , ys}.

We obtain R̃ in the following way:

1) initialise R̃ to contain all relations of R which are definitions;

2) modify each non-defining relation api

i = vii or a
aj

k = vjk of R to read

api

i = viiyt or a
aj

k = vjkyt for some t ∈ {1, . . . , s}, where different non-

defining relations are modified by different yt, and add the modified relation

to R̃;

3) add to R̃ all relations of the form [yi, y
g
j ] = 1 for all normal g = w(a1, . . . , ar)

and ypi = 1 for 1 ≤ i, j ≤ s;

4) add to R̃ all relations y
aj

i = yi for j > r and 1 ≤ i ≤ s.

We apply this to the example of S4. The subgroup L3,0(S4) is a 2-group

isomorphic to the Klein 4-group and is generated by c and d. Further, S4 is

generated by a and b. The definition of c is the relation with left-hand side

a2 and the definition of d is the relation with left-hand side cb. We obtain the

following presentation for Ŝ4 :

Ã = {a, b, c, d, y1, y2, y3, y4, y5, y6, y7, y8} and

R̃ = {a2 = c,
ba = b2cy1, b3 = y2,

ca = cy3, cb = d, c2 = y4,

da = cdy5, db = cdy6, dc = dy7, d2 = y8,
yci = yi, for 1 ≤ i ≤ 8,

ydi = yi, for 1 ≤ i ≤ 8,
[yi, y

g
j ] = 1 for 1 ≤ i, j ≤ 8 and g ∈ {a, ab, b}}.
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Consider the following diagram.

F

F

K

P

R

S

P

M

The subgroup R/S, denoted by M, is the kernel of the natural epimorphism

of K̂ to K and can be characterised as follows. It is the maximal F p K -module

by which K can be extended so that P acts trivially on M and the extension

has the same generator number as K. Thus M is an F p (K/P )-module. Let Y

be the free F p (K/P )-module on {y1, . . . , ys}. The module M is a homomorphic

image of Y. The kernel of the homomorphism from Y onto M can be computed

effectively. In order to see this, we study the finite presentation for the group K̂

in more detail.

4.2 Collecting in K̂

One can collect in the group K̂ relative to {Ã | R̃}. The definition of a

normal word can be generalised for this presentation in the following way. A word

in Ã is normal if it is of the form w(a1, . . . , an) ·Π
s
i=1y

fi
i , where w(a1, . . . , an) is

a normal word in {a1, . . . , an} and fi is an element of F p (K/P ). The following

steps, referred to as “collection in K̂ ”, can be applied to every word in Ã. For

f, f ′ ∈ F p (K/P ) and 1 ≤ k, l ≤ s and 1 ≤ i, j ≤ n

1) replace yfl y
f ′

k by yf
′

k yfl for k < l;

2) replace yfky
f ′

k by yf+f ′

k ;

3a) replace yfka
q
i by aiy

(fai)
k aq−1

i if q > 1;

3b) replace yfkai by aiy
(fai)
k ;

4) replace api

i by v, where api

i = v is a relation in R̃;

5) replace ajai by aiv, where aai

j = v is a relation in R̃ for i < j.

In each step a word is replaced by another word representing the same element

of K̂. After applying a finite number of these steps to any word it is replaced by

a normal word. This can be proved in a way similar to proving that a collection

process computes a normal word after applying finitely many collection steps.

Rules 1), 2) and 3) use the fact that M is an F p (K/P )-module. Note that 4) and
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5) resemble collection steps in a collection algorithm, where the power conjugate

presentation is used to determine the replacement.

For example the word b(ba) in collects in Ŝ4 to abdyb
2+1

1 yb2y4y6y7.

The following lemma states that two equivalent normal words can differ only

by a module word in Y.

Lemma 4 Let w be an arbitrary word in {a1, . . . , an}∪{y1, . . . , ys}. Then there

exists a unique normal word v in {a1, . . . , an} such that any normal word in K̂

equivalent to w has the form v ·Πs
i=1y

fi
i .

Proof: The existence of the unique normal word v follows from the fact that

{A | R} is a consistent power conjugate presentation for K.

A consequence of this lemma is that the map φ : K̂ → K which maps a word

in K̂ to its unique normal word in {a1, . . . , an} is an epimorphism.

The following theorem allows us to describe the kernel of the homomorphism

from Y onto M = R/S in a manner suitable for computation. It considers certain

non-normal words in K̂.

Theorem 5 Let Y be the free F p (K/P )-module on {y1, . . . , ys} and {Ã | R̃}

the presentation for the extension K̂ of K as defined above. Let W be the follow-

ing set of consistency test words in {a1, . . . , an} :

(
(

(ak aj) ai
) (

ak (aj ai)
)

−1
) for 1 ≤ i < j < k ≤ n,

(
(

(apk) aj
) (

ap−1
k (ak aj)

)

−1
) for 1 ≤ j < k ≤ n,

(
(

(aj ai) a
p−1
i

) (

aj (a
p
i )
)

−1
) for 1 ≤ i < j ≤ n,

(
(

(api ) ai
) (

ai (a
p
i )
)

−1
) for 1 ≤ i ≤ n

and let T be the set of elements obtained by collecting the words in W with

respect to {Ã | R̃}. Then T consists of words in Y and M is isomorphic to

Y/(T F p (K/P )).

Proof: The elements of W represent the identity element in K̂. By Lemma 4

the elements of T are words in Y. Denote T F p (K/P ) by 〈T 〉. Let µ : Y → M

be the epimorphism mapping yi in Y to yi in M. Since the elements of W are

the identity in K̂ it follows that the elements of T, when viewed as elements of

Y, are mapped to the identity element of M, hence 〈T 〉 ⊆ kerµ. Therefore Y/〈T 〉

has a factor module isomorphic to M.

We now define a consistent power conjugate presentation for K extended by

Y/〈T 〉 such that the extension is a d -generator group. Since M is the largest

F p (K/P )-module with these properties it follows that Y/〈T 〉 is isomorphic to M.
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Let {b1, . . . , bm} be a vector space basis for Y/〈T 〉. Then each element yi〈T 〉

can be expressed uniquely in the basis elements. Therefore we obtain a power

conjugate presentation {Â | R̂} for an extension of K by Y/〈T 〉 in the following

way from the presentation {Ã | R̃} where Â is A ∪ {b1, . . . , bm} :

1) replace every occurrence of an element yi on the right hand side of a relation

in R̃ with left hand side a word in A, by the corresponding word for yi〈T 〉

in the basis and add this modified relation to R̂;

2) add to R̂ the relations b
aj

i = wi(b1, . . . , bm) for all 1 ≤ i ≤ m and 1 ≤ j ≤ r,

where wi(b1, . . . , bm) is determined by the action of aj on bi;

3) add to R̂ the relations b
aj

i = bi for 1 ≤ i ≤ m and r + 1 ≤ j ≤ n;

4) add to R̂ the relations bbij = bj for 1 ≤ i < j ≤ m and the relations bpi = 1

for 1 ≤ i ≤ m.

We now show that {Â | R̂} is consistent. Let K̃ denote the group defined by

{Â | R̂}. Since the elements of W collect to elements of 〈T 〉 they are the trivial

word in K̃.

The consistency of {Â | R̂} is proved by applying Theorem 1. We only need

to consider consistency relations which involve at least one element of the basis.

Any consistency relation which involves only basis elements holds, since the basis

is a basis for a vector space over F p .

Consider the word bkajai. Applying a collection step to (bkaj)ai with re-

spect to {Â | R̂} yields ajb
aj

k ai which collects to ajai(b
aj

k )ai and finally to

aivij(b
ajai

k ). On the other hand bk(ajai) collects to bkaivij which in turn col-

lects to aivijb
(aivij)
k . Since (b

ajai

k ) and b
(aivij)
k are the same module element they

have the same normal form in the basis.

Consider the word bkbjai. Applying a collection step to (bkbj)ai with respect

to {Â | R̂} yields bjbkai which collects to aib
ai

j bai

k . On the other hand bk(bjai)

collects to bkaib
ai

j which collects to aib
ai

k bai

j . Therefore the first consistency re-

lation in Theorem 1 holds. Similarly one can prove that the other relations also

hold and therefore {Â | R̂} is a consistent power conjugate presentation.

In collecting the words in W with respect to the presentation {Ã | R̃} we

obtain a set T which generates the kernel of the epimorphism of the free F p (K/P )-

module Y onto the module M.

In the example T is the set

11



{ y2, y
(1+b+b2)
1 y3y5y6y7,

y
(a+1)
3 , y3y6y

(a+1)
7 ,

yb3y7, y3y6y
(1+b)
7 ,

y
(1+a+b2)
1 y2y

(1+b2)
3 y

(1+b+b2)
5 y

(1+b2)
6 y7,

y
(a+1)
2 , y2y3y

(a+1)
4 y6,

y
(1+b)
5 y6y7, y

(b+b2)
5 yb6y

b
7,

y4y5y6, y2y3y
(1+b2)
4 y

(a+b)
5 y

(1+b)
6 yb7,

y
(1+a)
6 , y

(1+b)
6 }.

In the proof of the previous theorem it was assumed that we have

• a vector space basis {b1, . . . , bm} for the F p (K/P )-module Y/〈T 〉;

• an expression in the basis for b
aj

i for 1 ≤ i ≤ m and 1 ≤ j ≤ r;

• an expression in the basis for yi〈T 〉 for 1 ≤ i ≤ s.

Where such information is available the proof yields a constructive method to

obtain a consistent power conjugate presentation {Â | R̂} for K̂. We now describe

an algorithm which may be used to obtain this information.

4.3 Computing a vector space basis for a module

The technique of vector enumeration is used to compute a basis for the

F p (K/P )-module M needed to obtain a power conjugate presentation for F/S. A

vector enumeration algorithm is described in Linton (1991). Its use in this context

has been suggested by Leedham-Green (private communication, 1991).

It is used with the following input:

1) a consistent power conjugate presentation for K;

2) the set of free generators for Y ;

3) a set T.

The output is:

1) an F p -basis {b1, . . . , bm} for M ;

2) the matrix action of each generator of K/P in the power conjugate presen-

tation of K/P on M with respect to the computed basis;

3) an expression in the computed basis for yi〈T 〉 for 1 ≤ i ≤ s.

This output is used to obtain a consistent power conjugate presentation for

the extension K̂ of K by M using the method described in the proof of Theorem

5.

We illustrate the technique by reference to our example. The vector enumera-

tor with input {A | R}, the set {y1, y2, y3, y4, y5, y6, y7} and T as above computes

a module basis for the module M. The basis has five elements {e, f, g, h, i} defined

by e = y1, f = y2, g = y3, h = ea and i = eb. Further the vector enumerator gives

the action of a and b on the module basis, while the elements c and d act trivially.

12



The information returned by the vector enumerator can be used to construct the

following consistent power conjugate presentation for the L -covering group Ŝ4 :

{a, b, c, d, e, f, g, h, i, j |

a2 = c,

ba = b2ce, b3,

ca = c, cb = d, c2 = f,

da = cdg, db = cdh, dc = dgh, d2 = i,

ea = j, eb = j, ec = e, ed = e, e2,

fa = f, f b = i, f c = f, fd = f, fe = f, f2,

ga = fh, gb = hi, gc = g, gd = g, ge = g, gf = g, g2,

ha = fg, hb = gi, hc = h, hd = h, he = h, hf = h, hg = h, h2,

ia = fghi, ib = fghi, ic = i, id = i, ie = i, if = i, ig = i, ih = i, i2,

ja = e, jb = efgij, jc = j, jd = j, je = j, jf = j, jg = j, jh = j, ji = j, j2}.

From the presentation we can read off that Ŝ4 has order 293 = 1536. The

group L−2(Ŝ4) has order 28 and is generated by {c, d, e, f, g, h, i, j}. It is the

direct product of the normal subgroups 〈c, d〉 and 〈e, j, fgi〉 of Ŝ4. In general,

the preimage P̂ of P = L−p(K) is a normal subgroup of L−p(K̂). It contains a

normal subgroup, namely P̂ ∩M. Note that r was defined such that the subset

{ar+1, . . . , an} of A generates P. A generating set for the normal subgroup P̂ ∩M

is the union of the set {vii | ap = vii is a relation in R̂ for i > r} and the set

{vij | a
aj

i = aivij is a relation in R̂ for i, j > r}. It can thus be obtained from the

power conjugate presentation for K̂.

The group ring F p (K/P ) in the example is isomorphic to F 2S3. We can in-

vestigate the module structure of M as an S3 -module further. The submodule

P̂ ∩M is the direct sum of 〈fi, ghi〉 and 〈gh〉. Its module complement 〈e, j, fgi〉

is a direct sum of a one dimensional and a two dimensional module. It has the

decomposition 〈fgi〉 ⊕ 〈ej, efgi〉.

4.4 Obtaining a labelled presentation

In some cases additional work is necessary to transform the consistent power

conjugate presentation {Â | R̂} of K̂ into a labelled presentation. It is possible

that a basis vector bi does not occur as the last element of the right hand side of a

relation in R̂ and thus no relation can be chosen as the definition of bi. In this case

we proceed as follows. For each basis vector bi choose a relation which contains

bi in its right hand side as the definition of bi, ensuring that this relation is not

chosen as the definition of any other basis vector. Assume that for the element bi
the right hand side of its defining relation has the form

w1(a1, . . . , an) · w2(b1, . . . , bi−1) · w3(bi, . . . , bm).
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Define the element b̃i to be w3(bi, . . . , bm). Obviously {b̃1, . . . , b̃m} is again a

vector space basis for M and the action of the generator aj of K/P on this basis

can be computed as the action of aj on w3(bi, . . . , bm) and then expressing the

result in the new basis. A labelled consistent power conjugate presentation for K̂

is obtained by performing a base change.

The power conjugate presentation for Ŝ4 given above is already a labelled

power conjugate presentation, where c, d, e, f, g, h, i and j are defined by the

relations with left hand sides a2, cb, ba, c2, da, db, d2 and ea, respectively. Every

extension of S4 by an elementary abelian 2-group M such that the Klein 4-group

acts trivially on M and the extension has generator number 2 is isomorphic to a

quotient of the group defined by this presentation.

5 A soluble quotient algorithm

The soluble quotient algorithm presented here computes a power conjugate

presentation for a quotient G/L(G) of a finitely presented group G, where the pre-

sentation exhibits a composition series of the quotient group which is a refinement

of the soluble L -series. It takes as input:

1) a finite presentation {g1, . . . , gb | r1(g1, . . . , gb), . . . , rm(g1, . . . , gb)} for G;

2) a list L = [(p1, c1), . . . , (pk, ck)], where each pi is a prime, pi 6= pi+1, and

each ci is a positive integer.

The output is:

1) a labelled power conjugate presentation for G/L(G) exhibiting a composition

series refining the soluble L -series of this quotient;

2) a labelled epimorphism τ : G։G/L(G).

The algorithm proceeds by computing power conjugate presentations for the

quotients G/Li,j(G) in turn. Without loss of generality assume that a power

conjugate presentation for G/Li,j(G) has been computed for j < ci. The ba-

sic step computes a power conjugate presentation for G/Li,j+1(G). The group

Li,j(G)/Li,j+1(G) is a pi -group. The basic step takes as input:

1) the finite presentation for G;

2) a labelled consistent power conjugate presentation for the finite soluble quo-

tient K ∼= G/Li,j(G) of G with j < ci which refines the L -series of K;

3) a labelled epimorphism θ : G։K.

The output is:

1) a labelled consistent power conjugate presentation for the finite soluble group

H ∼= G/Li,j+1(G), exhibiting a composition series refining the L -series of H;

2) an epimorphism φ : H։K;

3) a labelled epimorphism τ : G։H with τφ = θ.

If during the basic step it is discovered that Li,j(G) = Li,j+1(G), then

Li+1,0(G) is set to Li,j(G).
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The basic step is illustrated by the following diagram, where the input is

described on the left and the output is described on the right. Put p = pi, let P

denote Li,0(K), and P̂ denote Li,0(H). If j = 0 then P is trivial. The elementary

abelian p -group kerφ is denoted by N. The group P̂ acts trivially on N ; thus

P̂ is a central extension of P by N, and P̂ is a p -group of exponent-p class at

most one larger than the exponent-p class of P.

θ φ τ
G K H G

P θ−1

P P̂ P τ−1

ker θ 〈1〉 N

〈1〉 ker τ

The subgroup N = kerφ plays a role similar to that of the subgroup M in

the L -covering algorithm. It is the maximal F p K -module by which K can be

extended so that P acts trivially on N and the extension is an epimorphic image

of G. Thus N is an F p (K/P )-module. If P is non-trivial the extension of K by

N has the same generator number as K, because, by Burnside’s Basis Theorem

(Huppert I, Satz 3.15, 1967), the generator number of the extension of P by N is

already determined by the generator number of P. If P is non-trivial the module

M is the largest F p K -module by which K can be extended such that the extension

has the same generator number as K and P acts trivially on M. Therefore N is

a factor module of M. If P is trivial and N is the largest F p K -module by which

K can be extended such that the extension is a homomorphic image of G, it does

not follow that N is isomorphic to a factor module of M, since the extension

may have a larger generator number than K. However, in both cases we can write

down a finite presentation for the extension.

This presentation is obtained as follows. Let {A | R} be the supplied consis-

tent power conjugate presentation for K, where A = {a1, . . . , an} and

R = {api

i = vii, a
aj

k = vjk | 1 ≤ i ≤ n, 1 ≤ j < k ≤ n}.

Let {Ã | R̃} with Ã = {a1, . . . , an, y1, . . . , ys} be the finite presentation for K̂ as

calculated by the L -covering algorithm. Then G/Li,j+1(G) is isomorphic to a quo-

tient of K̂, if P is nontrivial. If P is trivial, the generator number of G/Li,j+1(G)

may be larger than the generator number of G/Li,j(G). Since G/Li,j+1(G) has

a consistent power conjugate presentation refining its L -series it follows that any
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additional generators lie in Li,j(G)/Li,j+1(G). Therefore N is isomorphic to a

quotient of the direct product Z of the free F p (K/P )-module Y and the free

F p (K/P )-module on the additional generators. Let t be the number of generators

of G whose images under θ are not definitions, then t = b − d, where b is the

number of generators of G in the finite presentation and d is the generator number

of K. Add new generators {z1, . . . , zt} to Ã. The set of relations R̃ is modified

in the following manner.

1) add to R̃ all relations of the form [zi, z
g
j ] = 1, [yk, z

g
j ] = 1 and [zi, y

g
k] = 1 for

all normal g = w(a1, . . . , ar) for 1 ≤ i, j ≤ t and 1 ≤ k ≤ m and all relations

zpi = 1 for 1 ≤ i ≤ t;

2) add to R̃ all relations z
aj

i = zi for j > r for 1 ≤ i ≤ t.

The group K̃ defined by {Ã | R̃} has G/Li,j+1(G) as a factor group. It is

called the extended L-covering group of K and {Ã | R̃} is the extended L-covering

presentation. Define a map σ from {g1, . . . , gb} to the group K̃ by gσi = gθi zk if

gθi is non-defining and gσi = gθi if gθi is defining. The map σ is called the extended

map.

The basic step is illustrated by an example. Consider the group G defined by

the following finite presentation {x, y | x8, y3, (x−1y)2, (yx3yx)2 = x4}. Let L be

the list [(2, 1), (3, 1), (2, 2)]. Then it can be shown that G/L3,1(G) is isomorphic

to S4. A labelled consistent power conjugate presentation for S4 was given above.

The input for the basic step is the finite presentation for G, the labelled consistent

power conjugate presentation for S4 and the epimorphism θ : G → G/L3,1(G)

defined by x 7→ a and y 7→ b. The images of θ are the definitions of a and b,

respectively. We have previously determined a presentation for Ŝ4. This is also

the extended L -covering presentation since both images of θ are definitions. The

map σ is the map from G to K̃ which maps x to a and y to b. Using the map

σ the kernel of the homomorphism from Z onto N can be computed effectively.

Theorem 6 Let T be the set of elements in Theorem 5. Let U be the set

{ri(g
σ
1 , . . . , g

σ
b ) | 1 ≤ i ≤ m} of elements of Z obtained by evaluating the relators

of G in the images of the generators of G under the map σ. Then N is isomorphic

to Z/((T ∪ U) F p (K/P )).

Proof: Consider the factor group H of K̃ obtained by extending K by

Z/((T ∪ U) F p (K/P )). Then H is generated by gσ1 , . . . , g
σ
b . Since the relations

of G hold in H it follows that it is a homomorphic image of G/Li,j(G). By con-

struction H has G/Li,j(G) as a homomorphic image, hence H is isomorphic to

G/Li,j(G).

In our example U is the set {yb1y
(bab)
3 yb4y

b
5y

(1+b)
7 }.
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The vector enumerator was used to compute a vector space basis for the

module M in the L -covering algorithm. Here it is employed to compute a vector

space basis for the module N = Z/((T ∪ U) F p (K/P )). It takes as input

1) a consistent power-conjugate presentation for K;

2) the set of generators for Z;

3) the set of relations T ∪ U.

The output is

1) an F p -basis for N ;

2) an expression in this basis for the image under the generators of K/P of every

basis element;

3) expressions for the images of the F p (K/P )-generators of Z in terms of the

basis elements.

This output is used to obtain a consistent power conjugate presentation for the

extension H of K by N, an epimorphism τ from G to H and an epimorphism

φ from H to K. The method for constructing the consistent power conjugate

presentation is again the method described in the proof of Theorem 5. The homo-

morphism τ from G to H is obtained by replacing the elements zi in the map

σ by the corresponding word in the basis for N. This yields an epimorphism by

Theorem 6. As pointed out earlier a base change for the vector space basis of

the module N may be necessary in order to obtain a labelled consistent power

conjugate presentation for H. A base change may also be necessary in order to

transform τ into a labelled homomorphism. The map τ is an epimorphism, since

all the generators of H are either defined as images of the generators of G under

τ or by definitions in the power conjugate presentation of H on the images of

those generators.

The vector enumerator is employed to compute a vector space basis for the

module Z/((T ∪ U) F 2(K/P )) in the previous example. The vector enumerator

returns the basis {e, f, g} defined by e = y3, f = y4 and g = y5. Again, the

vector enumerator gives the action of a and b on this basis, while c and d act

trivially. The information is used to construct for the quotient H = G/L4,0(G)

the following labelled consistent power conjugate presentation:

{ a, b, c, d, e, f, g |

a2 =: c,

ba = b2c, b3,

ca = c, cb =: d, c2 =: e

da =: cdf, db =: cdg, dc = dfg, d2 = ef

ea = e, eb = ef, ec = e, ed = e, e2

fa = eg, f b = efg, f c = f, fd = f, fe = f, f2

ga = ef, gb = e, gc = g, gd = g, ge = g, gf = g, g2 }.
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and the labelled epimorphism τ from G onto G/L4,0(G) defined by x 7→ a and

y 7→ b. Hence in this example G has a homomorphic image isomorphic to a factor

group of Ŝ4. In fact G is an extension of S4 by a group N of order 23. The

group N is generated by {c2, d2, [d, c]} and therefore L−2(H) is isomorphic to

the 2-covering group of the Klein-4 group.
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