LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS Documentation, Version 3.X

CFDEM CFDEM HE&ests DCS

S Ing OITf

LIGGGHTS

LIGGGHTS stands for LAMMPS Improved for General Granular and Granular Heat Transfer Simulations. It
is part of the CFDEMproject, www.cfdem.com

The core developers of LIGGGHTS are Christoph Kloss (DCS Computing GmbH, Linz and JKU Linz) and
Richard Berger (JKU Linz), with major contributions from Philippe Seil, Andreas Aigner and Stefan
Amberger (all JKU Linz) and Christoph Goniva (DCS Computing GmbH, Linz and JKU Linz)

CEDEMproject has more information about the code and its uses. For questions about the code, please use the
forums at CEDEMproject.

LIGGGHTS is based on LAMMPS (see below), and so is its manual. So if the manual says ' LAMMPS', you
could read 'LIGGGHTS' instead. However, we want to make clear which parts of the code and framework
stem from the LAMMPS base.

LIGGGHTS Version info:

All LIGGGHTS versions are based on a specific version of LAMMPS, as printed in the file src/version.h
LIGGGHTS version are identidied by a version number (e.g. '3.0'), a branch name (e.g.
'LIGGGHTS-PUBLIC' for the public release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS release is based
on). For info on the LAMMPS version, see below.

LAMMPS Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this
page of the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and
including that version date. The version date is printed to the screen and logfile every time you run LAMMPS.
It is also in the file src/version.h and in the LAMMPS directory name created when you unpack a tarball, and
at the top of the first page of the manual (this page).

http://www.cfdem.com
http://lammps.sandia.gov
http://www.cfdem.com
http://www.cfdem.com
http://www.cfdem.com
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

¢ If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most
current version of LAMMPS.

¢ If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of every patch.

e There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov
has more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at
Section_commands.html#comm since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features

1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions
3. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
4. Packages
4.1 Standard packages
4.2 User packages
5. Accelerating LAMMPS performance
5.1 Measuring performance
5.2 General strategies
5.3 Packages with optimized styles
5.4 OPT package

http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

5.5 USER-OMP package
5.6 GPU package

5.7 USER-CUDA package
omparison of GPU and USER-CUDA packages

6. How-to discussions
6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM and AMBER force fields

6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Finite-size spherical and aspherical particles

6.15 Output from LAMMPS (thermo. dumps. computes. fixes. variables)

6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity
7. Example problems
8. Performance & scalability
9. Additional tools
10. Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond. angle. dihedral. improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Body styles
10.13 Thermodynamic output options
10.14 Variable options
10.15 Submitting new features for inclusion in LAMMPS
11. Python interface
11.1 Building LAMMPS as a shared library
11.2 Installing the Python wrapper into Python
11.3 Extending Python with MPI to run in parallel
11.4 Testing the Python-LAMMPS interface
11.5 Using LAMMPS from Python
11.6 Example Python scripts that use LAMMPS
12. Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages
13. Future and history

13.1 Coming attractions

13.2 Past versions

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style charmm command

angle_style charmm/omp command
Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential
- 2 - » , 9
H=K (9—90) +[XUB('I - ’UB)

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
thetaO, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/radian’2)

e theta((degrees)

e K_ub (energy/distance”2)
¢ r_ub (distance)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

angle_style charmm command

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making L AMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

angle_style charmm/omp command

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style class2 command

angle_style class2/omp command
Syntax:

angle_style class2

Examples:

angle_style class2

angle_coeff * 75.0

angle_coeff 1 bb 10.5872 1.0119 1.5228
angle_coeff * ba 3.6551 24.895 1.0119 1.5228

Description:

The class2 angle style uses the potential

E = E,+ Ep+ Epg

E, = Ky0—00)2+ K30 — 0+ K40 — 6)*
E{;b = JI(IU = ?"l)(?"jk T ?'2)
By, = Nl(?"ij — ?"1)(9 — 6o) + N, ('*’".Hc - ?”2)(9 — o)

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class?2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the bond coeff
command as in the example above, or in the data file or restart files read by the read data or read restart
commands.

These are the 4 coefficients for the Ea formula:

¢ thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian™4)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K
are in per-radian.

For the Ebb formula, each line in a bond coeff command in the input script lists 4 coefficients, the first of
which is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed
under a "BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the
angle type.

angle_style class2 command 3

http://lammps.sandia.gov

LIGGGHTS Users Manual

® bb

® M (energy/distance”2)
e r] (distance)

e 12 (distance)

For the Eba formula, each line in a bond coeff command in the input script lists 5 coefficients, the first of
which is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed
under a "BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the
angle type.

® ba

® N1 (energy/distance”2)
® N2 (energy/distance”2)
e r] (distance)

e 12 (distance)

The thetaO value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS?2 package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

angle_style class2/omp command

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_coeff command

Syntax:
angle_coeff N args

¢ N = angle type (see asterisk form below)
¢ args = coefficients for one or more angle types

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the
coefficients depends on the angle style. Angle coefficients can also be set in the data file read by the read data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For
example, these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

1 300.0 107.0

The angle style class? is an exception to this rule, in that an additional argument is used in the input script to
allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle style none - turn off angle interactions
e angle style hybrid - define multiple styles of angle interactions

e angle style charmm - CHARMM angle

angle_coeff command 5

http://lammps.sandia.gov

LIGGGHTS Users Manual

e angle style class2 - COMPASS (class 2) angle

e angle style cosine - cosine angle potential

e angle style cosine/delta - difference of cosines angle potential
e angle style cosine/periodic - DREIDING angle

e angle style cosine/squared - cosine squared angle potential

¢ angle style harmonic - harmonic angle
e angle style table - tabulated by angle

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.
Related commands:

angle style

Default: none

angle_coeff command

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/delta command

angle_style cosine/delta/omp command
Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential
E = K[l — cos(f — 6,)]
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is

included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
¢ thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

angle_style cosine/delta command

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff, angle style cosine/squared

Default: none

angle_style cosine/delta/omp command

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine command

angle_style cosine/omp command
Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential

E = K[1 + cos(0)]

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle coeff

angle_style cosine command

http://lammps.sandia.gov

Default: none

angle_style cosine/omp command

LIGGGHTS Users Manual

10

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/periodic command

angle_style cosine/periodic/omp command
Syntax:

angle_style cosine/periodic

Examples:

angle_style cosine/periodic
angle_coeff * 75.0 1 6

Description:
The cosine/periodic angle style uses the following potential, which is commonly used in the DREIDING force

field, particularly for organometallic systems where n = 4 might be used for an octahedral complex and n = 3
might be used for a trigonal center:

E=C|1- B(—1)"cos (nd)]

where C, B and n are coefficients defined for each angle type.
See (Mayo) for a description of the DREIDING force field

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ C (energy)
eB=1or-1
en=1,2,3,4,5 or 6 for periodicity

Note that the prefactor C is specified and not the overall force constant K = C/n”*2. When B =1, it leads to a
minimum for the linear geometry. When B = -1, it leads to a maximum for the linear geometry.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

angle_style cosine/periodic command 11

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

angle_style cosine/periodic/omp command

12

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift/exp command

angle_style cosine/shift/exp/omp command
Syntax:

angle_style cosine/shift/exp

Examples:

angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0

Description:

The cosine/shift/exp angle style uses the potential

e —al(0,00) _ 1

E=-U,n. i with U(0,6y) = —0.5 (1 + cos(0 — 6,))
B

where Umin, theta, and a are defined for each angle type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle thetaQ. The a parameter
can be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)]. For a > 3, k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a -> 0, where it has been implemented
to linear order in a for a < 0.001. In this limit the potential reduces to the cosineshifted potential.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

angle_style cosine/shift/exp command 13

http://lammps.sandia.gov

LIGGGHTS Users Manual

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff, angle cosineshift, dihedral cosineshift

Default: none

angle_style cosine/shift/exp/omp command

14

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift command

angle_style cosine/shift/omp command
Syntax:

angle_style cosine/shift

Examples:

angle_style cosine/shift
angle_coeff * 10.0 45.0

Description:
The cosine/shift angle style uses the potential
Uman

E=-"—r [1+ Cos(0 — 6p)]

where theta0 is the equilibrium angle. The potential is bounded between -Umin and zero. In the neighborhood
of the minimum E=- Umin + Umin/4(theta-theta0)"2 hence the spring constant is umin/2.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® umin (energy)
¢ theta (angle)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

angle_style cosine/shift command 15

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff, angle cosineshiftexp

Default: none

angle_style cosine/shift’tomp command

16

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/squared command

angle_style cosine/squared/omp command
Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential
- 2
E = K|cos(0) — cos(y)]*

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
e theta((degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

angle_style cosine/squared command 17

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff

Default: none

angle_style cosine/squared/omp command

18

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style dipole command

angle_style dipole/omp command
Syntax:

angle_style dipole

Examples:

angle_style dipole
angle_coeff 6 2.1 180.0

Description:

The dipole angle style is used to control the orientation of a dipolar atom within a molecule (Orsi).
Specifically, the dipole angle style restrains the orientation of a point dipole mu_j (embedded in atom 'j') with
respect to a reference (bond) vector r_ij =r_i - r_j, where 'i' is another atom of the same molecule (typically, i’

and 'j' are also covalently bonded).

It is convenient to define an angle gamma between the 'free’ vector mu_j and the reference (bond) vector r_ij:

K ®Tij

Hj Tij

CONTY =
The dipole angle style uses the potential:

E = K(cosvy — cos~p)?

where K is a rigidity constant and gamma0 is an equilibrium (reference) angle.

The torque on the dipole can be obtained by differentiating the potential using the 'chain rule' as in appendix

C.3 of (Allen):

2K (cosy — cos)

5 Tij

T

Tij X [j

|

Example: if gammal is set to 0 degrees, the torque generated by the potential will tend to align the dipole
along the reference direction defined by the (bond) vector r_ij (in other words, mu_j is restrained to point
towards atom '1').

Note that the angle dipole potential does not give rise to any force, because it does not depend on the distance
between i and j (it only depends on the angle between mu_j and r_ij).

angle_style dipole command 19

http://lammps.sandia.gov

LIGGGHTS Users Manual

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
e gamma((degrees)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.
Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

IMPORTANT NOTE: In the "Angles" section of the data file, the atom ID 'j' corresponding to the dipole to
restrain must come before the atom ID of the reference atom 'i'. A third atom ID k' must also be provided,
although 'k’ is just a 'dummy' atom which can be any atom; it may be useful to choose a convention (e.g.,
'k'="1") and adhere to it. For example, if ID=1 for the dipolar atom to restrain, and ID=2 for the reference atom,
the corresponding line in the "Angles" section of the data file would read: X X 122

The "newton" command for intramolecular interactions must be "on" (which is the default).

This angle style should not be used with SHAKE.

Related commands:

angle coeff, angle hybrid

Default: none

(Orsi) Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12):
€28637, 2011.

(Allen) Allen & Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

angle_style dipole/omp command 20

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier command

angle_style fourier/omp command
Syntax:

angle_style fourier

Examples:

angle_style fourier angle_coeff 75.0 1.0 1.0 1.0
Description:

The fourier angle style uses the potential
E = K[Cy + C} cos(0) + Cy cos(20)]

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
¢ CO (real)
¢ Cl1 (real)
e C2 (real)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff

angle_style fourier command 21

http://lammps.sandia.gov

Default: none

angle_style fourier/omp command

LIGGGHTS Users Manual

22

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier/simple command

angle_style fourier/simple/omp command
Syntax:

angle_style fourier/simple

Examples:

angle_style fourier/simple angle_coeff 100.0 -1.0 1.0
Description:

The fourier/simple angle style uses the potential
E = K[1.0 + ccos(n8)]

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
® ¢ (real)
e n (real)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff

angle_style fourier/simple command 23

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

angle_style fourier/simple/omp command

24

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style harmonic command

angle_style harmonic/omp command
Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential
- 2
E =K —0,)
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is

included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions: none

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

angle_style harmonic command 25

http://lammps.sandia.gov

Related commands:

angle coeff

Default: none

angle_style harmonic/omp command

LIGGGHTS Users Manual

26

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style hybrid command
Syntax:
angle_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more angle styles

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 30.0
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic
potential and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The
assignment of angle type to style is made via the angle coeff command or in the data file.

In the angle_coeff commands, the name of an angle style must be added after the angle type, with the
remaining coefficients being those appropriate to that style. In the example above, the 2 angle_coeff
commands set angles of angle type 1 to be computed with a harmonic potential with coefficients 80.0, 30.0
for K, thetaO. All other angle types (2-N) are computed with a cosine potential with coefficient 50.0 for K.

If angle coefficients are specified in the data file read via the read data command, then the same rule applies.
E.g. "harmonic” or "cosine", must be added after the angle type, for each line in the "Angle Coeffs" section,

e.g.
Angle Coeffs

1 harmonic 80.0 30.0
2 cosine 50.0

If class2 is one of the angle hybrid styles, the same rule holds for specifying additional BondBond (and
BondAngle) coefficients either via the input script or in the data file. L.e. class2 must be added to each line
after the angle type. For lines in the BondBond (or BondAngle) section of the data file for angle types that are
not class2, you must use an angle style of skip as a placeholder, e.g.

BondBond Coeffs

1 skip
2 class2 3.6512 1.0119 1.0119

Note that it is not necessary to use the angle style skip in the input script, since BondBond (or BondAngle)
coefficients need not be specified at all for angle types that are not class2.

An angle style of none with no additional coefficients can be used in place of an angle style, either in a input
script angle_coeff command or in the data file, if you desire to turn off interactions for specific angle types.

Restrictions:

angle_style hybrid command 27

http://lammps.sandia.gov

LIGGGHTS Users Manual

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub-styles
in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
angle_coeff commands.

Related commands:

angle coeff

Default: none

angle_style hybrid command 28

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style none command
Syntax:
angle_style none

Examples:

angle_style none
Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed
in the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

angle_style none command 29

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style quartic command

angle_style quartic’omp command
Syntax:

angle_style quartic

Examples:

angle_style quartic
angle_coeff 1 129.1948 56.8726 -25.9442 -14.2221

Description:

The quartic angle style uses the potential
7 2 - : - y
E = Ky(0 — 60)* + K3(0 — 00)° + K4(0 — 6,)"

where theta(is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ thetaO (degrees)

e K2 (energy/radian”2)
¢ K3 (energy/radian”3)
e K4 (energy/radian”4)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

angle_style quartic command 30

http://lammps.sandia.gov

LIGGGHTS Users Manual

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

angle_style quartic’/omp command

31

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style sdk command

Syntax:
angle_style sdk

angle_style sdk/omp
Examples:

angle_style sdk
angle_coeff 1 300.0 107.0

Description:

The sdk angle style is a combination of the harmonic angle potential,
- 2
E =K —0,)

where theta(is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non-bonded
lji/sdk pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations
with the CMM parametrization using the pair_style 1j/sdk. Relative to the pair_style [j/sdk, however, the
energy is shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2. The also required /j/sdk parameters will be extracted automatically from the pair_style.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-CG-CMM package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff, angle style harmonic, pair_style 1j/sdk, pair_style lj/sdk/coul/long

Default: none

angle_style sdk command 32

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style command
Syntax:
angle_style style
¢ style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic
Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in
force for the duration of the simulation. The list of angle triplets is read in by a read data or read restart
command from a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re-specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special bonds command often needs
to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle style none - turn off angle interactions
e angle style hybrid - define multiple styles of angle interactions

e angle style charmm - CHARMM angle

e angle style class?2 - COMPASS (class 2) angle

e angle style cosine - cosine angle potential

e angle style cosine/delta - difference of cosines angle potential
e angle style cosine/periodic - DREIDING angle

¢ angle style cosine/squared - cosine squared angle potential

¢ angle style harmonic - harmonic angle
e angle style table - tabulated by angle

angle_style command 33

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
bond potentials tell if it is part of a package.

Related commands:

angle coeff

Default:

angle_style none

angle_style command 34

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style table command

angle_style table/omp command

Syntax:
angle_style table style N

¢ style = linear or spline = method of interpolation
¢ N =use N values in table

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from angle potential and derivative values listed in a file(s)
as a function of angle The files are read by the angle coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of N angles. During a simulation, these tables are used to interpolate energy and
force values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or its derivative
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial
which computes the energy or derivative.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a
section of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Angle potential for harmonic (one or more comment or blank lines)

HAM
N 181 FP 0 0 EQ 90.0

(keyword is the first text on line)
(N, FP, EQ parameters)

(blank line)
(
(

N 181 FP 0 O N, FP parameters)
1 0.0 200.5 2.5 index, angle, energy, derivative)
2 1.0 198.0 2.5

181 180.0 0.0 0.0

angle_style table command 35

http://lammps.sandia.gov

LIGGGHTS Users Manual

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the angle coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle style table command. Let Ntable = N in the angle_style command,
and Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines
using the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and
derivative values at Ntable different points. The resulting tables of length Ntable are then used as described
above, when computing energy and force for individual angles and their atoms. This means that if you want
the interpolation tables of length Ntable to match exactly what is in the tabulated file (with effectively no
preliminary interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the 2nd
derivatives at the innermost and outermost angle settings. These values are needed by the spline construction
routines. If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last
two derivative values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used,
for example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th
is -dE/d(theta) (also in energy units). The 3rd term is the energy of the 3-atom configuration for the specified
angle. The last term is the derivative of the energy with respect to the angle (in degrees, not radians). Thus the
units of the last term are still energy, not force. The angle values must increase from one line to the next. The
angle values must also begin with 0.0 and end with 180.0, i.e. span the full range of possible angles.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle_style table/omp command 36

angle coeff

Default: none

angle_style table/omp command

LIGGGHTS Users Manual

37

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_modify command
Syntax:
atom_modify keyword wvalues

¢ one or more keyword/value pairs may be appended
¢ keyword = map or first or sort

map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreqg binsize

Nfreg = sort atoms spatially every this many time steps
binsize = bin size for spatial sorting (distance units)

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:
Modify properties of the atom style selected within LAMMPS.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID.
When the array value is used, each processor stores a lookup table of length N, where N is the total # of atoms
in the system. This is the fastest method for most simulations, but a processor can run out of memory to store
the table for very large simulations. The hash value uses a hash table to perform the lookups. This method can
be slightly slower than the array method, but its memory cost is proportional to N/P on each processor, where
P is the total number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the
atoms, and there are other operations LAMMPS is performing that will be sped-up significantly by being able
to loop over the smaller set of atoms. Otherwise the reordering required by this option will be a net
slow-down. The neigh modify include and communicate group commands are two examples of commands
that require this setting to work efficiently. Several fixes, most notably time integration fixes like fix nve, also
take advantage of this setting if the group they operate on is the group specified by this command. Note that
specifying "all" as the group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LAMMPS does not use the group until a simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreq timesteps. If Nfreq is set to O, then sorting is turned off. Sorting can improve cache performance and
thus speed-up a LAMMPS simulation, as discussed in a paper by (Meloni). Its efficacy depends on the
problem size (atoms/processor), how quickly the system becomes disordered, and various other factors. As a
general rule, sorting is typically more effective at speeding up simulations of liquids as opposed to solids. In
tests we have done, the speed-up can range from zero to 3-4x.

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization.
More precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The

atom_modify command 38

http://lammps.sandia.gov

LIGGGHTS Users Manual

reordering is performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0,
then a binsize equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a
reasonable value. After the atoms have been binned, they are reordered so that atoms in the same bin are
adjacent to each other in the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list
of atoms that are also near to each other spatially. This can improve cache performance when pairwise
intereractions and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin.
Likewise if bins are too large, there will be many atoms/bin. In both cases, the goal of cache locality will be
undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation
results in a statistical sense. However, a different ordering will induce round-off differences, which will lead
to diverging trajectories over time when comparing two simluations. Various commands, particularly those
which use random numbers (e.g. velocity create, and fix langevin), may generate (statistically identical)
results which depend on the order in which atoms are processed. The order of atoms in a dump file will also
typically change if sorting is enabled.

Restrictions:

The map keyword can only be used before the simulation box is defined by a read data or create box
command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the
first keyword is used with a group-ID that is not "all".

Related commands: none
Default:
By default, atomic (non-molecular) problems do not allocate maps. For molecular problems, the option

default is map = array. By default, a "first" group is not defined. By default, sorting is enabled with a
frequency of 1000 and a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

atom_modify command 39

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_style command

Syntax:
atom_style

® style

style args

= angle or atomic or body or bond or charge or dipole or electron or ellipsoid or full or line or

meso or molecular or peri or sphere or granular or tri or hybrid or sph

args = none for any style except body and hybrid

body args = bstyle bstyle—-args
bstyle = style of body particles
bstyle-args = additional arguments specific to the bstyle
see the body doc page for details
hybrid args = list of one or more sub-styles, each with their args
Examples:
atom_style atomic
atom_style bond
atom_style full
atom_style body nparticle 2 10

atom_style
atom_style

Description:

hybrid charge bond
hybrid charge body nparticle 2 5

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read data, read restart, or create box

command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g.
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by the
read data command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to
model. All styles store coordinates, velocities, atom IDs and types. See the read data, create atoms, and set
commands for info on how to set these various quantities.

angle bonds and angles Etei?fdr;sg)srmg polymers with

atomic only the default values coarse-grain liquids, solids, metals
body Eiirsl,e Lrizntia moments, quaternion, angular arbitrary bodies

bond bonds bead-spring polymers

charge charge atomic system with charges

dipole charge and dipole moment system with dipolar particles
electron charge and spin and eradius electronic force field

ellipsoid shape, quaternion, angular momentum aspherical particles

atom_style command 40

http://lammps.sandia.gov

LIGGGHTS Users Manual

full molecular + charge bio-molecules

line end points, angular velocity rigid bodies

meso rho, e, cv SPH particles

sph q(pressure), density SPH particles

molecular bonds, angles, dihedrals, impropers uncharged molecules

peri mass, volume mesocopic Peridynamic models
sphere or granular|diameter, mass, angular velocity granular models

tri corner points, angular momentum rigid bodies

wavepacket charge, spin, eradius, etag, cs_re, cs_im AWPMD

IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not
have them via the fix property/atom command. This command also allows new custom attributes consisting of
extra integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of
cases where this is useful and details on how to initialize, access, and output the custom values.

All of the above styles define point particles, except the sphere, ellipsoid, electron, peri, wavepacket, line, tri,
and body styles, which define finite-size particles. See Section howto 14 for an overview of using finite-size
particle models with LAMMPS.

All of the styles assign mass to particles on a per-type basis, using the mass command, except for the
finite-size particle styles. They assign mass to individual particles on a per-particle basis.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter
> 0.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle.

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a
finite-size ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of
the ellipsoid and a quaternion 4-vector with its orientation.

For the electron style, the particles representing electrons are 3d Gaussians with a specified position and
bandwidth or uncertainty in position, which is represented by the eradius = electron size.

For the peri style, the particles are spherical and each stores a per-particle mass and volume.

The meso style is for smoothed particle hydrodynamics (SPH) particles which store a density (rho), energy
(e), and heat capacity (cv).

The wavepacket style is similar to electron, but the electrons may consist of several Gaussian wave packets,
summed up with coefficients cs= (cs_re,cs_im). Each of the wave packets is treated as a separate particle in
LAMMPS, wave packets belonging to the same electron must have identical efag values.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation
(i.e. the corner points of the triangle).

For the body style, the particles are arbitrary bodies with internal attributes defined by the "style" of the
bodies, which is specified by the bstyle argument. Body particles can represent complex entities, such as
surface meshes of discrete points, collections of sub-particles, deformable objects, etc.

The body doc page descibes the body styles LAMMPS currently supports, and provides more details as to the
kind of body particles they represent. For all styles, each body particle stores moments of inertia and a
quaternion 4-vector, so that its orientation and position can be time integrated due to forces and torques.

atom_style command 41

LIGGGHTS Users Manual

Note that there may be additional arguments required along with the bstyle specification, in the atom_style
body command. These arguments are described in the body doc page.

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not
have all the properties defined by a particular style, use the simplest style that defines all the needed properties
by any atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style.
If some atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed
properties of all atoms. For example, if you want dipolar particles which will rotate due to torque, you would
need to use "atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the
union of all quantities implied by the individual styles.

LAMMPS can be extended with new atom styles as well as new body styles; see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read data or create box command.
The angle, bond, full, and molecular styles are part of the MOLECULAR package. The line and ¢ri styles are
part of the ASPHERE pacakge. The body style is part of the BODY package. The dipole style is part of the
DIPOLE package. The peri style is part of the PERI package for Peridynamics. The electron style is part of
the USER-EFF package for glectronic force fields. The meso style is part of the USER-SPH package for
smoothed particle hydrodyanmics (SPH). See this PDF guide to using SPH in LAMMPS. The wavepacket
style is part of the USER-AWPMD package for the antisymmetrized wave packet MD method. They are only
enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

Related commands:

read data, pair_style

Default:

atom_style atomic

atom_style command 42

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Body particles
Overview:

This doc page is not about a LAMMPS input script command, but about body particles, which are generalized
finite-size particles. Individual body particles can represent complex entities, such as surface meshes of
discrete points, collections of sub-particles, deformable objects, etc. Note that other kinds of finite-size
spherical and aspherical particles are also supported by LAMMPS, such as spheres, ellipsoids, line segments,
and triangles, but they are simpler entities that body particles. See Section howto 14 for a general overview of
all these particle types.

Body particles are used via the atom style body command. It takes a body style as an argument. The current
body styles supported by LAMMPS are as follows. The name in the first column is used as the bstyle
argument for the atom_style body command.

|nparticle |rigid body with N sub-particles

The body style determines what attributes are stored for each body and thus how they can be used to compute
pairwise body/body or bond/non-body (point particle) interactions. More details of each style are described
below.

We hope to add more styles in the future. See Section modify 12 for details on how to add a new body style
to the code.

When to use body particles:

You should not use body particles to model a rigid body made of simpler particles (e.g. point, sphere,
ellipsoid, line segment, triangular particles), if the interaction between pairs of rigid bodies is just the
summation of pairwise interactions between the simpler particles. LAMMPS already supports this kind of
model via the fix rigid command. Any of the numerous pair styles that compute interactions between simpler
particles can be used. The fix rigid command time integrates the motion of the rigid bodies. All of the
standard LAMMPS commands for thermostatting, adding constraints, performing output, etc will operate as
expected on the simple particles.

By contrast, when body particles are used, LAMMPS treats an entire body as a single particle for purposes of
computing pairwise interactions, building neighbor lists, migrating particles between processors, outputting
particles to a dump file, etc. This means that interactions between pairs of bodies or between a body and
non-body (point) particle need to be encoded in an appropriate pair style. If such a pair style were to mimic
the fix rigid model, it would need to loop over the entire collection of interactions between pairs of simple
particles within the two bodies, each time a single body/body interaction was computed.

Thus it only makes sense to use body particles and develop such a pair style, when particle/particle
interactions are more complex than what the fix rigid command can already calculate. For example, if
particles have one or more of the following attributes:

e represented by a surface mesh

e represented by a collection of geometric entities (e.g. planes + spheres)
¢ deformable

¢ internal stress that induces fragmentation

then the interaction between pairs of particles is likely to be more complex than the summation of simple
sub-particle interactions. An example is contact or frictional forces between particles with planar sufaces that

inter-penetrate.

Body particles 43

http://lammps.sandia.gov

LIGGGHTS Users Manual

These are additional LAMMPS commands that can be used with body particles of different styles

fix nve/body integrate motion of a body particle

compute body/local [store sub-particle attributes of a body particle

dump local output sub-particle attributes of a body particle
The pair styles defined for use with specific body styles are listed in the sections below.

Specifics of body style nparticle:

The nparticle body style represents body particles as a rigid body with a variable number N of sub-particles. It
is provided as a vanillia, prototypical example of a body particle, although as mentioned above, the fix rigid
command already duplicates its functionality.

The atom_style body command for this body style takes two additional arguments:

atom_style body nparticle Nmin Nmax
Nmin = minimum # of sub-particles in any body in the system
Nmax = maximum # of sub-particles in any body in the system

The Nmin and Nmax arguments are used to bound the size of data structures used internally by each particle.

When the read data command reads a data file for this body style, the following information must be provided
for each entry in the Bodies section of the data file:

atom-ID 1 M
N
ixx iyy izz ixy ixz iyz x1 yl1 z1 ...

. XN yN zN

N is the number of sub-particles in the body particle. M = 6 + 3*N. The integer line has a single value N. The
floating point line(s) list 6 moments of inertia followed by the coordinates of the N sub-particles (x1 to zN) as
3N values on as many lines as required. Note that this in not N lines, but 10 values per line; see the read data
command for details. The 6 moments of inertia (ixx,iyy,izz,ixy,ixz,iyz) should be the values consistent with
the current orientation of the rigid body around its center of mass. The values are with respect to the
simulation box XYZ axes, not with respect to the prinicpal axes of the rigid body itself. LAMMPS performs
the latter calculation internally. The coordinates of each sub-particle are specified as its x,y,z displacement
from the center-of-mass of the body particle. The center-of-mass position of the particle is specified by the
X,y,z values in the Atoms section of the data file.

The pair_style body command can be used with this body style to compute body/body and body/non-body
interactions.

For output purposes via the compute body/local and dump local commands, this body style produces one
datum for each of the N sub-particles in a body particle. The datum has 3 values:

1 = x position of sub-particle
2 = y position of sub-particle
3 = z position of sub-particle

These values are the current position of the sub-particle within the simulation domain, not a displacement
from the center-of-mass (COM) of the body particle itself. These values are calculated using the current COM
and orientiation of the body particle.

Body particles 44

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style class2 command

bond_style class2/omp command
Syntax:
bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential
=i Tl . N2 Py A)3 i PR e \4
E = Ky(r —rog)*+ Kz(r —ro)° + K4(r — ro)

where 10 is the equilibrium bond distance.
See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ RO (distance)

e K2 (energy/distance”2)
¢ K3 (energy/distance”3)
e K4 (energy/distance”4)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

bond_style class2 command 45

http://lammps.sandia.gov

LIGGGHTS Users Manual

This bond style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond coeff, delete bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

bond_style class2/omp command

46

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_coeff command

Syntax:
bond_coeff N args

¢ N = bond type (see asterisk form below)
¢ args = coefficients for one or more bond types

Examples:

bond_coeff 5 80.0 1.2

bond_coeff * 30.0 1.5 1
bond_coeff 1*4 30.0 1.5
bond_coeff 1 harmonic 2

0 1.
1.0
0.0

[=)

.0
0 .0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the
coefficients depends on the bond style. Bond coefficients can also be set in the data file read by the read data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

5 80.0 1.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond coeff command.

Note that here are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

® bond style class2 - COMPASS (class 2) bond

® bond style fene - FENE (finite-extensible non-linear elastic) bond
® bond style fene/expand - FENE bonds with variable size particles

bond_coeff command 47

http://lammps.sandia.gov

LIGGGHTS Users Manual

® bond style harmonic - harmonic bond

® bond style morse - Morse bond

e bond style nonlinear - nonlinear bond

® bond style guartic - breakable quartic bond
® bond_style table - tabulated by bond length

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:

bond style

Default: none

bond_coeff command

48

E

= —0.5KR:In |1 —

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene/expand command

bond_style fene/expand/omp command
Syntax:

bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.5

Description:

The fene/expand bond style uses the potential

p—
b
[
b

(r—A
Ry (r—A) (r—A)

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) is
added to r to effectively change the bead size of the bonded atoms. The first term now extends to RO + delta
and the 2nd term is cutoff at 27(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

¢ epsilon (energy)

¢ sigma (distance)

¢ delta (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

bond_style fene/expand command 49

http://lammps.sandia.gov

LIGGGHTS Users Manual

input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

You typically should specify special bonds fene or special bonds 1j/coul 0 1 1 to use this bond style.
LAMMPS will issue a warning it that's not the case.

Related commands:
bond coeff, delete bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

bond_style fene/expand/omp command

50

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene command

bond_style fene/omp command
Syntax:

bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0

Description:

The fene bond style uses the potential

N2 12 6
Ez—[lfmffﬁgln l—(ﬂ;—) + 4e (E) —(E) + €

0

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive. The first term extends to RO, the
maximum extent of the bond. The 2nd term is cutoff at 2°(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

e epsilon (energy)

® sigma (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

bond_style fene command 51

http://lammps.sandia.gov

LIGGGHTS Users Manual

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

You typically should specify special bonds fene or special bonds lj/coul 0 1 1 to use this bond style.
LAMMPS will issue a warning it that's not the case.

Related commands:
bond coeff, delete bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

bond_style fene/omp command

52

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic command

bond_style harmonic/omp command
Syntax:
bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential
Slas g Y4
FE = K(r —rp)

where 10 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
bond coeff, delete bonds

bond_style harmonic command 53

http://lammps.sandia.gov

Default: none

bond_style harmonic/omp command

LIGGGHTS Users Manual

54

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift/cut command

bond_style harmonic/shift/cut/omp command

Syntax:
bond_style harmonic/shift/cut
Examples:

bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0

Description:
The harmonic/shift/cut bond style is a shifted harmonic bond that uses the potential
Umain

B = s [t =) = (re=ro)’]

where 10 is the equilibrium bond distance, and rc the critical distance. The bond potential is zero for distances
r > rc. The potential is -Umin at 1O and zero at rc. The spring constant is k = Umin / [2 (rO-rc)"2].

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ Umin (energy)
¢ 10 (distance)
¢ rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

bond_style harmonic/shift/cut command 55

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
bond coeff, delete_bonds, bond harmonic, bond harmonicshift

Default: none

bond_style harmonic/shift/cut/omp command

56

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift command

bond_style harmonic/shift/omp command
Syntax:
bond_style harmonic/shift

Examples:

bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0

Description:

The harmonic/shift bond style is a shifted harmonic bond that uses the potential

Umin
F = — [(1 — 7"0)3 — (re — 7"0)“)]
(' 0 ’c)'

where 10 is the equilibrium bond distance, and rc the critical distance. The potential is -Umin at rO and zero at

rc. The spring constant is k = Umin / [2 (r0-rc)"2].

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ Umin (energy)
¢ 10 (distance)

e rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making L AMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

bond_style harmonic/shift command 57

http://lammps.sandia.gov

LIGGGHTS Users Manual

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond coeff, delete_bonds, bond harmonic

Default: none

bond_style harmonic/shift/omp command

58

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style hybrid command
Syntax:
bond_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds
of bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond
types (2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

If bond coefficients are specified in the data file read via the read data command, then the same rule applies.
E.g. "harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.

0 2
2 fene 30.0 1.5 0

1.
1.0 1.0

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input
script bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in
a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond coeff, delete bonds

Default: none

bond_style hybrid command 59

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style morse command

bond_style morse/omp command
Syntax:

bond_style morse

Examples:

bond_style morse
bond_coeff 5 1.0 2.0 1.2

Description:

The morse bond style uses the potential

E=D[1 - o]

where 10 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ D (energy)
¢ alpha (inverse distance)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

bond_style morse command 60

http://lammps.sandia.gov

Related commands:
bond coeff, delete bonds

Default: none

bond_style morse/omp command

LIGGGHTS Users Manual

61

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style none command
Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in
the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

bond_style none command 62

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nonlinear command

bond_style nonlinear/omp command
Syntax:
bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff 2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

e(r — ro)?2

[\ = (r = ro)’]

E =

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

e epsilon (energy)
¢ 10 (distance)
¢ Jamda (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

bond_style nonlinear command 63

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
bond coeff, delete bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

bond_style nonlinear/omp command

64

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style quartic command

bond_style quartic’omp command
Syntax:

bond_style quartic

Examples:

bond_style quartic
bond_coeff 2 1200 -0.55 0.25 1.3 34.6878

Description:

The quartic bond style uses the potential

9 T 12 T ¥
E = K(r — R)*(r — R.— By)(r — R — By) + Uy + 4e (_) < (_) i

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The
sigma and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”4)
¢ B1 (distance)

¢ B2 (distance)

¢ Rc (distance)

¢ UO (energy)

This potential was constructed to mimic the FENE bond potential for coarse-grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential
that looks nearly like the FENE potential: K = 1200, B1 =-0.55, B2 = 0.25, Rc = 1.3, and UO = 34.6878.
Different parameters can be specified using the bond coeff command, but you will need to choose them
carefully so they form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximum. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off
by setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is
turned on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight-of-hand. It subtracts the pairwise interaction as
part of the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise
interaction must always be computed by the pair_style command, whether the bond is broken or not. This
means that special bonds must be set to 1,1,1, as indicated as a restriction below.

bond_style quartic command 65

http://lammps.sandia.gov

LIGGGHTS Users Manual

Note that when bonds are dumped to a file via the dump local command, bonds with type 0 are not included.
The delete_bonds command can also be used to query the status of broken bonds or permanently delete them,

e.g.:

delete_bonds all stats
delete_bonds all bond 0 remove

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

The guartic style requires that special bonds parameters be set to 1,1,1. Three- and four-body interactions
(angle, dihedral, etc) cannot be used with quartic bonds.

Related commands:
bond coeff, delete bonds

Default: none

bond_style quartic’omp command 66

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style command
Syntax:
bond_style style args

¢ style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles
Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bond
differs from a pairwise interaction, which are set via the pair_style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks which
is possible in some bond potentials). The list of bonded atoms is read in by a read data or read restart
command from a data or restart file. By contrast, pair potentials are typically defined between all pairs of
atoms within a cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond coeff command.

Note that there are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

® bond style class2 - COMPASS (class 2) bond
® bond style fene - FENE (finite-extensible non-linear elastic) bond

bond_style command 67

http://lammps.sandia.gov

LIGGGHTS Users Manual

® bond style fene/expand - FENE bonds with variable size particles
® bond style harmonic - harmonic bond

® bond style morse - Morse bond

® bond style nonlinear - nonlinear bond

® bond style guartic - breakable quartic bond

® bond_style table - tabulated by bond length

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with

that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
bond potentials tell if it is part of a package.

Related commands:
bond coeff, delete_bonds
Default:

bond_style none

bond_style command

68

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style table command

bond_style table/omp command

Syntax:
bond_style table style N

¢ style = linear or spline = method of interpolation
¢ N =use N values in table

Examples:

bond_style table linear 1000
bond_coeff 1 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from bond potential and force values listed in a file(s) as a
function of bond length. The files are read by the bond coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
force values at each of N distances. During a simulation, these tables are used to interpolate energy and force
values as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the bond length is used to find 2 surrounding table values from which an energy or force
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The bond length is used to find the appropriate set of coefficients which are used to evaluate a cubic
polynomial which computes the energy or force.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of
the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Bond potential for harmonic (one or more comment or blank lines)

HAM
N 101 FP 0 0 EQ 0.5

(keyword is the first text on line)
(N, FP, EQ parameters)
(blank line)
1 0.00 338.0000 1352.0000 (index, bond-length, energy, force)
2 0.01 324.6152 1324.9600

101 1.00 338.0000 -1352.0000

bond_style table command 69

http://lammps.sandia.gov

LIGGGHTS Users Manual

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the bond coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the bond style table command. Let Ntable = N in the bond_style command,
and Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines
using the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and
force values at Ntable different points. The resulting tables of length Ntable are then used as described above,
when computing energy and force for individual bond lengths. This means that if you want the interpolation
tables of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary
interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the derivatives
of the force at the innermost and outermost bond lengths. These values are needed by the spline construction
routines. If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last
two force values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium bond length, which is used,
for example, by the fix shake command. If not used, the equilibrium bond length is set to 0.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the bond length r (in distance units), the 3rd value is the energy (in energy units), and
the 4th is the force (in force units). The bond lengths must range from a LO value to a HI value, and increase
from one line to the next. If the actual bond length is ever smaller than the LO value or larger than the HI
value, then the bond energy and force is evaluated as if the bond were the LO or HI length.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

bond_style table/omp command 70

bond coeff, delete bonds

Default: none

bond_style table/omp command

LIGGGHTS Users Manual

71

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

boundary command

Syntax:
boundary x y z

® X,y,Z = p or s or f or m, one or two letters

p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

Examples:

boundary p p £
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read data, read restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end
of the box and re-enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or box deformation (see the fix npt and fix deform commands). The p style must be
applied to both faces of a dimension.

The styles f, s, and m mean the box is non-periodic, so that particles do not interact across the boundary and
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms
in that dimension (shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is
bounded by the value specified in the data or restart file or set by the create box command. For example, if
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if
the maximum z-extent of all the atoms becomes less than 50.0.

For triclinic (non-orthogonal) simulation boxes, if the 2nd dimension of a tilt factor (e.g. y for xy) is periodic,
then the periodicity is enforced with the tilt factor offset. If the 1st dimension is shrink-wrapped, then the
shrink wrapping is applied to the tilted box face, to encompass the atoms. E.g. for a positive xy tilt, the xlo
and xhi faces of the box are planes tilting in the +y direction as y increases. These tilted planes are
shrink-wrapped around the atoms to determine the x extent of the box.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

IMPORTANT NOTE: If mesh walls (e.g. fix mesh/surface) are used, not only atom positions, but also the
mesh nodes are used for setting the boundaries.

Restrictions:

boundary command 72

http://lammps.sandia.gov

LIGGGHTS Users Manual

This command cannot be used after the simulation box is defined by a read data or create _box command or
read restart command. See the change box command for how to change the simulation box boundaries after
it has been defined.

For 2d simulations, the z dimension must be periodic.

Related commands:

See the thermo modify command for a discussion of lost atoms.

Default:

boundary p p p

boundary command 73

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

box command
Syntax:
box keyword value ...

¢ one or more keyword/value pairs may be appended
¢ keyword = tilt

tilt value = small or large
Examples:

box tilt large
box tilt small

Description:

Set attributes of the simulation box.

For triclinic (non-orthogonal) simulation boxes, the tilt keyword allows simulation domains to be created with
arbitrary tilt factors, e.g. via the create box or read data commands. Tilt factors determine how skewed the
triclinic box is; see this section of the manual for a discussion of triclinic boxes in LAMMPS.

LAMMPS normally requires that no tilt factor can skew the box more than half the distance of the parallel
box length, which is the 1st dimension in the tilt factor (x for xz). If #ilt is set to small, which is the default,
then an error will be generated if a box is created which exceeds this limit. If #i/¢ is set to large, then no limit
is enforced. You can create a box with any tilt factors you wish.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume
of communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For
extreme values of tilt, LAMMPS may also lose atoms and generate an error.

Restrictions:

This command cannot be used after the simulation box is defined by a read data or create _box command or
read restart command.

Related commands: none
Default:

The default value is tilt = small.

box command 74

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

change_box command
Syntax:
change_box group-ID parameter args ... keyword args

¢ group-ID = ID of group of atoms to (optionally) displace
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy Or Xz Or yz or boundary or ortho or triclinic or set or rema
X, y, z args = style value(s)
style = final or delta or scale or volume
final values = lo hi
lo hi = box boundaries after displacement (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries after displacement (distance units)
scale values = factor
factor = multiplicative factor for change in box length after displacement
volume value = none = adjust this dim to preserve volume of system
Xy, Xz, yz args = style value
style = final or delta
final value = tilt

tilt = tilt factor after displacement (distance units)
delta value = dtilt
dtilt = change in tilt factor after displacement (distance units)
boundary args = X y z

X,y,z = p or s or £ or m, one or two letters
p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value
ortho args = none = change box to orthogonal
triclinic args = none = change box to triclinic
set args = none = store state of current box
remap args = none = remap atom coords from last saved state to current box
¢ zero or more keyword/value pairs may be appended

¢ keyword = units

units value = lattice or box
lattice = distances are defined in lattice units
box = distances are defined in simulation box units

Examples:

change_box all xy final -2.0 z final 0.0 5.0 boundary p p f remap units box
change_box all x scale 1.1 y volume z volume remap

Description:

Change the volume and/or shape and/or boundary conditions for the simulation box. Orthogonal simulation
boxes have 3 adjustable size parameters (X,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
size/shape parameters (X,y,z,Xy,Xz,yz). Any or all of them can be adjusted independently by this command.
Thus it can be used to expand or contract a box, or to apply a shear strain to a non-orthogonal box. It can also
be used to change the boundary conditions for the simulation box, similar to the boundary command.

The size and shape of the initial simulation box are specified by the create box or read data or read restart

command used to setup the simulation. The size and shape may be altered by subsequent runs, e.g. by use of
the fix npt or fix deform commands. The create box, read data, and read restart commands also determine

change_box command 75

http://lammps.sandia.gov

LIGGGHTS Users Manual

whether the simulation box is orthogonal or triclinic and their doc pages explain the meaning of the xy,xz,yz
tilt factors.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

The keywords used in this command are applied sequentially to the simulation box and the atoms in it, in the
order specified.

Before the sequence of keywords are invoked, the current box size/shape is stored, in case a remap keyword is
used to map the atom coordinates from a previously stored box size/shape to the current one.

After all the keywords have been processed, any shrink-wrap boundary conditions are invoked (see the
boundary command) which may change simulation box boundaries, and atoms are migrated to new owning
processors.

IMPORTANT NOTE: Unlike the earlier "displace_box" version of this command, atom remapping is NOT
performed by default. This command allows remapping to be done in a more general way, exactly when you
specify it (zero or more times) in the sequence of transformations. Thus if you do not use the remap keyword,
atom coordinates will not be changed even if the box size/shape changes. If a uniformly strained state is
desired, the remap keyword should be specified.

IMPORTANT NOTE: It is possible to lose atoms with this command. E.g. by changing the box without
remapping the atoms, and having atoms end up outside of non-periodic boundaries. It is also possible to alter
bonds between atoms straddling a boundary in bad ways. E.g. by converting a boundary from periodic to
non-periodic. It is also possible when remapping atoms to put them (nearly) on top of each other. E.g. by
converting a boundary from non-periodic to periodic. All of these will typically lead to bad dynamics and/or
generate error messages.

IMPORTANT NOTE: The simulation box size/shape can be changed by arbitrarily large amounts by this
command. This is not a problem, except that the mapping of processors to the simulation box is not changed
from its initial 3d configuration; see the processors command. Thus, if the box size/shape changes
dramatically, the mapping of processors to the simulation box may not end up as optimal as the initial
mapping attempted to be.

IMPORTANT NOTE: Because the keywords used in this command are applied one at a time to the simulation
box and the atoms in it, care must be taken with triclinic cells to avoid exceeding the limits on skew after each
transformation in the sequence. If skew is exceeded before the final transformation this can be avoided by
changing the order of the sequence, or breaking the transformation into two or more smaller transformations.
For more information on the allowed limits for box skew see the discussion on triclinic boxes on this page.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0

means COIl'lpI’CSSiOIl.

The volume style changes the specified dimension in such a way that the overall box volume remains constant

change_box command 76

LIGGGHTS Users Manual

with respect to the operation performed by the preceding keyword. The volume style can only be used
following a keyword that changed the volume, which is any of the x, y, z keywords. If the preceding keyword
"key" had a volume style, then both it and the current keyword apply to the keyword preceding "key". L.e. this
sequence of keywords is allowed:

change_box all x scale 1.1 y volume z volume

The volume style changes the associated dimension so that the overall box volume is unchanged relative to its
value before the preceding keyword was invoked.

If the following command is used, then the z box length will shrink by the same 1.1 factor the x box length
was increased by:

change_box all x scale 1.1 z volume

If the following command is used, then the y,z box lengths will each shrink by sqrt(1.1) to keep the volume
constant. In this case, the y,z box lengths shrink so as to keep their relative aspect ratio constant:

change_box all"x scale 1.1 y volume z volume

If the following command is used, then the final box will be a factor of 10% larger in x and y, and a factor of
21% smaller in z, so as to keep the volume constant:

change_box all x scale 1.1 z volume y scale 1.1 z volume

IMPORTANT NOTE: For solids or liquids, when one dimension of the box is expanded, it may be physically
undesirable to hold the other 2 box lengths constant since that implies a density change. For solids, adjusting
the other dimensions via the volume style may make physical sense (just as for a liquid), but may not be
correct for materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LAMMPS, tilt factors (xy,xz,yz) for triclinic boxes are
required to be no more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12,
then the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be
between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5
(as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all equivalent. Any tilt factor
specified by this command must be within these limits.

The boundary keyword takes arguments that have exactly the same meaning as they do for the boundary
command. In each dimension, a single letter assigns the same style to both the lower and upper face of the
box. Two letters assigns the first style to the lower face and the second style to the upper face.

The style p means the box is periodic; the other styles mean non-periodic. For style f, the position of the face

is fixed. For style s, the position of the face is set so as to encompass the atoms in that dimension
(shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is bounded by the

change_box command 77

LIGGGHTS Users Manual

current box edge in that dimension, so that the box will become no smaller. See the boundary command for
more explanation of these style options.

Note that the "boundary" command itself can only be used before the simulation box is defined via a

read data or create box or read restart command. This command allows the boundary conditions to be
changed later in your input script. Also note that the read restart will change boundary conditions to match
what is stored in the restart file. So if you wish to change them, you should use the change_box command
after the read_restart command.

The ortho and triclinic keywords convert the simulation box to be orthogonal or triclinic (non-orthongonal).
See this section for a discussion of how non-orthongal boxes are represented in LAMMPS.

The simulation box is defined as either orthogonal or triclinic when it is created via the create box, read data,
or read restart commands.

These keywords allow you to toggle the existing simulation box from orthogonal to triclinic and vice versa.
For example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled to
triclinic, and then a non-equilibrium MD (NEMD) simulation can be run with deformation via the fix deform
command.

If the simulation box is currently triclinic and has non-zero tilt in Xy, yz, or Xz, then it cannot be converted to
an orthogonal box.

The set keyword saves the current box size/shape. This can be useful if you wish to use the remap keyword
more than once or if you wish it to be applied to an intermediate box size/shape in a sequence of keyword
operations. Note that the box size/shape is saved before any of the keywords are processed, i.e. the box
size/shape at the time the create_box command is encountered in the input script.

The remap keyword remaps atom coordinates from the last saved box size/shape to the current box state. For
example, if you stretch the box in the x dimension or tilt it in the xy plane via the x and xy keywords, then the
remap commmand will dilate or tilt the atoms to conform to the new box size/shape, as if the atoms moved
with the box as it deformed.

Note that this operation is performed without regard to periodic boundaries. Also, any shrink-wrapping of
non-periodic boundaries (see the boundary command) occurs after all keywords, including this one, have been

processed.

Only atoms in the specified group are remapped.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

Restrictions:

If you use the ortho or triclinic keywords, then at the point in the input script when this command is issued, no
dumps can be active, nor can a fix ave/spatial or fix deform be active. This is because these commands test
whether the simulation box is orthogonal when they are first issued. Note that these commands can be used in
your script before a change_box command is issued, so long as an undump or unfix command is also used to
turn them off.

Related commands:

change_box command 78

fix deform, boundary
Default:

The option default is units = lattice.

change_box command

LIGGGHTS Users Manual

79

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

clear command

Syntax:
clear
Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:
This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the

exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status
(log command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

clear command 80

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

communicate command

Syntax:
communicate style keyword value ...

e style = single or multi
e zero or more keyword/value pairs may be appended
¢ keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group-ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms

Examples:

communicate multi

communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter-processor communication that occurs each timestep as atom coordinates
and other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub-domain. The distance is the maximum of the neighbor cutoff for all atom type
pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. However, for granular systems
optimization is automatically performed with the single style, so multi is not necessary/available for granular
systems. See the neighbor multi command for a neighbor list construction option that may also be beneficial
for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a
processor's sub-domain at which ghost atoms are acquired from other processors. By default the ghost cutoff =
neighbor cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information
about the skin distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be
acquired. If it is smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful or even necessary to set a ghost cutoff > neighbor
cutoff:

¢ a single polymer chain with bond interactions, but no pairwise interactions
¢ bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff
¢ ghost atoms beyond the pairwise cutoff are needed for some computation

In the first scenario, a pairwise potential is not defined. Thus the pairwise neighbor cutoff will be 0.0. But

ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different
processors, or when the interaction straddles a periodic boundary.

communicate command 81

http://lammps.sandia.gov

LIGGGHTS Users Manual

The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the distance needs to
be the furthest distance between any two atoms in the bond, angle, etc. E.g. the distance between 1-4 atoms in
a dihedral. For newton bond on, the distance between the central atom in the bond, angle, etc and any other
atom is sufficient. E.g. the distance between 2-4 atoms in a dihedral.

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough
to enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff
should be set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the
normal pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody
pair potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

IMPORTANT NOTE: In these scenarios, if you do not set the ghost cutoff long enough, and if there is only
one processor in a periodic dimension (e.g. you are running in serial), then LAMMPS may "find" the atom it
is looking for (e.g. the partner atom in a bond), that is on the far side of the simulation box, across a periodic
boundary. This will typically lead to bad dynamics (i.e. the bond length is now the simulation box length). To
detect if this is happening, see the neigh modify cluster command.

The group option will limit communication to atoms in the specified group. This can be useful for models
where no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group)
will still migrate to new processors as they move. The group specified with this option must also be specified
via the atom modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise L,J interaction.

Note that if the fix deform command is being used with its "remap v" option enabled, then the velocities for
ghost atoms (in the fix deform group) mirrored across a periodic boundary will also include components due
to any velocity shift that occurs across that boundary (e.g. due to dilation or shear).

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, vel = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

communicate command 82

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ackland/atom command
Syntax:
compute ID group-ID ackland/atom

¢ ID, group-ID are documented in compute command
¢ ackland/atom = style name of this compute command

Examples:
compute 1 all ackland/atom
Description:

Defines a computation that calculates the local lattice structure according to the formulation given in

(Ackland).

In contrast to the centro-symmetry parameter this method is stable against temperature boost, because it is
based not on the distance between particles but the angles. Therefore statistical fluctuations are averaged out a
little more. A comparison with the Common Neighbor Analysis metric is made in the paper.

The result is a number which is mapped to the following different lattice structures:

¢ 0 = UNKNOWN

e 1 =BCC
2 =FCC
¢ 3 =HCP
*4=1CO

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of which computes this quantity.-

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

The per-atom vector values will be unitless since they are the integers defined above.
Related commands:

compute centro/atom

Default: none

compute ackland/atom command 83

http://lammps.sandia.gov

LIGGGHTS Users Manual
(Ackland) Ackland, Jones, Phys Rev B, 73, 054104 (2006).

compute ackland/atom command

84

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute angle/local command

Syntax:
compute ID group-ID angle/local inputl input2 ...

¢ ID, group-ID are documented in compute command
¢ angle/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = theta or eng

theta
eng

tabulate angles
tabulate angle energies

Examples:

compute 1 all angle/local theta
compute 1 all angle/local eng theta

Description:

Define a computation that calculates properties of individual angle interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their angles. An angle will only be included if all 3 atoms in the angle are in the specified compute group. Any
angles that have been broken (see the angle style command) by setting their angle type to 0 are not included.
Angles that have been turned off (see the fix shake or delete bonds commands) by setting their angle type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, angle output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of angles. If a single keyword is specified, a local vector
is produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for theta will be in degrees. The output for eng will be in energy units.

Restrictions: none

Related commands:

dump local, compute property/local

compute angle/local command 85

http://lammps.sandia.gov

Default: none

compute angle/local command

LIGGGHTS Users Manual

86

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute atom/molecule command

Syntax:
compute ID group-ID atom/molecule inputl input2

¢ ID, group-ID are documented in compute command

¢ atom/molecule = style name of this compute command
¢ one or more inputs can be listed

¢ input = c_ID, c_ID[N], f_ID, f ID[N], v_name

c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID
f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

compute 1 all atom/molecule c_ke c_pe
compute 1 top atom/molecule v_myFormula c_stress3

Description:

Define a calculation that sums per-atom values on a per-molecule basis, one per listed input. The inputs can
computes, fixes, or yariables that generate per-atom quantities. Note that attributes stored by atoms, such as
mass or force, can also be summed on a per-molecule basis, by accessing these quantities via the compute

property/atom command.

Each listed input is operated on independently. Only atoms within the specified group contribute to the
per-molecule sum. Note that compute or fix inputs define their own group which may affect the quantities
they return. For example, if a compute is used as an input which generates a per-atom vector, it will generate
values of 0.0 for atoms that are not in the group specified for that compute.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

If an input begins with "c_", a compute ID must follow which has been previously defined in the input script
and which generates per-atom quantities. See the individual compute doc page for details. If no bracketed
integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended, the Ith
column of the array calculated by the compute is used. Users can also write code for their own compute styles
and add them to LAMMPS.

If an input begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates per-atom quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute atom/molecule
references the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix
is used. If a bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can
also write code for their own fix style and add them to LAMMPS.

If an input begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a

compute atom/molecule command 87

http://lammps.sandia.gov

LIGGGHTS Users Manual

very general means of generating per-atom quantities to sum on a per-molecule basis.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

compute atom/molecule command 88

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute basal/atom command
Syntax:
compute ID group-ID basal/atom

¢ ID, group-ID are documented in compute command
¢ basal/atom = style name of this compute command

Examples:

compute 1 all basal/atom

Description:

Defines a computation that calculates the hexagonal close-packed "c" lattice vector for each atom in the
group. It does this by calculating the normal unit vector to the basal plane for each atom. The results enable

efficient identification and characterization of twins and grains in hexagonal close-packed structures.

The output of the compute is thus the 3 components of a unit vector associdate with each atom. The
components are set to 0.0 for atoms not in the group.

Details of the calculation are given in (Barrett).

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of which computes this quantity.

An example input script that uses this compute is provided in examples/USER/misc/basal.

Output info:

This compute calculates a per-atom array with 3 columns, which can be accessed by indices 1-3 by any
command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LAMMPS output options.

The per-atom vector values are unitless since the 3 columns represent components of a unit vector.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

The output of this compute will be meaningless unless the atoms are on (or near) hcp lattice sites, since the
calculation assumes a well-defined basal plane.

Related commands:

compute centro/atom, compute ackland/atom

Default: none

compute basal/atom command 89

http://lammps.sandia.gov

LIGGGHTS Users Manual
(Barrett) Barrett, Tschopp, El Kadiri, Scripta Mat. 66, p.666 (2012).

compute basal/atom command

90

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute body/local command

Syntax:
compute ID group-ID body/local inputl input2 ...

¢ ID, group-ID are documented in compute command
¢ body/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = type or integer

type = atom type of the body particle
integer = 1,2,3,etc = index of fields defined by body style

Examples:

compute 1 all body/local type 1 2 3
compute 1 all body/local 3 6

Description:

Define a computation that calculates properties of individual body sub-particles. The number of datums
generated, aggregated across all processors, equals the number of body sub-particles plus the number of
non-body particles in the system, modified by the group parameter as explained below. See Section howto 14
of the manual and the body doc page for more details on using body particles.

The local data stored by this command is generated by looping over all the atoms. An atom will only be
included if it is in the group. If the atom is a body particle, then its N sub-particles will be looped over, and it
will contribute N datums to the count of datums. If it is not a body particle, it will contribute 1 datum.

For both body particles and non-body particles, the rype keyword will store the type of the atom.

The integer keywords mean different things for body and non-body particles. If the atom is not a body
particle, only its x, y, z coordinates can be referenced, using the integer keywords 1,2,3. Note that this means
that if you want to access more fields than this for body particles, then you cannot include non-body particles
in the group.

For a body particle, the integer keywords refer to fields calculated by the body style for each sub-particle. The
body style, as specified by the atom_style body, determines how many fields exist and what they are. See the
body doc page for details of the different styles.

Here is an example of how to output body information using the dump local command with this compute. If
fields 1,2,3 for the body sub-particles are x,y,z coordinates, then the dump file will be formatted similar to the
output of a dump atom or custom command.

compute 1 all body/local type 1 2 3
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_114]

Output info:
This compute calculates a local vector or local array depending on the number of keywords. The length of the

vector or number of rows in the array is the number of datums as described above. If a single keyword is
specified, a local vector is produced. If two or more keywords are specified, a local array is produced where

compute body/local command 91

http://lammps.sandia.gov

LIGGGHTS Users Manual

the number of columns = the number of keywords. The vector or array can be accessed by any command that
uses local values from a compute as input. See this section for an overview of LAMMPS output options.

The units for output values depend on the body style.

Restrictions: none

Related commands:

dump local

Default: none

compute body/local command 92

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute bond/local command

Syntax:
compute ID group-ID bond/local inputl input2

¢ ID, group-ID are documented in compute command
¢ bond/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = dist or eng

dist = bond distance
eng = bond energy
force = bond force

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng force

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums
generated, aggregated across all processors, equals the number of bonds in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any
bonds that have been broken (see the bond style command) by setting their bond type to 0 are not included.
Bonds that have been turned off (see the fix shake or delete bonds commands) by setting their bond type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, bond output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Here is an example of how to do this:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

compute bond/local command 93

http://lammps.sandia.gov

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute bond/local command

LIGGGHTS Users Manual

94

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute centro/atom command

Syntax:
compute ID group—-ID centro/atom lattice

¢ ID, group-ID are documented in compute command
® centro/atom = style name of this compute command
e lattice = fcc or bee or N = # of neighbors per atom to include

Examples:
compute 1 all centro/atom fcc

compute 1 all centro/atom 8
Description:

Define a computation that calculates the centro-symmetry parameter for each atom in the group. In solid-state
systems the centro-symmetry parameter is a useful measure of the local lattice disorder around an atom and
can be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or
stacking fault), or at a surface.

The value of the centro-symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

N/2 |
CS =) |Ri+ Riinypaf?

=1

where the N nearest neighbors or each atom are identified and Ri and Ri+N/2 are vectors from the central
atom to a particular pair of nearest neighbors. There are N*(N-1)/2 possible neighbor pairs that can contribute
to this formula. The quantity in the sum is computed for each, and the N/2 smallest are used. This will
typically be for pairs of atoms in symmetrically opposite positions with respect to the central atom; hence the
i+N/2 notation.

N is an input parameter, which should be set to correspond to the number of nearest neighbors in the
underlying lattice of atoms. If the keyword fcc or bec is used, N is set to 12 and 8 respectively. More
generally, N can be set to a positive, even integer.

For an atom on a lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter will be
0. It will be near 0 for small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is
broken, and the parameter will be a larger positive value. An atom at a surface will have a large positive
parameter. If the atom does not have N neighbors (within the potential cutoff), then its centro-symmetry
parameter is set to 0.0.

Only atoms within the cutoff of the pairwise neighbor list are considered as possible neighbors. Atoms not in
the compute group are included in the N neighbors used in this calculation.

compute centro/atom command 95

http://lammps.sandia.gov

LIGGGHTS Users Manual

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The per-atom vector values are unitless values >= 0.0. Their magnitude depends on the lattice style due to the
number of contibuting neighbor pairs in the summation in the formula above. And it depends on the local
defects surrounding the central atom, as described above.

Here are typical centro-symmetry values, from a a nanoindentation simulation into gold (FCC). These were
provided by Jon Zimmerman (Sandia):

Bulk lattice = 0

Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

These values are *not* normalized by the square of the lattice parameter. If they were, normalized values
would be:

Bulk lattice = 0

Dislocation core ~ 0.06 (0.03 to 0.075)
Stacking faults ~ 0.3 (0.24 to 0.36)
Free surface ~ 1.38

For BCC materials, the values for dislocation cores and free surfaces would be somewhat different, due to
their being only 8 neighbors instead of 12.

Restrictions: none
Related commands:

compute cna/atom

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

compute centro/atom command 96

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cluster/atom command
Syntax:
compute ID group-ID cluster/atom cutoff
¢ ID, group-ID are documented in compute command
o cluster/atom = style name of this compute command
¢ cutoff = distance within which to label atoms as part of same cluster (distance units)
Examples:
compute 1 all cluster/atom 1.0
Description:
Define a computation that assigns each atom a cluster ID.
A cluster is defined as a set of atoms, each of which is within the cutoff distance from one or more other
atoms in the cluster. If an atom has no neighbors within the cutoff distance, then it is a 1-atom cluster. The ID

of every atom in the cluster will be the smallest atom ID of any atom in the cluster.

Only atoms in the compute group are clustered and assigned cluster IDs. Atoms not in the compute group are
assigned a cluster ID = 0.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a clsuter/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be an ID > 0, as explained above.
Restrictions: none
Related commands:

compute coord/atom

Default: none

compute cluster/atom command 97

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cha/atom command

Syntax:

compute ID group-ID cna/atom cutoff
¢ ID, group-ID are documented in compute command
¢ cna/atom = style name of this compute command
e cutoff = cutoff distance for nearest neighbors (distance units)
Examples:
compute 1 all cna/atom 3.08
Description:
Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the
group. In solid-state systems the CNA pattern is a useful measure of the local crystal structure around an

atom. The CNA methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LAMMPS recognizes:

efcc=1
ehcp=2
ebcc=3

® jcosohedral = 4
e unknown =5

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a
CNA calculation should only be performed on mono-component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas
can be used to obtain a good cutoff distance:

2
ri® = g +1)a~0.8536a

o] —

1
re® = S(V2+1)ax1207a

Whep o
e

S| =

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

compute cna/atom command 98

http://lammps.sandia.gov

LIGGGHTS Users Manual

Also note that since the CNA calculation in LAMMPS uses the neighbors of an owned atom to find the
nearest neighbors of a ghost atom, the following relation should also be satisfied:

Rec 4+ Rs > 2 x cutoff

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command,
and cutoff is the argument used with the compute cna/atom command. LAMMPS will issue a warning if this
is not the case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number from O to 5, as explained above.
Restrictions: none
Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

compute cna/atom command 99

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com command

Syntax:
compute ID group—-ID com

¢ ID, group-ID are documented in compute command
¢ com = style name of this compute command

Examples:
compute 1 all com
Description:

Define a computation that calculates the center-of-mass of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the x,y,z coordinates of the center of
mass.

IMPORTANT NOTE: The coordinates of an atom contribute to the center-of-mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:
This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output

options.

The vector values are "intensive". The vector values will be in distance units.

Restrictions: none

Related commands:

compute com/molecule

Default: none

compute com command 100

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com/molecule command

Syntax:
compute ID group-ID com/molecule

¢ ID, group-ID are documented in compute command
¢ com/molecule = style name of this compute command

Examples:
compute 1 fluid com/molecule
Description:

Define a computation that calculates the center-of-mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center-of-mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is
not required. LAMMPS will warn you if this is not the case. Only atoms in the group contribute to the
center-of-mass calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center-of-mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
3 for the x,y,z center-of-mass coordinates of each molecule. These values can be accessed by any command
that uses global array values from a compute as input. See Section _howto 15 for an overview of LAMMPS
output options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

compute com

compute com/molecule command 101

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

compute com/molecule command 102

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute contact/atom command
Syntax:
compute ID group-ID contact/atom

¢ ID, group-ID are documented in compute command
® contact/atom = style name of this compute command

Examples:

compute 1 all contact/atom

Description:

Define a computation that calculates the number of contacts for each atom in a group.

The contact number is defined for finite-size spherical particles as the number of neighbor atoms which
overlap the central particle, meaning that their distance of separation is less than or equal to the sum of the
radii of the two particles.

The value of the contact number will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, whose values can be accessed by any command that uses per-atom
values from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute requires that atoms store a radius as defined by the atom_style sphere command.
Related commands:

compute coord/atom

Default: none

compute contact/atom command 103

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute coord/atom command

Syntax:

compute ID group-ID coord/atom cutoff keyword value

¢ ID, group-ID are documented in compute command

¢ coord/atom = style name of this compute command cutoff = distance within which to count
coordination neighbors (distance units) zero or more keyword/value pairs may be appended to args

¢ keyword = mix or typel, type2, ...

mix value = yes or no -ID
no = count all neighbors
yes = count only neighbors that have same atom type

typeN = atom type for Nth coordination count (see asterisk form below)

Examples:

all coord/atom
all coord/atom
all coord/atom
all coord/atom

compute
compute
compute
compute

e e e

Description:
Define a computation that calculates one or more coordination numbers for each atom in a group.

A coordination number is defined as the number of neighbor atoms with specified atom type(s) that are within
the specified cutoff distance from the central atom. Atoms not in the group are included in a coordination
number of atoms in the group.

The typeN keywords allow you to specify which atom types contribute to each coordination number. One
coordination number is computed for each of the typeN keywords listed. If no fypeN keywords are listed, a
single coordination number is calculated, which includes atoms of all types (same as the "*" format, see
below).

The typeN keywords can be specified in one of two ways. An explicit numeric value can be used, as in the 2nd
example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the form "*"
or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The value of all coordination numbers will be 0.0 for atoms not in the specified compute group.
The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too

frequently.

Keyword mix controlls if all neighbors are counted or if only neighbors with same atom type are counted. The
latter can be useful to quanitfy mixture of different species.

IMPORTANT NOTE: If you have a bonded system, then the settings of special bonds command can remove
pairwise interactions between atoms in the same bond, angle, or dihedral. This is the default setting for the

compute coord/atom command 104

http://lammps.sandia.gov

LIGGGHTS Users Manual

special bonds command, and means those pairwise interactions do not appear in the neighbor list. Because
this fix uses the neighbor list, it also means those pairs will not be included in the coordination count. One
way to get around this, is to write a dump file, and use the rerun command to compute the coordination for
snapshots in the dump file. The rerun script can use a special bonds command that includes all pairs in the
neighbor list.

Output info:

If single typel keyword is specified (or if none are specified), or the mix keyword is used, this compute
calculates a per-atom vector. If multiple fypeN keywords are specified, this compute calculates a per-atom
array, with N columns. These values can be accessed by any command that uses per-atom values from a
compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector or array values will be a number >= (.0, as explained above.

Restrictions: none

Related commands:

compute cluster/atom

Default: none

compute coord/atom command 105

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute damage/atom command
Syntax:
compute ID group-ID damage/atom

¢ ID, group-ID are documented in compute command
¢ damage/atom = style name of this compute command

Examples:

compute 1 all damage/atom

Description:

Define a computation that calculates the per-atom damage for each atom in a group. Please see the
PDLAMMPS user guide for a formal definition of "damage" and more details about Peridynamics as it is
implemented in LAMMPS.

The value of the damage will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.
Restrictions:

This compute is part of the PERI package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

compute damage/atom command 106

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute dihedral/local command

Syntax:
compute ID group-ID dihedral/local inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ dihedral/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = phi

phi = tabulate dihedral angles
Examples:
compute 1 all dihedral/local phi
Description:

Define a computation that calculates properties of individual dihedral interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their dihedrals. A dihedral will only be included if all 4 atoms in the dihedral are in the specified compute

group.
Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, dihedral output from the compute property/local command can be combined with
data from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of dihedrals. If a single keyword is specified, a local
vector is produced. If two or more keywords are specified, a local array is produced where the number of
columns = the number of keywords. The vector or array can be accessed by any command that uses local
values from a compute as input. See this section for an overview of LAMMPS output options.

The output for phi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute dihedral/local command 107

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute displace/atom command
Syntax:
compute ID group—-ID displace/atom

¢ ID, group-ID are documented in compute command
e displace/atom = style name of this compute command

Examples:
compute 1 all displace/atom
Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and the computed displacement may not reflect its true displacement. See the fix rigid command
for details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need
to post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:

This compute calculates a per-atom array with 4 columns, which can be accessed by indices 1-4 by any
command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LAMMPS output options.

The per-atom array values will be in distance units.

Restrictions: none

Related commands:

compute msd, dump custom, fix store/state

compute displace/atom command 108

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

compute displace/atom command 109

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/asphere command
Syntax:
compute ID group-ID erotate/asphere

¢ ID, group-ID are documented in compute command
e erotate/asphere = style name of this compute command

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles. The
aspherical particles can be ellipsoids, or line segments, or triangles. See the atom_style and read data
commands for descriptions of these options.

For all 3 types of particles, the rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor
for the aspherical particle and w is its angular velocity, which is computed from its angular momentum if

needed.

IMPORTANT NOTE: For 2d models, ellipsoidal particles are treated as ellipsoids, not ellipses, meaning their
moments of inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute requires that ellipsoidal particles atoms store a shape and quaternion orientation and angular
momentum as defined by the atom_style ellipsoid command.

This compute requires that line segment particles atoms store a length and orientation and angular velocity as
defined by the atom_style line command.

This compute requires that triangular particles atoms store a size and shape and quaternion orientation and
angular momentum as defined by the atom_style tri command.

All particles in the group must be finite-size. They cannot be point particles.
Related commands: none

compute erotate/sphere

Default: none

compute erotate/asphere command 110

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere/atom command
Syntax:
compute ID group-ID erotate/sphere/atom

¢ ID, group-ID are documented in compute command
e erotate/sphere/atom = style name of this compute command

Examples:

compute 1 all erotate/sphere/atom

Description:

Define a computation that calculates the rotational kinetic energy for each particle in a group.

The rotational energy is computed as 1/2 I wA2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

The value of the rotational kinetic energy will be 0.0 for atoms not in the specified compute group or for point
particles with a radius = 0.0.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions: none
Related commands:

dump custom

Default: none

compute erotate/sphere/atom command 111

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere command
Syntax:
compute ID group-ID erotate/sphere

¢ ID, group-ID are documented in compute command
e erotate/sphere = style name of this compute command

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I wA2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute requires that atoms store a radius and angular velocity (omega) as defined by the atom_style
sphere command.

All particles in the group must be finite-size spheres or point particles. They cannot be aspherical. Point
particles will not contribute to the rotational energy.

Related commands:

compute erotate/asphere

Default: none

compute erotate/sphere command 112

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute event/displace command
Syntax:
compute ID group-ID event/displace threshold

¢ ID, group-ID are documented in compute command

¢ event/displace = style name of this compute command

¢ threshold = minimum distance anyparticle must move to trigger an event (distance units)
Examples:
compute 1 all event/displace 0.5
Description:
Define a computation that flags an "event" if any particle in the group has moved a distance greater than the
specified threshold distance when compared to a previously stored reference state (i.e. the previous event).
This compute is typically used in conjunction with the prd and tad commands, to detect if a transition to a new

minimum energy basin has occurred.

This value calculated by the compute is equal to 0 if no particle has moved far enough, and equal to 1 if one or
more particles have moved further than the threshold distance.

NOTE: If the system is undergoing significant center-of-mass motion, due to thermal motion, an external
force, or an initial net momentum, then this compute will not be able to distinguish that motion from local
atom displacements and may generate "false postives."

Output info:

This compute calculates a global scalar (the flag). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The scalar value will be a 0 or 1 as explained
above.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Related commands:
prd, tad

Default: none

compute event/displace command 113

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute group/group command

Syntax:
compute ID group-ID group/group group2-ID keyword value ...

¢ ID, group-ID are documented in compute command
¢ group/group = style name of this compute command
¢ group2-ID = group ID of second (or same) group

¢ zero or more keyword/value pairs may be appended
¢ keyword = pair or kspace or boundary

pair value = yes or no
kspace value = yes or no
boundary value = yes or no

Examples:

compute 1 lower group/group upper
compute 1 lower group/group upper kspace yes
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same.

If the pair keyword is set to yes, which is the default, then the the interaction energy will include a pair
component which is defined as the pairwise energy between all pairs of atoms where one atom in the pair is in
the first group and the other is in the second group. Likewise, the interaction force calculated by this compute
will include the force on the compute group atoms due to pairwise interactions with atoms in the specified
group?2.

If the kspace keyword is set to yes, which is not the default, and if a kspace style is defined, then the
interaction energy will include a Kspace component which is the long-range Coulombic energy between all
the atoms in the first group and all the atoms in the 2nd group. Likewise, the interaction force calculated by
this compute will include the force on the compute group atoms due to long-range Coulombic interactions
with atoms in the specified group2.

Normally the long-range Coulombic energy converges only when the net charge of the unit cell is zero.
However, one can assume the net charge of the system is neutralized by a uniform background plasma, and a
correction to the system energy can be applied to reduce artifacts. For more information see (Bogusz). If the
boundary keyword is set to yes, which is the default, and kspace contributions are included, then this energy
correction term will be added to the total group-group energy. This correction term does not affect the force
calculation and will be zero if one or both of the groups are charge neutral. This energy correction term is the
same as that included in the regular Ewald and PPPM routines.

This compute does not calculate any bond or angle or dihedral or improper interactions between atoms in the
two groups.

The pairwise contributions to the group-group interactions are calculated by looping over a neighbor list. The
Kspace contribution to the group-group interactions require essentially the same amount of work (FFTs,
Ewald summation) as computing long-range forces for the entire system. Thus it can be costly to invoke this

compute group/group command 114

http://lammps.sandia.gov

LIGGGHTS Users Manual

compute too frequently.

If you desire a breakdown of the interactions into a pairwise and Kspace component, simply invoke the
compute twice with the appropriate yes/no settings for the pair and kspace keywords. This is no more costly
than using a single compute with both keywords set to yes. The individual contributions can be summed in a
variable if desired.

This document describes how the long-range group-group calculations are performed.

Output info:

This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be
accessed by indices 1-3. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

Both the scalar and vector values calculated by this compute are "extensive". The scalar value will be in
energy units. The vector values will be in force units.

Restrictions:

Not all pair styles can be evaluated in a pairwise mode as required by this compute. For example, 3-body and
other many-body potentials, such as Tersoff and Stillinger-Weber cannot be used. EAM potentials only
include the pair potential portion of the EAM interaction when used by this compute, not the embedding term.

Not all Kspace styles support calculation of group/group interactions. The ewald and pppm styles do.
Related commands: none
Default:

The option defaults are pair = yes, kspace = no, and boundary = yes.

Bogusz et al,] Chem Phys, 108, 7070 (1998)

compute group/group command 115

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration command
Syntax:
compute ID group-ID gyration

¢ ID, group-ID are documented in compute command
¢ gyration = style name of this compute command

Examples:
compute 1 molecule gyration
Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due
to atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

. 1

.?'f'l-i(?"i — ?"r:rirn)2

where M is the total mass of the group, Rcm is the center-of-mass position of the group, and the sum is over
all atoms in the group.

A Rg tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the components
of the tensor is the same as the above formula, except that (Ri - Rem)”2 is replaced by (Rix - Remx) * (Riy -
Rcmy) for the xy component, etc. The 6 components of the vector are ordered XX, yy, zz, Xy, Xz, yZ.
IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.
Output info:

This compute calculates a global scalar (Rg) and a global vector of length 6 (Rg tensor), which can be
accessed by indices 1-6. These values can be used by any command that uses a global scalar value or vector

values from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in distance units.

Restrictions: none

Related commands:

compute gyration/molecule

compute gyration command 116

http://lammps.sandia.gov

Default: none

compute gyration command

LIGGGHTS Users Manual

117

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration/molecule command

Syntax:
compute ID group-ID gyration/molecule keyword value ...

¢ ID, group-ID are documented in compute command

¢ gyration/molecule = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = tensor

tensor value = none
Examples:

compute 1 molecule gyration/molecule
compute 2 molecule gyration/molecule tensor

Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation
includes all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

1 ‘

2 2

Hg T .”Li(i’i 7 -*r:rm)
M4

where M is the total mass of the molecule, Rcm is the center-of-mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

If the tensor keyword is specified, then the scalar Rg value is not calculated, but an Rg tensor is instead
calculated for each molecule. The formula for the components of the tensor is the same as the above formula,
except that (Ri - Rem)”2 is replaced by (Rix - Remx) * (Riy - Remy) for the Xy component, etc. The 6
components of the tensor are ordered XX, yy, zz, Xy, Xz, yZ.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally
all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you if this
is not the case. Only atoms in the group contribute to the Rg calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each

atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

compute gyration/molecule command 118

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute calculates a global vector if the tensor keyword is not specified and a global array if it is. The
length of the vector or number of rows in the array is the number of molecules. If the fensor keyword is
specified, the global array has 6 columns. The vector or array can be accessed by any command that uses
global values from a compute as input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "intensive". The vector or array values will be in
distance units.

Restrictions: none

Related commands: none

compute gyration

Default: none

compute gyration/molecule command 119

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute heat/flux command

Syntax:

compute ID group-ID heat/flux ke-ID pe-ID stress-ID

¢ ID, group-ID are documented in compute command

¢ heat/flux = style name of this compute command

¢ ke-ID = ID of a compute that calculates per-atom kinetic energy

¢ pe-ID = ID of a compute that calculates per-atom potential energy
e stress-1D = ID of a compute that calculates per-atom stress

Examples:

compute myFlux all heat/flux myKE myPE myStress

Description:

Define a computation that calculates the heat flux vector based on contributions from atoms in the specified
group. This can be used by itself to measure the heat flux into or out of a reservoir of atoms, or to calculate a

thermal conductivity using the Green-Kubo formalism.

See the fix thermal/conductivity command for details on how to compute thermal conductivity in an alternate
way, via the Muller-Plathe method. See the fix heat command for a way to control the heat added or
subtracted to a group of atoms.

The compute takes three arguments which are IDs of other computes. One calculates per-atom kinetic energy
(ke-1D), one calculates per-atom potential energy (pe-ID), and the third calcualtes per-atom stress (stress-ID).
These should be defined for the same group used by compute heat/flux, though LAMMPS does not check for
this.

The Green-Kubo formulas relate the ensemble average of the auto-correlation of the heat flux J to the thermal
conductivity kappa:

T
d = v Zi:ffivi_zi:.sivi

1 o
— ? Zeivi ‘|‘Z(f13 'V.;i") Xij

1<

I 1
= | evit g (B (vit+v))xy

compute heat/flux command 120

http://lammps.sandia.gov

LIGGGHTS Users Manual

Voo Vo oo
= 0T lt:—,_/ 3(0) - J(t)) dt
K=, O T dt =z [0 3(0)

Ei in the first term of the equation for J is the per-atom energy (potential and kinetic). This is calculated by the
computes ke-ID and pe-ID. Si in the second term of the equation for J is the per-atom stress tensor calculated
by the compute stress-ID. The tensor multiplies Vi as a 3x3 matrix-vector multiply to yield a vector. Note that
as discussed below, the 1/V scaling factor in the equation for J is NOT included in the calculation performed
by this compute; you need to add it for a volume appropriate to the atoms included in the calculation.

IMPORTANT NOTE: The compute pe/atom and compute stress/atom commands have options for which
terms to include in their calculation (pair, bond, etc). The heat flux calculation will thus include exactly the
same terms. Normally you should use compute stress/atom virial so as not to include a kinetic energy term in
the heat flux.

This compute calculates 6 quantities and stores them in a 6-component vector. The first 3 components are the
X, y, z components of the full heat flux vector, i.e. (Jx, Jy, Jz). The next 3 components are the X, y, z
components of just the convective portion of the flux, i.e. the first term in the equation for J above.

The heat flux can be output every so many timesteps (e.g. via the thermo_style custom command). Then as a
post-processing operation, an autocorrelation can be performed, its integral estimated, and the Green-Kubo
formula above evaluated.

The fix ave/correlate command can calclate the autocorrelation. The trap() function in the yvariable command
can calculate the integral.

An example LAMMPS input script for solid Ar is appended below. The result should be: average conductivity
~0.29 in W/mK.

Output info:

This compute calculates a global vector of length 6 (total heat flux vector, followed by conductive heat flux
vector), which can be accessed by indices 1-6. These values can be used by any command that uses global
vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values calculated by this compute are "extensive", meaning they scale with the number of atoms in
the simulation. They can be divided by the appropriate volume to get a flux, which would then be an
"intensive" value, meaning independent of the number of atoms in the simulation. Note that if the compute is
"all", then the appropriate volume to divide by is the simulation box volume. However, if a sub-group is used,
it should be the volume containing those atoms.

The vector values will be in energy*velocity units. Once divided by a volume the units will be that of flux,
namely energy/area/time units

Restrictions: none
Related commands:

fix_thermal/conductivity, fix ave/correlate, variable

Default: none

compute heat/flux command 121

LIGGGHTS Users Manual

Sample LAMMPS input script for thermal conductivity of solid Ar

units real

variable T equal 70

variable V equal vol

variable dt equal 4.0

variable p equal 200 # correlation length
variable s equal 10 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K] Boltzmann
variable kCal2J equal 4186.0/6.02214e23

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${kCal2J}*${kCal2Jd}/${fs2s}/S${A2m}

setup problem

dimension 3

boundary P PP

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep S{dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

thermal conductivity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

compute myKE all ke/atom
compute myPE all pe/atom
compute myStress all stress/atom virial
compute flux all heat/flux myKE myPE myStress
variable Jx equal c_flux[1l]/vol
variable Jy equal c_flux[2]/vol
variable Jz equal c_flux[3]/vol
fix JJ all ave/correlate $s S$Sp $d &
c_flux[1l] c_flux[2] c_flux[3] type auto file J0Jt.dat ave running
variable scale equal S${convert}/${kB}/ST/ST/SV*S$s*S${dt}
variable k11l equal trap(f_JJ[3])*S${scale}
variable k22 equal trap(f_JJ[4])*S$S{scale}
variable k33 equal trap(f_JJ[5])*S${scale}
thermo_style custom step temp v_Jx v_Jy v_Jz v_kll v_k22 v_k33
run 100000
variable k equal (v_kll+v_k22+v_k33)/3.0
variable ndens equal count (all)/vol
print "average conductivity: S$k[W/mK] @ ST K, ${ndens} /A"3"

compute heat/flux command 122

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute command

Syntax:
compute ID group-ID style args

¢ ID = user-assigned name for the computation

¢ group-ID = ID of the group of atoms to perform the computation on
¢ style = one of a list of possible style names (see below)

¢ args = arguments used by a particular style

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system.
Defining a compute does not perform a computation. Instead computes are invoked by other LAMMPS
commands as needed, e.g. to calculate a temperature needed for a thermostat fix or to generate
thermodynamic or dump file output. See this howto section for a summary of various LAMMPS output
options, many of which involve computes.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per-atom, or local. A global quantity is one or
more system-wide values, e.g. the temperature of the system. A per-atom quantity is one or more values per
atom, e.g. the kinetic energy of each atom. Per-atom values are set to 0.0 for atoms not in the specified
compute group. Local quantities are calculated by each processor based on the atoms it owns, but there may
be zero or more per atom, e.g. a list of bond distances. Computes that produce per-atom quantities have the
word "atom" in their style, e.g. ke/atom. Computes that produce local quantities have the word "local" in their
style, e.g. bond/local. Styles with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per-atom or local quantities, but never more than one of
these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a
per-atom vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a
global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be
referenced via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

compute command 123

http://lammps.sandia.gov

LIGGGHTS Users Manual

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
compute values as input can also process elements of a vector or array.

Note that commands and yariables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a compute can be used in several ways:

¢ The results of computes that calculate a global temperature or pressure can be used by fixes that do
thermostatting or barostatting or when atom velocities are created.

¢ Global values can be output via the thermo_style custom or fix ave/time command. Or the values can
be referenced in a variable equal or variable atom command.

¢ Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

¢ | ocal values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

The results of computes that calculate global quantities can be either "intensive" or "extensive" values.
Intensive means the value is independent of the number of atoms in the simulation, e.g. temperature.
Extensive means the value scales with the number of atoms in the simulation, e.g. total rotational kinetic
energy. Thermodynamic output will normalize extensive values by the number of atoms in the system,
depending on the "thermo_modify norm" setting. It will not normalize intensive values. If a compute value is
accessed in another way, e.g. by a variable, you may want to know whether it is an intensive or extensive
value. See the doc page for individual computes for further info.

LAMMPS creates its own computes internally for thermodynamic output. Three computes are always created,

named "thermo_temp", "thermo_press", and "thermo_pe", as if these commands had been invoked in the input
script:

compute thermo_temp all temp
compute thermo_press all pressure thermo_temp
compute thermo_pe all pe

Additional computes for other quantities are created if the thermo style requires it. See the documentation for
the thermo_style command.

Fixes that calculate temperature or pressure, i.e. for thermostatting or barostatting, may also create computes.
These are discussed in the documentation for specific fix commands.

In all these cases, the default computes LAMMPS creates can be replaced by computes defined by the user in
the input script, as described by the thermo modify and fix modify commands.

Properties of either a default or user-defined compute can be modified via the compute modify command.
Computes can be deleted with the uncompute command.

Code for new computes can be added to LAMMPS (see this section of the manual) and the results of their
calculations accessed in the various ways described above.

Each compute style has its own doc page which describes its arguments and what it does. Here is an
alphabetic list of compute styles available in LAMMPS:

compute command 124

LIGGGHTS Users Manual

¢ angle/local - theta and energy of each angle

e atom/molecule - sum per-atom properties for each molecule

® body/local - attributes of body sub-particles

¢ bond/local - distance and energy of each bond

e centro/atom - centro-symmetry parameter for each atom

e cluster/atom - cluster ID for each atom

® cna/atom - common neighbor analysis (CNA) for each atom

® com - center-of-mass of group of atoms

® com/molecule - center-of-mass for each molecule

® contact/atom - contact count for each spherical particle

® coord/atom - coordination number for each atom

e damage/atom - Peridynamic damage for each atom

e dihedral/local - angle of each dihedral

e displace/atom - displacement of each atom

e erotate/asphere - rotational energy of aspherical particles

e erotate/rigid - rotational energy of rigid bodies

e erotate/sphere - rotational energy of spherical particles

e erotate/sphere/atom - rotational energy for each spherical particle
¢ event/displace - detect event on atom displacement

® group/group - energy/force between two groups of atoms

e gyration - radius of gyration of group of atoms

e gyration/molecule - radius of gyration for each molecule

¢ heat/flux - heat flux through a group of atoms

¢ improper/local - angle of each improper

e inertia/molecule - inertia tensor for each molecule

e ke - translational kinetic energy

e ke/atom - kinetic energy for each atom

e ke/rigid - translational kinetic energy of rigid bodies

® msd - mean-squared displacement of group of atoms

¢ msd/molecule - mean-squared displacement for each molecule

® pair - values computed by a pair style

e pair/local - distance/energy/force of each pairwise interaction

® pe - potential energy

® pe/atom - potential energy for each atom

e pressure - total pressure and pressure tensor

e property/atom - convert atom attributes to per-atom vectors/arrays
e property/local - convert local attributes to localvectors/arrays

e property/molecule - convert molecule attributes to localvectors/arrays
e rdf - radial distribution function g(r) histogram of group of atoms
¢ reduce - combine per-atom quantities into a single global value

¢ reduce/region - same as compute reduce, within a region

e slice - extract values from global vector or array

® stress/atom - stress tensor for each atom

¢ temp - temperature of group of atoms

¢ temp/asphere - temperature of aspherical particles

¢ temp/com - temperature after subtracting center-of-mass velocity
¢ temp/deform - temperature excluding box deformation velocity

¢ temp/partial - temperature excluding one or more dimensions of velocity
¢ temp/profile - temperature excluding a binned velocity profile

e temp/ramp - temperature excluding ramped velocity component
¢ temp/region - temperature of a region of atoms

e temp/sphere - temperature of spherical particles

¢ {i - thermodyanmic integration free energy values

e voronoi/atom - Voronoi volume and neighbors for each atom

compute command 125

LIGGGHTS Users Manual

There are also additional compute styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the compute section of this page.

There are also additional accelerated compute styles included in the LAMMPS distribution for faster
performance on CPUs and GPUs. The list of these with links to the individual styles are given in the pair
section of this page.

Restrictions: none

Related commands:

uncompute, compute modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

compute command 126

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute improper/local command

Syntax:
compute ID group-ID improper/local inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ improper/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = chi

chi = tabulate improper angles
Examples:
compute 1 all improper/local chi
Description:

Define a computation that calculates properties of individual improper interactions. The number of datums
generated, aggregated across all processors, equals the number of impropers in the system, modified by the
group parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their impropers. An improper will only be included if all 4 atoms in the improper are in the specified compute

group.
Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, improper output from the compute property/local command can be combined with
data from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of impropers. If a single keyword is specified, a local
vector is produced. If two or more keywords are specified, a local array is produced where the number of
columns = the number of keywords. The vector or array can be accessed by any command that uses local
values from a compute as input. See this section for an overview of LAMMPS output options.

The output for chi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute improper/local command 127

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute inertia/molecule command

Syntax:
compute ID group-ID inertia/molecule

¢ ID, group-ID are documented in compute command
¢ inertia/molecule = style name of this compute command

Examples:
compute 1 fluid inertia/molecule
Description:

Define a computation that calculates the inertia tensor of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The symmetric intertia tensor has 6 components, ordered Ixx,lyy,Izz,Ixy,lyz,Ixz. The tensor for a particular
molecule is only computed if one or more of its atoms is in the specified group. Normally all atoms in the
molecule should be in the group, however this is not required. LAMMPS will warn you if this is not the case.
Only atoms in the group contribute to the inertia tensor and associated center-of-mass calculation for the
molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, the molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's inertia tensor in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the inertia tensor may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the inertia tensor of rigid bodies as they cross periodic boundaries, you
will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
6 for the 6 components of the inertia tensor of each molecule, ordered as listed above. These values can be
accessed by any command that uses global array values from a compute as input. See Section _howto 15 for an
overview of LAMMPS output options.

The array values are "intensive". The array values will be in distance units.
Restrictions: none

Related commands:

compute inertia/molecule command 128

http://lammps.sandia.gov

LIGGGHTS Users Manual
variable inertia() function

Default: none

compute inertia/molecule command 129

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom/eff command

Syntax:
compute ID group—-ID ke/atom/eff

¢ ID, group-ID are documented in compute command
¢ ke/atom/eff = style name of this compute command

Examples:
compute 1 all ke/atom/eff
Description:

Define a computation that calculates the per-atom translational (nuclei and electrons) and radial kinetic energy
(electron only) in a group. The particles are assumed to be nuclei and electrons modeled with the electronic
force field.

The kinetic energy for each nucleus is computed as 1/2 m v*2, where m corresponds to the corresponding
nuclear mass, and the kinetic energy for each electron is computed as 1/2 (me v*2 + 3/4 me s"2), where me
and v correspond to the mass and translational velocity of each electron, and s to its radial velocity,
respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or efotal keyword used in thermodynamic output, as specified by the thermo style command. For
this compute, kinetic energy is "translational" plus electronic "radial" kinetic energy, calculated by the simple
formula above. For thermodynamic output, the ke keyword infers kinetic energy from the temperature of the
system with 1/2 Kb T of energy for each (nuclear-only) degree of freedom in eFF.

IMPORTANT NOTE: The temperature in eFF should be monitored via the compute temp/eff command,
which can be printed with thermodynamic output by using the thermo modify command, as shown in the

following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

The value of the kinetic energy will be 0.0 for atoms (nuclei or electrons) not in the specified compute group.
Output info:

This compute calculates a scalar quantity for each atom, which can be accessed by any command that uses
per-atom computes as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

compute ke/atom/eff command 130

http://lammps.sandia.gov

LIGGGHTS Users Manual
dump custom

Default: none

compute ke/atom/eff command 131

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom command
Syntax:
compute ID group-ID ke/atom

¢ ID, group-ID are documented in compute command
¢ ke/atom = style name of this compute command

Examples:
compute 1 all ke/atom

Description:

Define a computation that calculates the per-atom translational kinetic energy for each atom in a group.

The kinetic energy is simply 1/2 m v*2, where m is the mass and v is the velocity of each atom.
The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values

from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.
The per-atom vector values will be in energy units.

Restrictions: none

Related commands:

dump custom

Default: none

compute ke/atom command

132

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/eff command

Syntax:
compute ID group-ID ke/eff

¢ ID, group-ID are documented in compute command
o ke/eff = style name of this compute command

Examples:
compute 1 all ke/eff
Description:

Define a computation that calculates the kinetic energy of motion of a group of eFF particles (nuclei and
electrons), as modeled with the electronic force field.

The kinetic energy for each nucleus is computed as 1/2 m v*2 and the kinetic energy for each electron is
computed as 1/2(me v*2 + 3/4 me s"*2), where m corresponds to the nuclear mass, me to the electron mass, v
to the translational velocity of each particle, and s to the radial velocity of the electron, respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or efotal keyword used in thermodynamic output, as specified by the thermo style command. For
this compute, kinetic energy is "translational" and "radial” (only for electrons) kinetic energy, calculated by
the simple formula above. For thermodynamic output, the ke keyword infers kinetic energy from the
temperature of the system with 1/2 Kb T of energy for each degree of freedom. For the eFF temperature
computation via the compute temp eff command, these are the same. But different computes that calculate
temperature can subtract out different non-thermal components of velocity and/or include other degrees of
freedom.

IMPRORTANT NOTE: The temperature in eFF models should be monitored via the compute temp/eff
command, which can be printed with thermodynamic output by using the thermo modify command, as shown

in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

See compute temp/eff.
Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

compute ke/eff command 133

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands: none

Default: none

compute ke/eff command 134

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke command
Syntax:
compute ID group-ID ke

¢ ID, group-ID are documented in compute command
¢ ke = style name of this compute command

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy of each particle is computed as 1/2 m v*2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or efotal keyword used in thermodynamic output, as specified by the thermo style command. For
this compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb
T of energy for each degree of freedom. For the default temperature computation via the compute temp
command, these are the same. But different computes that calculate temperature can subtract out different

non-thermal components of velocity and/or include different degrees of freedom (translational, rotational,
etc).

Output info:

This compute calculates a global scalar (the summed KE). This value can be used by any command that uses a
global scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS output
options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute erotate/sphere

Default: none

compute ke command 135

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_e/atom command
Syntax:
compute ID group—-ID meso_e/atom

¢ ID, group-ID are documented in compute command
® meso_e/atom = style name of this compute command

Examples:

compute 1 all meso_e/atom

Description:

Define a computation that calculates the per-atom internal energy for each atom in a group.

The internal energy is the energy associated with the internal degrees of freedom of a mesoscopic particles,
e.g. a Smooth-Particle Hydrodynamics particle.

See this PDF guide to using SPH in LAMMPS.
The value of the internal energy will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

dump custom

Default: none

compute meso_e/atom command 136

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_rho/atom command
Syntax:
compute ID group—-ID meso_rho/atom

¢ ID, group-ID are documented in compute command
¢ meso_rho/atom = style name of this compute command

Examples:

compute 1 all meso_rho/atom

Description:

Define a computation that calculates the per-atom mesoscopic density for each atom in a group.

The mesoscopic density is the mass density of a mesoscopic particle, calculated by kernel function
interpolation using "pair style sph/rhosum”.

See this PDF guide to using SPH in LAMMPS.
The value of the mesoscopic density will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in mass/volume units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

dump custom

Default: none

compute meso_rho/atom command 137

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_t/atom command
Syntax:
compute ID group—-ID meso_t/atom

¢ ID, group-ID are documented in compute command
® meso_t/atom = style name of this compute command

Examples:

compute 1 all meso_t/atom

Description:

Define a computation that calculates the per-atom internal temperature for each atom in a group.

The internal temperature is the ratio of internal energy over the heat capacity associated with the internal
degrees of freedom of a mesoscopic particles, e.g. a Smooth-Particle Hydrodynamics particle.

T int=E_int/C_V, int

See this PDF guide to using SPH in LAMMPS.

The value of the internal energy will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in temperature units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

dump custom

Default: none

compute meso_t/atom command 138

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute_modify command

Syntax:
compute_modify compute-ID keyword value

e compute-ID = ID of the compute to modify
¢ one or more keyword/value pairs may be listed
¢ keyword = extra or dynamic

extra value = N
N = # of extra degrees of freedom to subtract
dynamic value = yes or no

yes/no = do or do not recompute the number of atoms contributing to the temperature
thermo value = yes or no
yes/no = do or do not add contributions from fixes to the potential energy

Examples:

compute_modify myTemp extra O
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all
parameters.

The extra keyword refers to how many degrees-of-freedom are subtracted (typically from 3N) as a
normalizing factor in a temperature computation. Only computes that compute a temperature use this option.
The default is 2 or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero
total linear momentum. You can use a negative number for the extra parameter if you need to add
degrees-of-freedom. See the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re-computed each
time a temperature is computed. Only compute styles that compute a temperature use this option. By default,
N is assumed to be constant. If you are adding atoms to the system (see the fix_pour or fix deposit commands)
or expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is
correctly normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added
to the potential energy calculated by the compute. Currently, only the compute of style pe uses this option.
See the doc pages for individual fixes for details.

Restrictions: none

Related commands:

compute

Default:

The option defaults are extra =2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of

style pe was defined with no extra keywords; otherwise it is no.

compute_modify command 139

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd command

Syntax:
compute ID group-ID msd keyword values ...

¢ ID, group-ID are documented in compute command
¢ msd = style name of this compute command

¢ zero or more keyword/value pairs may be appended
¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) of the group of atoms, including
all effects due to atoms passing thru periodic boundaries. For computation of the non-Gaussian parameter of
mean-squared displacement, see the compute msd/nongauss command.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th element is the total squared
displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart

file.

Output info:

compute msd command 140

http://lammps.sandia.gov

LIGGGHTS Users Manual
This compute calculates a global vector of length 4, which can be accessed by indices 1-4 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output
options.
The vector values are "intensive". The vector values will be in distance”2 units.
Restrictions: none
Related commands:
compute msd/nongauss, compute displace atom, fix store/state, compute msd/molecule

Default:

The option default is com = no.

compute msd command 141

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd/molecule command

Syntax:
compute ID group-ID msd/molecule

¢ ID, group-ID are documented in compute command
¢ msd/molecule = style name of this compute command

Examples:
compute 1 all msd/molecule
Description:

Define a computation that calculates the mean-squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared
dx,dy,dz displacements of the center-of-mass. The 4th component is the total squared displacement, i.e.
(dx*dx + dy*dy + dz*dz) of the center-of-mass.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing molecules.

The displacement of the center-of-mass of the molecule is from its original center-of-mass position at the time
the compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn
you if this is not the case. Only atoms in the group contribute to the center-of-mass calculation for the
molecule, which is used to caculate its initial and current position.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read data command for a discussion of image flags and how they
are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set
image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial

center-of-mass coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule
calculation of this compute when running from a restart file.

compute msd/molecule command 142

http://lammps.sandia.gov

LIGGGHTS Users Manual
Output info:
This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
4 for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global
array values from a compute as input. See this section for an overview of LAMMPS output options.
The array values are "intensive". The array values will be in distance”2 units.
Restrictions: none
Related commands:

compute msd

Default: none

compute msd/molecule command 143

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd/nongauss command

Syntax:
compute ID group-ID msd/nongauss keyword values ...

¢ ID, group-ID are documented in compute command

¢ msd/nongauss = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd/nongauss
compute 1 upper msd/nongauss com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) and non-Gaussian parameter
(NGP) of the group of atoms, including all effects due to atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute. The first element of the vector is the total squared
dx,dy,dz displacements drsquared = (dx*dx + dy*dy + dz*dz) of atoms, and the second is the fourth power of
these displacements drfourth = (dx*dx + dy*dy + dz*dz)*(dx*dx + dy*dy + dz*dz), summed and averaged

over atoms in the group. The 3rd component is the nonGaussian diffusion paramter NGP =
3*drfourth/(5*drsquared*drsquared), i.e.

NGP(t) =3 < (r(t) —r(0))* > /(5 < (r(t) — r(0))* >*) -1

The NGP is a commonly used quantity in studies of dynamical heterogeneity. Its minimum theoretical value
(-0.4) occurs when all atoms have the same displacement magnitude. NGP=0 for Brownian diffusion, while
NGP > 0 when some mobile atoms move faster than others.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

See the compute msd doc page for further IMPORTANT NOTES, which also apply to this compute.
Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output

options.

The vector values are "intensive". The first vector value will be in distance”?2 units, the second is in distance”4
units, and the 3rd is dimensionless.

Restrictions:

compute msd/nongauss command 144

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute is part of the MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

compute msd

Default:

The option default is com = no.

compute msd/nongauss command 145

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute nparticles/tracer/region command

Syntax:
compute ID group-ID nparticles/tracer/region

¢ ID, group-ID are documented in compute command

¢ nparticles/tracer/region = style name of this compute command
¢ region_count = obligatory keyword

¢ region-ID = ID of region atoms must be in to be counted

e tracer = obligatory keyword

e tracer-ID = ID of a fix of type fix property/atom/tracer

e zero or more keyword/value pairs may be appended to args

¢ keyword = periodic or check_mark_every

periodic value = dim image
dim = x or y or z
image = image that a particle has to be in to be counted (any integer number or all)
reset_marker value = yes or no
yes = un-mark particles after counting them
no = do not un-mark particles after counting them
Examples:

compute nparticles all nparticles/tracer/region region_count count tracer tr periodic z -1
Description:
Define a computation that calculates the number and mass of marked and un-marked particles that are in

the region speficied via the region_count keyword. Particles have to be in the group "group-ID" to be
counted.

Note that only particles marked by a fix property/atom/tracer or fix property/atom/tracer/stream command
are counted - therefore, a valid ID of such a fix has to be provided via the tracer keyword.

The reset_marker keyword controls if particles are un-marked (default) after they have been counted once
by this command.

IMPORTANT NOTE: If multiple compute nparticles/tracer/region commands are operating on the same fix
property/atom/tracer commands, and the first compute resets the marker value, the second compute will not

count them.

With the periodic keyword, you can restrict counting/unmarking to particles which are in a specified image
in a periodic simulation. For example, using

periodic z +2

means that particles are only counted if they are in z-image #2. By default, all particles are
counted/unmarked regardless in which periodic image they are.

IMPORTANT NOTE: Currently, this command only supports one periodic boundary restriction via the
periodic keyword. If keyword periodic is used multiple times, the last setting will be applied.

Output info:

compute nparticles/tracer/region command 146

http://lammps.sandia.gov

LIGGGHTS Users Manual

This this compute calculates a global vector containing the following information (the number in brackets
corresponds to the vector id):
¢ (1) total number of (marked + un-marked) particles in region
® (2) number of marked particles in region
® (3) total mass of (marked + un-marked) particles in region
® (4) mass of marked particles in region
See this section for an overview of LAMMPS output options.
Restrictions:
Currently, only one periodic restriction via the periodic keyword can be used.
Related commands:

fix_property/atom/tracer

Default: reset_marker = yes, periodic is off per default

compute nparticles/tracer/region command 147

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

compute pair/gran/local command

compute wall/gran/local command

Syntax:

compute ID group-ID pair/gran/local keywords
compute ID group-ID wall/gran/local keywords

¢ ID, group-ID are documented in compute command

e pair/gran/local or wall/gran/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = pos or vel or id or force or torque or history or contactArea

pos = positions of particles in contact (6 values)
vel = velocities of particles in contact (6 values)

id = IDs of particles in contact and a periodicity flag (3 values) or IDs of the mesh, t

force = contact force (3 values)

torque = torque divided by particle diameter (3 wvalues)

history = contact history (# depends on pair style, e.g. 3 shear history values)
contactArea = area of the contact (1 value)

heatFlux = conductive heat flux of the contact (1 wvalue)

Examples:

compute 1 all pair/gran/local
compute 1 all pair/gran/local pos force
compute 1 all wall/gran/local

Description:

Define a computation that calculates properties of individual pairwise or particle-wall interactions of a
granular pair style. The number of datums generated, aggregated across all processors, equals the number of
pairwise interactions or particle-wall interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

IMPORTANT NOTE: For accessing particle-wall contact data, only mesh walls (see fix mesh) can be used.
For computing particle-wall (compute wall/gran/local), the code will automatically look for a fix wall/gran
command that uses mesh walls. The order of the meshes in the fix wall/gran command is called the mesh id
(starting with 0), and the triangle id reflects the order of the triangles in the STL/VTK file read via the
dedicated fix mesh command. For how to output the trangle id, see "dump mesh/gran/VTK
command"dump.html.

The output pos is the particle positions (6 values) in distance units. Keyword vel will do the same for
velocities. For computing pairwise data, the output id will be the two particle IDs (using this option requires
to use an atom map) and a flag that is 1 for interaction over a periodic boundary and 0 otherwise. For
computing particle-wall data, the output id will be the mesh id, the triangle id and the particle id. The output
force and torque are the contact force and the torque divided by the particle radius, both in force units. Note
that the torque does NOT contain any rolling friction torque. The output history will depend on what this
history represents, according to the granular pair style used. The output contactArea will output the contact

compute pair/gran/local command 148

http://www.cfdem.com

LIGGGHTS Users Manual

area, in distance”2 units. The output heatFlux (available only if a fix heat/gran is used to compute heat fluxes)
will output the per-contact conductive heat flux area, in energy/time units.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

For information on the units of the output, see above.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

Related commands:
dump local, compute property/local, compute pair/local
Default:

By default, all of the outputs keywords (except the heat flux) are activated, i.e. when no keyword is used,
positions velocities, ids, forces, torques, history and contact area are output.

compute wall/gran/local command 149

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair command

Syntax:
compute ID group-ID pair pstyle evalue

¢ ID, group-ID are documented in compute command

¢ pair = style name of this compute command

¢ pstyle = style name of a pair style that calculates additional values
e evalue = epair or evdwl or ecoul or blank (optional setting)

Examples:

compute 1 all pair gauss
compute 1 all pair 1lj/cut/coul/cut ecoul
compute 1 all pair reax

Description:

Define a computation that extracts additional values calculated by a pair style, sums them across processors,
and makes them accessible for output or further processing by other commands. The group specified for this
command is ignored.

The specified pstyle must be a pair style used in your simulation either by itself or as a sub-style in a
pair_style hybrid or hybrid/overlay command.

The evalue setting is optional; it may be left off the command. All pair styles tally a potential energy epair
which may be broken into two parts: evdwl and ecoul such that epair = evdwl + ecoul. If the pair style
calculates Coulombic interactions, their energy will be tallied in ecoul. Everything else (whether it is a
Lennard-Jones style van der Waals interaction or not) is tallied in evdwl. If evalue is specified as epair or left
out, then epair is stored as a global scalar by this compute. This is useful when using pair_style hybrid if you
want to know the portion of the total energy contributed by one sub-style. If evalue is specfied as evdwl or
ecoul, then just that portion of the energy is stored as a global scalar.

Some pair styles tally additional quantities, e.g. a breakdown of potential energy into a dozen or so
components is tallied by the pair_style reax commmand. These values (1 or more) are stored as a global
vector by this compute. See the doc page for individual pair styles for info on these values.

Output info:

This compute calculates a global scalar which is epair or evdwl or ecoul. If the pair style supports it, it also
calculates a global vector of length >= 1, as determined by the pair style. These values can be used by any
command that uses global scalar or vector values from a compute as input. See this section for an overview of
LAMMPS output options.

The scalar and vector values calculated by this compute are "extensive".

The scalar value will be in energy units. The vector values will typically also be in energy units, but see the
doc page for the pair style for details.

Restrictions: none

Related commands:

compute pair command 150

http://lammps.sandia.gov

LIGGGHTS Users Manual
com[zute pe

Default:

The default for evalue is epair.

compute pair command 151

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair/local command

Syntax:
compute ID group-ID pair/local inputl input2

¢ ID, group-ID are documented in compute command
¢ pair/local = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = dist or eng or force or fx or fy or fz or pN

dist = pairwise distance
eng = palrwise energy
force = pairwise force
fx, fy, fz = components of pairwise force
pN = pair style specific quantities for allowed N values

Examples:

compute 1 all pair/local eng

compute 1 all pair/local dist eng force

compute 1 all pair/local dist eng fx fy fz
compute 1 all pair/local dist fx fy fz pl p2 p3
Description:

Define a computation that calculates properties of individual pairwise interactions. The number of datums
generated, aggregated across all processors, equals the number of pairwise interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

The output dist is the distance bewteen the pair of atoms.
The output eng is the interaction energy for the pair of atoms.

The output force is the force acting between the pair of atoms, which is positive for a repulsive force and
negative for an attractive force. The outputs fx, fy, and fz are the xyz components of force on atom 1.

A pair style may define additional pairwise quantities which can be accessed as p/ to pN, where N is defined
by the pair style. Most pair styles do not define any additional quantities, so N = 0. An example of ones that
do are the granular pair styles which calculate the tangential force between two particles and return its
components and magnitude acting on atom I for N = 1,2,3,4. See individual pair styles for detils.

The output dist will be in distance units. The output eng will be in energy units. The outputs force, fx, fy, and
Jfz will be in force units. The output pN will be in whatever units the pair style defines.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

compute pair/local command 152

http://lammps.sandia.gov

LIGGGHTS Users Manual

IMPORTANT NOTE: For pairs, if two atoms L,J are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of IJ
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special bonds command.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute pair/local command 153

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe/atom command

Syntax:
compute ID group-ID pe/atom keyword ...

¢ ID, group-ID are documented in compute command

® pe/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per-atom potential energy for each atom in a group. See the compute
pe command if you want the potential energy of the entire system.

The per-atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no
extra keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral,improper, and
kspace energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3-body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The energy contribution
of these terms is included in the pair energy, not the dihedral energy.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related
method for PPPM, as specified by the kspace style pppm command. For PPPM, the calcluation requires 1
extra FFT each timestep that per-atom energy is calculated. Thie document describes how the long-range
per-atom energy calculation is performed.

As an example of per-atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per-atom energy does not any Lennard-Jones tail corrections invoked by the
pair_modify tail yes command, since those are global contributions to the system energy.

Output info:

compute pe/atom command 154

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:
Related commands:

compute pe, compute stress/atom

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute pe/atom command 155

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe command

compute pe/cuda command

Syntax:
compute ID group-ID pe keyword ...

¢ ID, group-ID are documented in compute command

¢ pe = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group
must be "all". See the compute pe/atom command if you want per-atom energies. These per-atom values could
be summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace
(long-range) energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

The Kspace contribution requires 1 extra FFT each timestep the energy is calculated, if using the PPPM solver
via the kspace style pppm command. Thus it can increase the cost of the PPPM calculation if it is needed on a
large fraction of the simulation timesteps.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes
for details. The thermo option of the compute modify command determines whether these contributions are
added into the computed potential energy. If no keywords are specified the default is yes. If any keywords are
specified, the default is no.

A compute of this style with the ID of "thermo_pe" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_pe all pe

See the "thermo_style" command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

compute pe command 156

http://lammps.sandia.gov

LIGGGHTS Users Manual

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that
uses a global scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute pe/atom

Default: none

compute pe/cuda command 157

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pressure command

compute pressure/cuda command

Syntax:
compute ID group-ID pressure temp-ID keyword ...

¢ ID, group-ID are documented in compute command

¢ pressure = style name of this compute command

e temp-ID = ID of compute that calculates temperature

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:
Define a computation that calculates the pressure of the entire system of atoms. The specified group must be
"all". See the compute stress/atom command if you want per-atom pressure (stress). These per-atom values

could be summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

1'\"'/17 T _J-‘V r; ® J;
_ Nkg +Zz e f;

P
vV dV

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant,
T is the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area
in 2d), and the second term is the virial, computed within LAMMPS for all pairwise as well as 2-body,
3-body, and 4-body, and long-range interactions. Fixes that impose constraints (e.g. the fix shake command)
also contribute to the virial term.

A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6
components of the vector are ordered xx, yy, 7z, Xy, Xz, yz. The equation for the I,J components (where I and
J =x,y,z) is similar to the above formula, except that the first term uses components of the kinetic energy
tensor and the second term uses components of the virial tensor:

SNV o 1 N
2"" MUk Yk -+ Zk Tk, ka

j 2
1J % 7

compute pressure command 158

http://lammps.sandia.gov

LIGGGHTS Users Manual

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and
fix contributions to the force on each atom. If any extra keywords are listed, then only those components are
summed to compute temperature or ke and/or the virial. The virial keyword means include all terms except
the kinetic energy ke.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms
for consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one
that excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where
the DOF value is calcluated by the temperature compute. See the various compute temperature styles for
details.

A compute of this style with the ID of "thermo_press" is created when LAMMPS starts up, as if this
command were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style"
command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in pressure units.

Restrictions: none

Related commands:

compute temp, compute stress/atom, thermo _style,

Default: none

compute pressure/cuda command 159

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/atom command
Syntax:
compute ID group-ID property/atom inputl input2

¢ ID, group-ID are documented in compute command
e property/atom = style name of this compute command
¢ input = one or more atom attributes

possible attributes = id, mol, type, mass,
X, y, 2z, XS, ys, zs, xu, yu, zu, ix, iy, iz,
vx, vy, vz, fx, fy, fz,
g, mux, muy, muz, mu,
radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz,
shapex, shapey, shapez,
quatw, quati, quatj, quatk, taox, tqy, tqgz,
spin, eradius, ervel, erforce
endlx, endly, endlz, end2x, end2y, end2z,
cornerlx, cornerly, cornerlz,
corner2x, corner2y, corner2z,
corner3x, corner3y, corner3z,
i_name, d_name

id = atom ID
mol = molecule ID
type = atom type

mass = atom mass
X,y,2z = unscaled atom coordinates
Xs,ys,zs = scaled atom coordinates

xXu,yu,zu = unwrapped atom coordinates
ix,iy,iz = box image that the atom is in

vx,vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle

omegax, omegay,omegaz = angular velocity of spherical particle
angmomx, angmomy, angmomz = angular momentum of aspherical particle
shapex, shapey, shapez = 3 diameters of aspherical particle

quatw, quati, quatj,quatk = quaternion components for aspherical or body particles
tax,tqy,tgz = torque on finite-size particles

spin = electron spin

eradius = electron radius

ervel = electron radial velocity

erforce = electron radial force

endl2x, endl2y, endl2z = end points of line segment

conerl23x, cornerl23y, cornerl23z = corner points of triangle
i_name = custom integer vector with name

d_name = custom integer vector with name

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

compute property/atom command 160

http://lammps.sandia.gov

LIGGGHTS Users Manual

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the
values can be used by other output commands that take computes as inputs. See for example, the compute
reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning, with some additional quantities that are only defined for certain atom styles. Basically, this list gives
your input script access to any per-atom quantity stored by LAMMPS.

The values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group or for quantities that are not defined for a particular particle in the group (e.g. shapex if the
particle is not an ellipsoid).

The additional quantities only accessible via this command, and not directly via the dump custom command,
are as follows.

Shapex, shapey, and shapez are defined for ellipsoidal particles and define the 3d shape of each particle.

Quatw, quati, quatj, and quatk are defined for ellipsoidal particles and body particles and store the 4-vector
quaternion representing the orientation of each particle. See the set command for an explanation of the
quaternion vector.

Endlx, endly, endlz, end2x, end2y, end2z, are defined for line segment particles and define the end points of
each line segment.

Cornerlx, cornerly, cornerlz, corner2x, corner2y, corner2z, corner3x, corner3y, corner3z, are defined for
triangular particles and define the corner points of each triangle.

The i_name and d_name attributes refer to custom integer and floating-point properties that have been added
to each atom via the fix property/atom command. When that command is used specific names are given to
each attribute which are what is specified as the "name" portion of i_name or d_name.

Output info:

This compute calculates a per-atom vector or per-atom array depending on the number of input values. If a
single input is specified, a per-atom vector is produced. If two or more inputs are specified, a per-atom array is
produced where the number of columns = the number of inputs. The vector or array can be accessed by any
command that uses per-atom values from a compute as input. See this section for an overview of LAMMPS
output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. velocity units for vx,
charge units for g, etc.

Restrictions: none

Related commands:

dump custom, compute reduce, fix ave/atom, fix ave/spatial, fix_property/atom

Default: none

compute property/atom command 161

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/local command

Syntax:

compute ID group-ID property/local inputl input?2

¢ ID, group-ID are documented in compute command
e property/local = style name of this compute command
¢ input = one or more attributes

possible attributes = natoml natom2 ntypel ntype2
patoml patom2 ptypel ptype2
batoml batom2 btype
aatoml aatom2 aatom3 atype
datoml datom2 datom3 dtype
iatoml iatom2 iatom3 itype

natoml, natom2 = IDs of 2 atoms in each pair (within neighbor cutoff)
ntypel, ntype2 = type of 2 atoms in each pair (within neighbor cutoff)
patoml, patom2 = IDs of 2 atoms in each pair (within force cutoff)
ptypel, ptype2 = type of 2 atoms in each pair (within force cutoff)
batoml, batom2 = IDs of 2 atoms in each bond

btype = bond type of each bond

aatoml, aatom2, aatom3 = IDs of 3 atoms in each angle

atype = angle type of each angle

datoml, datom2, datom3, datom4 = IDs of 4 atoms in each dihedral
dtype = dihedral type of each dihedral

iatoml, iatom2, iatom3, iatom4 = IDs of 4 atoms in each improper
itype = improper type of each improper

Examples:

compute 1 all property/local btype batoml batom?2
compute 1 all property/local atype aatom?2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs, angles, etc.

If multiple input attributes are specified then they must all generate the same amount of information, so that
the resulting local array has the same number of rows for each column. This means that only bond attributes
can be specified together, or angle attributes, etc. Bond and angle attributes can not be mixed in the same
compute property/local command.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info
about an individual pairwise interaction will only be included if both atoms in the pair are in the specified
compute group. For natoml and natom?2, all atom pairs in the neighbor list are considered (out to the neighbor
cutoff = force cutoff + neighbor skin). For patomlI and patom?2, the distance between the atoms must be less
than the force cutoff distance for that pair to be included, as defined by the pair_style and pair_coeff
commands.

If the inputs are bond, angle, etc attributes, the local data is generated by looping over all the atoms owned on

a processor and extracting bond, angle, etc info. For bonds, info about an individual bond will only be
included if both atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

compute property/local command 162

http://lammps.sandia.gov

LIGGGHTS Users Manual

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, output from the compute bond/local command can be combined with bond atom
indices from this command and output by the dump local command in a consistent way.

The natomlI and natom2, or patoml and patom?2 attributes refer to the atom IDs of the 2 atoms in each
pairwise interaction computed by the pair_style command. The ntypel and ntype2, or ptypel and ptype2
attributes refer to the atom types of the 2 atoms in each pairwise interaction.

IMPORTANT NOTE: For pairs, if two atoms LJ are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of IJ
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special bonds command.

The batomlI and batom? attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers
to the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data
file read by the read data command.

The attributes that start with "a", "d", "i", refer to similar values for angles, dihedrals, and impropers.
Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of
the vector or number of rows in the array is the number of bonds, angles, etc. If a single input is specified, a
local vector is produced. If two or more inputs are specified, a local array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses local values
from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

compute property/local command 163

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/molecule command

Syntax:
compute ID group-ID property/molecule inputl input2 ...

¢ ID, group-ID are documented in compute command
® property/molecule = style name of this compute command
¢ input = one or more attributes

possible attributes = mol cout
mol = molecule ID
count = # of atoms in molecule

Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per-molecule data, such as compute
com/molecule and compute msd/molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

The mol attribute is the molecule ID. This attribute can be used to produce molecule IDs as labels for
per-molecule datums generated by other computes or fixes when they are output to a file, e.g. by the fix
ave/time command.

The count attribute is the number of atoms in the molecule.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands: none

Default: none

compute property/molecule command 164

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute rdf command

Syntax:
compute ID group-ID rdf Nbin itypel Jjtypel itype2 jtype2 ...

¢ ID, group-ID are documented in compute command

¢ rdf = style name of this compute command

¢ Nbin = number of RDF bins

¢ itypeN = central atom type for Nth RDF histogram (see asterisk form below)

¢ jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)

Examples:

compute 1 all rdf 100

compute 1 all rdf 100 1 1

compute 1 all rdf 100 * 3

compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10
Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the
coordination number for a group of particles. Both are calculated in histogram form by binning pairwise
distances into Nbin bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins
are of uniform size in radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin
ring of distances in 2d.

IMPORTANT NOTE: If you have a bonded system, then the settings of special bonds command can remove
pairwise interactions between atoms in the same bond, angle, or dihedral. This is the default setting for the
special bonds command, and means those pairwise interactions do not appear in the neighbor list. Because
this fix uses the neighbor list, it also means those pairs will not be included in the RDF. One way to get
around this, is to write a dump file, and use the rerun command to compute the RDF for snapshots in the
dump file. The rerun script can use a special bonds command that includes all pairs in the neighbor list.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then
a single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as
in the 4th example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both itypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed
where atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either
itypeN and jtypeN represent a range of values via the wild-card asterisk, as in the 5th example above, this
means that a g(r) is computed where atoms of any of the range of types represented by itypeN are the central
atom, and atoms of any of the range of types represented by jfrypeN are the distribution atom.

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following

compute rdf command 165

http://lammps.sandia.gov

LIGGGHTS Users Manual

criteria are met:

e atoms L,J are both in the specified compute group

e the distance between atoms 1,J is less than the maximum force cutoff
e the type of the I atom matches itypeN (one or a range of types)

e the type of the J atom matches jtypeN (one or a range of types)

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how
many counts there would be if atoms of type jtypeN were uniformly distributed. Thus it involves the count of
itypeN atoms, the count of jtypeN atoms, the volume of the entire simulation box, and the volume of the bin's
thin shell in 3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the number of atoms of type jfypeN within the
current bin or closer, averaged over atoms of type ifypeN. This is calculated as the area- or volume-weighted
sum of g(r) values over all bins up to and including the current bin, multiplied by the global average volume
density of atoms of type jtypeN.

The simplest way to output the results of the compute rdf calculation to a file is to use the fix ave/time
command, for example:

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns = 1 +
2*Npairs, where Npairs is the number of LJ pairings specified. The first column has the bin coordinate (center
of the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of irypeN
versus jtypeN interactions, as described above. These values can be used by any command that uses a global
values from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The array values calculated by this compute are all "intensive".

The first column of array values will be in distance units. The g(r) columns of array values are normalized
numbers >= 0.0. The coordination number columns of array values are also numbers >= 0.0.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances,
you can use the rerun command to post-process a dump file. The definition of g(r) used by LAMMPS is only
appropriate for characterizing atoms that are uniformly distributed throughout the simulation cell. In such
cases, the coordination number is still correct and meaningful. As an example, if a large simulation cell
contains only one atom of type ifypeN and one of jtypeN, then g(r) will register an arbitrarily large spike at
whatever distance they happen to be at, and zero everywhere else. coord(r) will show a step change from zero
to one at the location of the spike in g(r).

Related commands:
fix ave/time

Default: none

compute rdf command 166

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute reduce command

compute reduce/region command

Syntax:
compute ID group-ID style arg mode inputl input2 ... keyword args

¢ ID, group-ID are documented in compute command
o style = reduce or reduce/region

reduce arg = none
reduce/region arg = region-ID
region-ID = ID of region to use for choosing atoms
® mode = sum or min or max or ave
¢ one or more inputs can be listed

® input =X, y, z, VX, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f ID[N], v_name

X,¥,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom or local vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom or local array calculated by a compute with ID
f_ID = per-atom or local vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom or local array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

¢ zero or more keyword/args pairs may be appended
¢ keyword = replace

replace args = vecl vec2

vecl = reduced value from this input vector will be replaced

vec2 = replace it with vecl[N] where N is index of max/min value from vec2
Examples:
compute 1 all reduce sum c_force
compute 1 all reduce/region subbox sum c_force
compute 2 all reduce min c_press2 f_ave v_myKE
compute 3 fluid reduce max c_indexl c_index2 c_dist replace 1 3 replace 2 3
Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The
inputs can be per-atom or local quantities; they cannot be global quantities. Atom attributes are per-atom
quantities, computes and fixes may generate any of the three kinds of quantities, and atom-style variables
generate per-atom quantities. See the variable command and its special functions which can perform the same
operations as the compute reduce command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per-atom inputs, the group specified with this command
means only atoms within the group contribute to the result. For per-atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces
per-atom quantities may define its own group which affects the quantities it returns. For example, if a
compute is used as an input which generates a per-atom vector, it will generate values of 0.0 for atoms that are

compute reduce command 167

http://lammps.sandia.gov

LIGGGHTS Users Manual

not in the group specified for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable.

The atom attribute values (X,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-atom or local quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their
own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes
can generate per-atom or local quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute reduce references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to reduce.

If the replace keyword is used, two indices vec! and vec2 are specified, where each index ranges from 1 to the
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A
min/max is computed as usual on the vec2 input vector. The index N of that value within vec2 is also stored.
Then, instead of performing a min/max on the vec/ input vector, the stored index is used to select the Nth
element of the vecl vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batoml batom2

compute 2 all bond/local dist

compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_31[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each
bond, using the compute property/local command. The last input value is bond distance, using the compute
bond/local command. Instead of taking the max of the two atom ID vectors, which does not yield useful
information in this context, the replace keywords will extract the atom IDs for the two atoms in the bond of
maximum stretch. These atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their
value scales linearly with the number of atoms involved. If normalized values are desired, this compute can be
accessed by the thermo_style custom command with thermo _modify norm yes set as an option. Or it can be
accessed by a variable that divides by the appropriate atom count.

compute reduce/region command 168

LIGGGHTS Users Manual

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where
N is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any
command that uses global scalar or vector values from a compute as input. See Section howto 15 for an
overview of LAMMPS output options.

All the scalar or vector values calculated by this compute are "intensive", except when the sum mode is used
on per-atom or local vectors, in which case the calculated values are "extensive".

The scalar or vector values will be in whatever units the quantities being reduced are in.

Restrictions: none
Related commands:
compute, fix, variable

Default: none

compute reduce/region command 169

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute slice command

Syntax:
compute ID group-ID slice Nstart Nstop Nskip inputl input?2

¢ ID, group-ID are documented in compute command

¢ slice = style name of this compute command

¢ Nstart = starting index within input vector(s)

¢ Nstop = stopping index within input vector(s)

¢ Nskip = extract every Nskip elements from input vector(s)
¢ input = c_ID, c_ID[N], f_ID, f_ID[N]

c_ID = global vector calculated by a compute with ID

c_ID[I] = Ith column of global array calculated by a compute with ID

f_ID = global vector calculated by a fix with ID

f_ID[I] = Ith column of global array calculated by a fix with ID
Examples:

compute 1 all slice 1 100 10 c_msdmol[4]
compute 1 all slice 301 400 1 c_msdmol([4]

Description:

Define a calculation that "slices" one or more vector inputs into smaller vectors, one per listed input. The
inputs can be global quantities; they cannot be per-atom or local quantities. Computes and fixes may generate
any of the three kinds of quantities. Variables do not generate global vectors. The group specified with this
command is ignored.

The values extracted from the input vector(s) are determined by the Nstart, Nstop, and Nskip parameters. The
elements of an input vector of length N are indexed from 1 to N. Starting at element Nstart, every Mth
element is extracted, where M = Nskip, until element Nstop is reached. The extracted quantities are stored as a
vector, which is typically shorter than the input vector.

Each listed input is operated on independently to produce one output vector. Each listed input must be a
global vector or column of a global array calculated by another compute or fix.

If an input value begins with "c_", a compute ID must follow which has been previously defined in the input
script and which generates a global vector or array. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their
own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates a global vector or array. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute slice references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LAMMPS.

If a single input is specified this compute produces a global vector, even if the length of the vector is 1. If
multiple inputs are specified, then a global array of values is produced, with the number of columns equal to

compute slice command 170

http://lammps.sandia.gov

LIGGGHTS Users Manual

the number of inputs specified.

Output info:

This compute calculates a global vector if a single input value is specified or a global array with N columns
where N is the number of inputs. The length of the vector or the number of rows in the array is equal to the
number of values extracted from each input vector. These values can be used by any command that uses
global vector or array values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector or array values calculated by this compute are simply copies of values generated by computes or
fixes that are input vectors to this compute. If there is a single input vector of intensive and/or extensive
values, then each value in the vector of values calculated by this compute will be "intensive" or "extensive",
depending on the corresponding input value. If there are multiple input vectors, and all the values in them are
intensive, then the array values calculated by this compute are "intensive". If there are multiple input vectors,
and any value in them is extensive, then the array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, compute reduce

Default: none

compute slice command 171

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute stress/atom command

Syntax:
compute ID group-ID stress/atom keyword ...

¢ ID, group-ID are documented in compute command

e stress/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 mobile stress/atom
compute 1 all stress/atom pair bond

Description:
Define a computation that computes the symmetric per-atom stress tensor for each atom in a group. The tensor
for each atom has 6 components and is stored as a 6-element vector in the following order: xx, yy, zz, Xy, Xz,

yz. See the compute pressure command if you want the stress tensor (pressure) of the entire system.

The stress tensor for atom / is given by the following formula, where a and b take on values x,y,z to generate
the 6 components of the symmetric tensor:

Np
S = — |muvvs A %Z (r1, FY, + 12, F3,) iZ{rl Fy, + 1o, Fo,
==l n=1
1 Ny Ny
—Z O TG o W £) ZU[-.FH. oo F2y, + T3, Fa, + 14, Fy,)
Ni Ny
e Z 181, + T2, Foy + T3, Fay + 14, Fy,) + Kspace(ry,, F; Z gl I

The first term is a kinetic energy contribution for atom /. The second term is a pairwise energy contribution
where n loops over the Np neighbors of atom /, r/ and r2 are the positions of the 2 atoms in the pairwise
interaction, and F/ and F2 are the forces on the 2 atoms resulting from the pairwise interaction. The third term
is a bond contribution of similar form for the Nb bonds which atom / is part of. There are similar terms for the
Na angle, Nd dihedral, and Ni improper interactions atom / is part of. There is also a term for the KSpace
contribution from long-range Coulombic interactions, if defined. Finally, there is a term for the Nf fixes that
apply internal constraint forces to atom /. Currently, only the fix shake and fix rigid commands contribute to
this term.

IMPORTANT NOTE: For granular systems, this formular neglects the contribution of average velocity in the
kinetic energy contribution. This is corrected in the compute ave/euler command (currently no doc available).

As the coefficients in the formula imply, a virial contribution produced by a small set of atoms (e.g. 4 atoms
in a dihedral or 3 atoms in a Tersoff 3-body interaction) is assigned in equal portions to each atom in the set.

compute stress/atom command 172

http://lammps.sandia.gov

LIGGGHTS Users Manual

E.g. 1/4 of the dihedral virial to each of the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied
to atoms in a a water molecule via the fix shake command.

If no extra keywords are listed, all of the terms in this formula are included in the per-atom stress tensor. If
any extra keywords are listed, only those terms are summed to compute the tensor. The virial keyword means
include all terms except the kinetic energy ke.

Note that the stress for each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The virial contribution
of these terms is included in the pair virial, not the dihedral virial.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and by the
methodology described in (Sirk) for PPPM. The choice of KSpace solver is specified by the kspace style
pppm command. Note that for PPPM, the calcluation requires 6 extra FFTs each timestep that per-atom stress
is calculated. Thus it can significantly increase the cost of the PPPM calculation if it is needed on a large
fraction of the simulation timesteps.

Note that as defined in the formula, per-atom stress is the negative of the per-atom pressure tensor. It is also
really a stress*volume formulation, meaning the computed quantity is in units of pressure*volume. It would
need to be divided by a per-atom volume to have units of stress (pressure), but an individual atom's volume is
not well defined or easy to compute in a deformed solid or a liquid. Thus, if the diagonal components of the
per-atom stress tensor are summed for all atoms in the system and the sum is divided by dV, where d =
dimension and V is the volume of the system, the result should be -P, where P is the total pressure of the
system.

These lines in an input script for a 3d system should yield that result. L.e. the last 2 columns of thermo output
will be the same:

compute peratom all stress/atom

compute p all reduce sum c_peratom[l] c_peratom[2] c_peratom[3]
variable press equal —(c_pl[ll+c_pl[2]+c_pl[3]1)/(3*vol)
thermo_style custom step temp etotal press v_press

Output info:

This compute calculates a per-atom array with 6 columns, which can be accessed by indices 1-6 by any
command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LAMMPS output options.

The per-atom array values will be in pressure*volume units as discussed above.

Restrictions: none

Related commands:

compute pe, compute pressure

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute stress/atom command 173

LIGGGHTS Users Manual
(Sirk) Sirk, Moore, Brown, J Chem Phys, 138, 064505 (2013).

compute stress/atom command 174

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/asphere command

Syntax:
compute ID group-ID temp/asphere keyword value

¢ ID, group-ID are documented in compute command
¢ temp/asphere = style name of this compute command
¢ zero or more keyword/value pairs may be appended
¢ keyword = bias or dof

bias value = bias-IDuniform or gaussian

bias-ID = ID of a temperature compute that removes a velocity bias

dof value = all or rotate
all = compute temperature of translational and rotational degrees of freedom
rotate = compute temperature of just rotational degrees of freedom

Examples:

compute 1 all temp/asphere
compute myTemp mobile temp/asphere bias tempCOM
compute myTemp mobile temp/asphere dof rotate

Description:

Define a computation that calculates the temperature of a group of aspherical particles, including a
contribution from both their translational and rotational kinetic energy. This differs from the usual compute
temp command, which assumes point particles with only translational kinetic energy.

Only finite-size particles (aspherical or spherical) can be included in the group. For 3d finite-size particles,
each has 6 degrees of freedom (3 translational, 3 rotational). For 2d finite-size particles, each has 3 degrees of
freedom (2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size aspherical or
spherical particles in your model will freely rotate, sampling all their rotational dof. It is possible to use a
combination of interaction potentials and fixes that induce no torque or otherwise constrain some of all of
your particles so that this is not the case. Then there are less dof and you should use the compute modify
extra command to adjust the dof accordingly.

For example, an aspherical particle with all three of its shape parameters the same is a sphere. If it does not
rotate, then it should have 3 dof instead of 6 in 3d (or 2 instead of 3 in 2d). A uniaxial aspherical particle has
two of its three shape parameters the same. If it does not rotate around the axis perpendicular to its circular
cross section, then it should have 5 dof instead of 6 in 3d. The latter is the case for uniaxial ellipsoids in a
GayBerne model since there is no induced torque around the optical axis. It will also be the case for biaxial
ellipsoids when exactly two of the semiaxes have the same length and the corresponding relative well depths
are equal.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor for the aspherical particle and
w is its angular velocity, which is computed from its angular momentum.

IMPORTANT NOTE: For 2d models, particles are treated as ellipsoids, not ellipses, meaning their moments

of inertia will be the same as in 3d.

compute temp/asphere command 175

http://lammps.sandia.gov

LIGGGHTS Users Manual

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formula, except that v*2 and w”2 are replaced by vx*vy
and wx*wy for the xy component, and the appropriate elements of the inertia tensor are used. The 6
components of the vector are ordered xx, yy, 7z, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion,
such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints
will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option
of the compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from
each atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic
energy components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that
use this compute will work with this bias term. See the doc pages for individual computes that calculate a
temperature and the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of
freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

This compute requires that atoms store angular momementum and a quaternion as defined by the atom style
ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

compute temp

Default: none

compute temp/asphere command 176

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/com command

Syntax:
compute ID group—-ID temp/com

¢ ID, group-ID are documented in compute command
¢ temp/com = style name of this compute command

Examples:

compute 1 all temp/com
compute myTemp mobile temp/com

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center-of-mass velocity of the group. This is useful if the group is expected to have a non-zero net velocity for
some reason. A compute of this style can be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity has been subtracted from each atom, the temperature is calculated by the
formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim =
2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the center-of-mass velocity by this fix is essentially computing the temperature after a "bias"
has been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way

include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:
This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector

values from a compute as input. See this section for an overview of LAMMPS output options.

compute temp/com command 177

http://lammps.sandia.gov

LIGGGHTS Users Manual

The scalar value calculated by this compute is "intensive". The vector values are "extensive".
The scalar value will be in temperature units. The vector values will be in energy units.
Restrictions: none

Related commands:

compute temp

Default: none

compute temp/com command 178

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform/eff command
Syntax:
compute ID group—-ID temp/deform/eff

¢ ID, group-ID are documented in compute command
¢ temp/deform/eff = style name of this compute command

Examples:

compute myTemp all temp/deform/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model, after subtracting out a streaming velocity induced by the simulation box changing size and/or
shape, for example in a non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of
the fix deform/eff command. A compute of this style is created by the fix nvt/sllod/eff command to compute
the thermal temperature of atoms for thermostatting purposes. A compute of this style can also be used by any
command that computes a temperature, e.g. thermo modify, fix npt/eff, etc.

The calculation performed by this compute is exactly like that described by the compute temp/deform
command, except that the formula for the temperature includes the radial electron velocity contributions, as
discussed by the compute temp/eff command. Note that only the translational degrees of freedom for each
nuclei or electron are affected by the streaming velocity adjustment. The radial velocity component of the
electrons is not affected.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:
compute temp/ramp, fix deform/eff, fix nvt/sllod/eff

Default: none

compute temp/deform/eff command 179

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform command

Syntax:
compute ID group-ID temp/deform

¢ ID, group-ID are documented in compute command
¢ temp/deform = style name of this compute command

Examples:
compute myTemp all temp/deform
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming
velocity induced by the simulation box changing size and/or shape, for example in a non-equilibrium MD
(NEMD) simulation. The size/shape change is induced by use of the fix deform command. A compute of this
style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting
purposes. A compute of this style can also be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each atom in the simulation box can be
thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then
atoms at the bottom of the box (low y) have a small x velocity, while atoms at the top of the box (hi y) have a
large x velocity. This position-dependent streaming velocity is subtracted from each atom's actual velocity to
yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. When using this compute in conjunction with a deforming box, fix deform should
NOT remap atom positions, but rather should let atoms respond to the changing box by adjusting their own
velocities (or let fix deform remap the atom velocities, see it's remap option). If fix deform does remap atom
positions, then they appear to move with the box but their velocity is not changed, and thus they do NOT have
the streaming velocity assumed by this compute. LAMMPS will warn you if fix deform is defined and its
remap setting is not consistent with this compute.

After the streaming velocity has been subtracted from each atom, the temperature is calculated by the formula
KE =dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim =2 or 3 =
dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature. Note that v in the kinetic energy formula is the atom's thermal velocity.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the Xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the box deformation velocity component by this fix is essentially computing the temperature

after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix command
that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining

compute temp/deform command 180

http://lammps.sandia.gov

LIGGGHTS Users Manual

thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this
way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

IMPORTANT NOTE: The temperature calculated by this compute is only accurate if the atoms are indeed
moving with a stream velocity profile that matches the box deformation. If not, then the compute will subtract
off an incorrect stream velocity, yielding a bogus thermal temperature. You should NOT assume that your
atoms are streaming at the same rate the box is deforming. Rather, you should monitor their velocity profile,
e.g. via the fix ave/spatial command. And you can compare the results of this compute to compute
temp/profile, which actually calculates the stream profile before subtracting it. If the two computes do not
give roughly the same temperature, then your atoms are not streaming consistent with the box deformation.
See the fix deform command for more details on ways to get atoms to stream consistently with the box
deformation.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake

and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/ramp, compute temp/profile, fix deform, fix nvt/sllod

Default: none

compute temp/deform command 181

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/eff command

Syntax:
compute ID group-ID temp/eff

¢ ID, group-ID are documented in compute command
¢ temp/eff = style name of this compute command

Examples:

compute 1 all temp/eff
compute myTemp mobile temp/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model. A compute of this style can be used by commands that compute a temperature, e.g.

thermo modify, fix npt/eff, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2 for nuclei and sum of 1/2 (m v*2 + 3/4 m s*2) for electrons, where s includes the
radial electron velocity contributions), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
(only total number of nuclei in the eFF (see the pair_eff command) in the group, k = Boltzmann constant, and
T = temperature. This expression is summed over all nuclear and electronic degrees of freedom, essentially by
setting the kinetic contribution to the heat capacity to 3/2k (where only nuclei contribute). This subtlety is
valid for temperatures well below the Fermi temperature, which for densities two to five times the density of
liquid H2 ranges from 86,000 to 170,000 K.

IMPORTANT NOTE: For eFF models, in order to override the default temperature reported by LAMMPS in
the thermodynamic quantities reported via the thermo command, the user should apply a thermo modify
command, as shown in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

A 6-component kinetic energy tensor is also calculated by this compute for use in the computation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v/A2 is replaced by vx * vy for the xy component, etc. For the eFF, again, the radial electronic velocities are
also considered.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

compute temp/eff command 182

http://lammps.sandia.gov

LIGGGHTS Users Manual

Output info:

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms
in the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the
simulation.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

compute temp/eff command 183

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp command

compute temp/cuda command

Syntax:
compute ID group-ID temp

¢ ID, group-ID are documented in compute command
¢ temp = style name of this compute command

Examples:

compute 1 all temp
compute myTemp mobile temp

Description:

Define a computation that calculates the temperature of a group of atoms. A compute of this style can be used
by any command that computes a temperature, e.g. thermo modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the
group, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the Xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

A compute of this style with the ID of "thermo_temp" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_temp all temp
See the "thermo_style" command for more details.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

compute temp command 184

http://lammps.sandia.gov

LIGGGHTS Users Manual

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

compute temp/cuda command 185

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/partial command

compute temp/partial/cuda command

Syntax:
compute ID group-ID temp/partial xflag yflag zflag

¢ ID, group-ID are documented in compute command
¢ temp/partial = style name of this compute command
¢ xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension

Examples:
compute newT flow temp/partial 1 1 O
Description:

Define a computation that calculates the temperature of a group of atoms, after excluding one or more velocity
components. A compute of this style can be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2), dim = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature. The calculation of KE excludes the x, y, or z dimensions if xflag,
yflag, or zflag = 0. The dim parameter is adjusted to give the correct number of degrees of freedom.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
calculation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the Xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of velocity components by this fix is essentially computing the temperature after a "bias" has
been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way

include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for

compute temp/partial command 186

http://lammps.sandia.gov

LIGGGHTS Users Manual

round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/region, compute pressure

Default: none

compute temp/partial/cuda command 187

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/profile command

Syntax:
compute ID group-ID temp/profile xflag yflag zflag binstyle args

¢ ID, group-ID are documented in compute command

¢ temp/profile = style name of this compute command

¢ xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension
¢ binstyle = x or y or z or xy or yZ Or Xz Or xyz

X arg = Nx

y arg = Ny

z arg = Nz

xy args = Nx Ny

vz args = Ny Nz

xz args = Nx Nz

xyz args = Nx Ny Nz

Nx,Ny,Nz = number of velocity bins in x,y,z dimensions
¢ zero or more keyword/value pairs may be appended

¢ keyword = out

out value = tensor or bin

Examples:

compute myTemp flow temp/profile 1 1 1 x 10
compute myTemp flow temp/profile 1 1 1 x 10 out bin
compute myTemp flow temp/profile 0 1 1 xyz 20 20 20

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a
spatially-averaged center-of-mass velocity field, before computing the kinetic energy. This can be useful for
thermostatting a collection of atoms undergoing a complex flow, e.g. via a profile-unbiased thermostat (PUT)
as described in (Evans). A compute of this style can be used by any command that computes a temperature,

e.g. thermo modify, fix temp/rescale, fix npt, etc.

The xflag, yflag, zflag settings determine which components of average velocity are subtracted out.

The binstyle setting and its Nx, Ny, Nz arguments determine how bins are setup to perform spatial averaging.
"Bins" can be 1d slabs, 2d pencils, or 3d bricks depending on which binstyle is used. The simulation box is
partitioned conceptually into Nx by Ny by Nz bins. Depending on the binstyle, you may only specify one or
two of these values; the others are effectively set to 1 (no binning in that dimension). For non-orthogonal
(triclinic) simulation boxes, the bins are "tilted" slabs or pencils or bricks that are parallel to the tilted faces of
the box. See the region prism command for a discussion of the geometry of tilted boxes in LAMMPS.

When a temperature is computed, the center-of-mass velocity for the set of atoms that are both in the compute
group and in the same spatial bin is calculated. This bias velocity is then subtracted from the velocities of
individual atoms in the bin to yield a thermal velocity for each atom. Note that if there is only one atom in the
bin, its thermal velocity will thus be 0.0.

After the spatially-averaged velocity field has been subtracted from each atom, the temperature is calculated
by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2),

compute temp/profile command 188

http://lammps.sandia.gov

LIGGGHTS Users Manual

dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.

If the out keyword is used with a tensor value, which is the default, a kinetic energy tensor, stored as a
6-element vector, is also calculated by this compute for use in the computation of a pressure tensor. The
formula for the components of the tensor is the same as the above formula, except that v/2 is replaced by
vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy, Xz, yZ.

If the out keyword is used with a bin value, the count of atoms and computed temperature for each bin are
stored for output, as an array of values, as described below. The temperature of each bin is calculated as
described above, where the bias velocity is subtracted and only the remaining thermal velocity of atoms in the
bin contributes to the temperature. See the note below for how the temperature is normalized by the
degrees-of-freedom of atoms in the bin.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the spatially-averaged velocity field by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining
thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this

way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

IMPORTANT NOTE: When using the out keyword with a value of bin, the calculated temperature for each
bin does not include the degrees-of-freedom adjustment described in the preceeding paragraph, for fixes that
constrain molecular motion. It does include the adjustment due to the extra option, which is applied to each
bin.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting. Using this compute in conjunction with a thermostatting fix, as explained there, will
effectively implement a profile-unbiased thermostat (PUT), as described in (Evans).

Output info:

This compute calculates a global scalar (the temperature). Depending on the setting of the out keyword, it also
calculates a global vector or array. For out = tensor, it calculates a vector of length 6 (KE tensor), which can
be accessed by indices 1-6. For out = bin it calculates a global array which has 2 columns and N rows, where
N is the number of bins. The first column contains the number of atoms in that bin. The second contains the
temperature of that bin, calculated as described above. The ordering of rows in the array is as follows. Bins in
x vary fastest, then y, then z. Thus for a 10x10x10 3d array of bins, there will be 1000 rows. The bin with
indices ix,iy,iz = 2,3,4 would map to row M = (iz-1)*10*%10 + (iy-1)*10 + ix = 322, where the rows are
numbered from 1 to 1000 and the bin indices are numbered from 1 to 10 in each dimension.

These values can be used by any command that uses global scalar or vector or array values from a compute as
input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive". The array values
are "intensive".

compute temp/profile command 189

LIGGGHTS Users Manual

The scalar value will be in temperature units. The vector values will be in energy units. The first column of
array values are counts; the values in the second column will be in temperature units.

Restrictions:

You should not use too large a velocity-binning grid, especially in 3d. In the current implementation, the
binned velocity averages are summed across all processors, so this will be inefficient if the grid is too large,
and the operation is performed every timestep, as it will be for most thermostats.

Related commands:

compute temp, compute temp/ramp, compute temp/deform, compute pressure

Default:

The option default is out = tensor.

(Evans) Evans and Morriss, Phys Rev Lett, 56, 2172-2175 (1986).

compute temp/profile command 190

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/ramp command

Syntax:
compute ID group-ID temp/ramp vdim vlo vhi dim clo chi keyword value

¢ ID, group-ID are documented in compute command

¢ temp/ramp = style name of this compute command

¢ vdim = vx or vy or vz

¢ vlo,vhi = subtract velocities between vlo and vhi (velocity units)
edim=xoryorz

¢ clo,chi = lower and upper bound of domain to subtract from (distance units)
¢ zero or more keyword/value pairs may be appended

¢ keyword = units

units value = lattice or box

Examples:

compute 2nd middle temp/ramp vx 0 8 y 2 12 units lattice
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out an ramped
velocity profile before computing the kinetic energy. A compute of this style can be used by any command

that computes a temperature, e.g. thermo modify, fix temp/rescale, fix npt, etc.

The meaning of the arguments for this command which define the velocity ramp are the same as for the
velocity ramp command which was presumably used to impose the velocity.

After the ramp velocity has been subtracted from the specified dimension for each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of
1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi). A box value selects standard distance units as defined by the units command, e.g. Angstroms for
units = real or metal. A lattice value means the distance units are in lattice spacings; e.g. velocity = lattice
spacings / tau. The lattice command must have been previously used to define the lattice spacing.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the ramped velocity component by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining
thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this

way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

compute temp/ramp command 191

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/profie, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

compute temp/ramp command 192

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region/eff command

Syntax:
compute ID group-ID temp/region/eff region-ID

¢ ID, group-ID are documented in compute command
¢ temp/region/eff = style name of this compute command
¢ region-ID = ID of region to use for choosing atoms

Examples:

compute mine flow temp/region/eff boundary

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model, within a geometric region using the electron force field. A compute of this style can be used by

commands that compute a temperature, e.g. thermo _modify.

The operation of this compute is exactly like that described by the compute temp/region command, except that
the formula for the temperature itself includes the radial electron velocity contributions, as discussed by the

compute temp/eff command.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/region, compute temp/eff, compute pressure

Default: none

compute temp/region/eff command 193

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region command

Syntax:
compute ID group-ID temp/region region-ID

¢ ID, group-ID are documented in compute command
¢ temp/region = style name of this compute command
¢ region-ID = ID of region to use for choosing atoms

Examples:
compute mine flow temp/region boundary
Description:

Define a computation that calculates the temperature of a group of atoms in a geometric region. This can be
useful for thermostatting one portion of the simulation box. E.g. a McDLT simulation where one side is
cooled, and the other side is heated. A compute of this style can be used by any command that computes a

temperature, e.g. thermo _modify, fix temp/rescale, etc.

Note that a region-style temperature can be used to thermostat with fix temp/rescale or fix langevin, but
should probably not be used with Nose/Hoover style fixes (fix nvt, fix npt, or fix nph), if the
degrees-of-freedom included in the computed T varies with time.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in both
the group and region, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is compute each time the temperature is evaluated since
it is assumed atoms can enter/leave the region. Thus there is no need to use the dynamic option of the
compute modify command for this compute style.

The removal of atoms outside the region by this fix is essentially computing the temperature after a "bias" has
been removed, which in this case is the velocity of any atoms outside the region. If this compute is used with a
fix command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of
the remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes
that work in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin. This means any
of the thermostatting fixes can operate on a geometric region of atoms, as defined by this compute.

Unlike other compute styles that calculate temperature, this compute does not subtract out degrees-of-freedom
due to fixes that constrain molecular motion, such as fix shake and fix rigid. This is because those degrees of
freedom (e.g. a constrained bond) can straddle the region boundary, and hence the concept is somewhat
ill-defined. If needed the number of subtracted degrees-of-freedom can be set explicitly using the extra option
of the compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform

compute temp/region command 194

http://lammps.sandia.gov

LIGGGHTS Users Manual

thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector

values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.
Restrictions: none
Related commands:

compute temp, compute pressure

Default: none

compute temp/region command 195

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/rotate command

Syntax:
compute ID group—-ID temp/rotate

¢ ID, group-ID are documented in compute command
¢ temp/rotate = style name of this compute command

Examples:
compute Tbead bead temp/rotate
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center-of-mass velocity and angular velocity of the group. This is useful if the group is expected to have a
non-zero net velocity and/or global rotation motion for some reason. A compute of this style can be used by
any command that computes a temperature, e.g. thermo modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity and angular velocity has been subtracted from each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of
1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the center-of-mass velocity and angular velocity by this fix is essentially computing the
temperature after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the
remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that
work in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:
This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which

can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

compute temp/rotate command 196

http://lammps.sandia.gov

LIGGGHTS Users Manual

The scalar value calculated by this compute is "intensive". The vector values are "extensive".
The scalar value will be in temperature units. The vector values will be in energy units.
Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp

Default: none

compute temp/rotate command 197

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/sphere command

Syntax:
compute ID group-ID temp/sphere keyword value ...

¢ ID, group-ID are documented in compute command
¢ temp/sphere = style name of this compute command
¢ zero or more keyword/value pairs may be appended
¢ keyword = bias or dof

bias value = bias-IDuniform or gaussian

bias-ID = ID of a temperature compute that removes a velocity bias

dof value = all or rotate
all = compute temperature of translational and rotational degrees of freedom
rotate = compute temperature of just rotational degrees of freedom

Examples:

compute 1 all temp/sphere
compute myTemp mobile temp/sphere bias tempCOM
compute myTemp mobile temp/sphere dof rotate

Description:

Define a computation that calculates the temperature of a group of spherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp
command, which assumes point particles with only translational kinetic energy.

Both point and finite-size particles can be included in the group. Point particles do not rotate, so they have
only 3 translational degrees of freedom. For 3d spherical particles, each has 6 degrees of freedom (3
translational, 3 rotational). For 2d spherical particles, each has 3 degrees of freedom (2 translational, 1
rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size spherical particles
in your model will freely rotate, sampling all their rotational dof. It is possible to use a combination of
interaction potentials and fixes that induce no torque or otherwise constrain some of all of your particles so
that this is not the case. Then there are less dof and you should use the compute modify extra command to
adjust the dof accordingly.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formulas, except that vA2 and w”2 are replaced by vx*vy
and wx*wy for the xy component. The 6 components of the vector are ordered xx, yy, zz, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use

the dynamic option of the compute modify command if this is not the case.

compute temp/sphere command 198

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion,
such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints
will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option
of the compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from
each atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic
energy components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that
use this compute will work with this bias term. See the doc pages for individual computes that calculate a
temperature and the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of
freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command.

All particles in the group must be finite-size spheres, or point particles with radius = 0.0.

Related commands:

compute temp, compute temp/asphere

Default:

The option defaults are no bias and dof = all.

compute temp/sphere command 199

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ti command

Syntax:

compute ID group ti keyword args

¢ ID, group-ID are documented in compute command

e ti = style name of this compute command

® one or more attribute/arg pairs may be appended

¢ keyword = pair style (lj/cut, gauss, born, etc) or tail or kspace

pair style args = atype v_namel v_name?2

atype = atom type (see asterisk form below)

v_namel = variable with namel that is energy scale factor and function of lambda

v_name2 = variable with name2 that is derivative of v_namel with respect to lambda
tail args = atype v_namel v_name?2

atype = atom type (see asterisk form below)

v_namel = variable with namel that is energy tail correction scale factor and function

v_name2 = variable with name2 that is derivative of v_namel with respect to lambda
kspace args = atype v_namel v_name2

atype = atom type (see asterisk form below)

v_namel = variable with namel that is K-Space scale factor and function of lambda

v_name2 = variable with name2 that is derivative of v_namel with respect to lambda

Examples:

compute 1 all ti 1j/cut 1 v_1j v_dlj coul/long 2 v_c v_dc kspace 1 v_ks v_dks
compute 1 all ti 1j/cut 1*3 v_13 v_dlj coul/long * v_c v_dc kspace * v_ks v_dks

Description:

Define a computation that calculates the derivative of the interaction potential with respect to lambda, the
coupling parameter used in a thermodynamic integration. This derivative can be used to infer a free energy
difference resulting from an alchemical simulation, as described in Eike.

Typically this compute will be used in conjunction with the fix adapt command which can perform alchemical
transformations by adusting the strength of an interaction potential as a simulation runs, as defined by one or
more pair_style or kspace style commands. This scaling is done via a prefactor on the energy, forces, virial
calculated by the pair or K-Space style. The prefactor is often a function of a lambda parameter which may be
adjusted from O to 1 (or vice versa) over the course of a run. The time-dependent adjustment is what the fix
adapt command does.

Assume that the unscaled energy of a pair_style or kspace_style is given by U. Then the scaled energy is
Us = f(lambda) U

where f() is some function of lambda. What this compute calculates is

dUs / d(lambda) = U df (lambda)/dlambda = Us / f(lambda) df (lambda)/dlambda

which is the derivative of the system's scaled potential energy Us with respect to lambda.

To perform this calculation, you provide one or more atom types as atype. Atype can be specified in one of

two ways. An explicit numeric values can be used, as in the 1st example above. Or a wildcard asterisk can be
used in place of or in conjunction with the atype argument to select multiple atom types. This takes the form

compute ti command 200

http://lammps.sandia.gov

LIGGGHTS Users Manual

"*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means
all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

You also specify two functions, as equal-style variables. The first is specified as v_namel, where namel is the
name of the variable, and is f(lambda) in the notation above. The second is specified as v_name2, where
name?2 is the name of the variable, and is df(lambda) / dlambda in the notation above. IL.e. it is the analytic
derivative of f() with respect to lambda. Note that the namel variable is also typically given as an argument to
the fix adapt command.

An alchemical simulation may use several pair potentials together, invoked via the pair_style hybrid or
hybrid/overlay command. The total dUs/dlambda for the overall system is calculated as the sum of each
contributing term as listed by the keywords in the compute ti command. Individual pair potentials can be
listed, which will be sub-styles in the hybrid case. You can also include a K-space term via the kspace
keyword. You can also include a pairwise long-range tail correction to the energy via the fail keyword.

For each term you can specify a different (or the same) scale factor by the two variables that you list. Again,
these will typically correspond toe the scale factors applied to these various potentials and the K-Space

contribution via the fix _adapt command.

More details about the exact functional forms for the computation of du/dl can be found in the paper by Eike.

Output info:

This compute calculates a global scalar, namely dUs/dlambda. This value can be used by any command that
uses a global scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS
output options.

The scalar value calculated by this compute is "extensive".

The scalar value will be in energy units.

Restrictions:

This compute is part of the MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

fix adapt

Default: none

(Eike) Eike and Maginn, Journal of Chemical Physics, 124, 164503 (2006).

compute ti command 201

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute voronoi/atom command

Syntax:

compute ID group-ID voronoi/atom keyword arg ...

¢ ID, group-ID are documented in compute command

¢ voronoi/atom = style name of this compute command

¢ zero or more keyword/value pairs may be appended

¢ keyword = only_group or surface or radius or edge_histo or edge_threshold or face_threshold

only_group = no arg

surface arg = sgroup—1D
sgroup—-ID = compute the dividing surface between group-ID and sgroup—-ID
this keyword adds a third column to the compute output
radius arg = v_r
v_r = radius atom style variable for a poly-disperse voronoi tessellation

edge_histo arg = maxedge

maxedge = maximum number of voronoi cell edges to be accounted in the histogram
edge_threshold arg = minlength

minlength = minimum length for an edge to be counted
face_threshold arg = minarea

minarea = minimum area for a face to be counted

Examples:

compute 1 all voronoi/atom

compute 2 precipitate voronoi/atom surface matrix
compute 3b precipitate voronoi/atom radius v_r
compute 4 solute voronoi/atom only_group

Description:

Define a computation that calculates the Voronoi tessellation of the atoms in the simulation box. The
tessellation is calculated using all atoms in the simulation, but non-zero values are only stored for atoms in the

group.

By default two quantities per atom are calculated by this compute. The first is the volume of the Voronoi cell
around each atom. Any point in an atom's Voronoi cell is closer to that atom than any other. The second is the
number of faces of the Voronoi cell, which is also the number of nearest neighbors of the atom in the middle
of the cell.

If the only_group keyword is specified the tessellation is performed only with respect to the atoms contained
in the compute group. This is equivalent to deleting all atoms not contained in the group prior to evaluating
the tessellation.

If the surface keyword is specified a third quantity per atom is computed: the voronoi cell surface of the given
atom. surface takes a group ID as an argument. If a group other than all is specified, only the voronoi cell
facets facing a neighbor atom from the specified group are counted towards the surface area.

In the example above, a precipitate embedded in a matrix, only atoms at the surface of the precipitate will
have non-zero surface area, and only the outward facing facets of the voronoi cells are counted (the hull of the
precipitate). The total surface area of the precipitate can be obtained by running a "reduce sum" compute on
c_2[3]

compute voronoi/atom command 202

http://lammps.sandia.gov

LIGGGHTS Users Manual

If the radius keyword is specified with an atom style variable as the argument, a poly-disperse voronoi
tessellation is performed. Examples for radius variables are

variable rl atom (type==1)*0.1+(type==2)*0.4
compute radius all property/atom radius
variable r2 atom c_radius

Here v_rl specifies a per-type radius of 0.1 units for type 1 atoms and 0.4 units for type 2 atoms, and v_r2
accesses the radius property present in atom_style sphere for granular models.

The edge_histo keyword activates the compilation of a histogram of number of edges on the faces of the
voronoi cells in the compute group. The argument maxedge of the this keyword is the largest number of edges
on a single voronoi cell face expected to occur in the sample. This keyword adds the generation of a global
vector with maxedge+1 entries. The last entry in the vector contains the number of faces with with more than
maxedge edges. Since the polygon with the smallest amount of edges is a triangle, entries 1 and 2 of the
vector will always be zero.

The edge_threshold and face_threshold keywords allow the suppression of edges below a given minimum
length and faces below a given minimum area. Ultra short edges and ultra small faces can occur as artifacts of
the voronoi tessellation. These keywords will affect the neighbor count and edge histogram outputs.

The Voronoi calculation is performed by the freely available Yoro++ package, written by Chris Rycroft at UC
Berkeley and LBL, which must be installed on your system when building LAMMPS for use with this
compute. See instructions on obtaining and installing the Voro++ software in the src/VORONOI/README
file.

IMPORTANT NOTE: The calculation of Voronoi volumes is performed by each processor for the atoms it
owns, and includes the effect of ghost atoms stored by the processor. This assumes that the Voronoi cells of
owned atoms are not affected by atoms beyond the ghost atom cut-off distance. This is usually a good
assumption for liquid and solid systems, but may lead to underestimation of Voronoi volumes in low density
systems. By default, the set of ghost atoms stored by each processor is determined by the cutoff used for
pair_style interactions. The cutoff can be set explicitly via the communicate cutoff command.

IMPORTANT NOTE: The Voro++ package performs its calculation in 3d. This should still work for a 2d
LAMMPS simulation, to effectively compute Voronoi "areas", so long as the z-dimension of the box is
roughly the same (or smaller) compared to the separation of the atoms. Typical values for the z box
dimensions in a 2d LAMMPS model are -0.5 to 0.5, which satisfies the criterion for most units systems. Note
that you define the z extent of the simulation box for 2d simulations when using the create box or read data
commands.

Output info:
This compute calculates a per-atom array with 2 columns. The first column is the Voronoi volume, the second
is the neighbor count, as described above. These values can be accessed by any command that uses per-atom

values from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The Voronoi cell volume will be in distance units cubed.

Restrictions:

This compute is part of the VORONOI package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

compute voronoi/atom command 203

http://math.lbl.gov/voro++

LIGGGHTS Users Manual
dump custom

Default: none

compute voronoi/atom command 204

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_atoms command
Syntax:
create_atoms type style args keyword values

¢ type = atom type (1-Ntypes) of atoms to create
¢ style = box or region or single or random

box args = none
region args = region-ID
region-ID = atoms will only be created if contained in the region
single args = X y z
X,y,2z = coordinates of a single atom (distance units)

random args = N seed region-ID
N = number of atoms to create
seed = random # seed (positive integer)
region-ID = create atoms within this region, use NULL for entire simulation box
¢ zero or more keyword/value pairs may be appended

¢ keyword = basis or remap or units

basis values = M itype
M = which basis atom
itype = atom type (1-N) to assign to this basis atom
remap value = yes Or no
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3 single 0 0 5

Description:

This command creates atoms on a lattice, or a single atom, or a random collection of atoms, as an alternative
to reading in their coordinates explicitly via a read data or read restart command. A simulation box must
already exist, which is typically created via the create box command. Before using this command, a lattice
must also be defined using the lattice command. The only exceptions are for the single style with units = box
or the random style.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
simulation box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted
atom overlaps at the box boundaries. If your box is periodic and a multiple of the lattice spacing in a particular
dimension, LAMMPS is careful to put exactly one atom at the boundary (on either side of the box), not zero
or two.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent with
the region volume. See the region command for details. Note that a region can be specified so that its
"volume" is either inside or outside a geometric boundary. Also note that if your region is the same size as a
periodic simulation box (in some dimension), LAMMPS does not implement the same logic as with the box
style, to insure exactly one atom at the boundary. if this is what you desire, you should either use the box
style, or tweak the region size to get precisely the atoms you want.

create_atoms command 205

http://lammps.sandia.gov

LIGGGHTS Users Manual

For the single style, a single atom is added to the system at the specified coordinates. This can be useful for
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

For the random style, N atoms are added to the system at randomly generated coordinates, which can be
useful for generating an amorphous system. The atoms are created one by one using the speficied random
number seed, resulting in the same set of atom coordinates, independent of how many processors are being
used in the simulation. If the region-ID argument is specified as NULL, then the created atoms will be
anywhere in the simulation box. If a region-ID is specified, a geometric volume is filled that is inside the
simulation box and is also consistent with the region volume. See the region command for details. Note that a
region can be specified so that its "volume" is either inside or outside a geometric boundary.

IMPORTANT NOTE: The atoms generated by the random style will typically be highly overlapped which
will cause many interatomic potentials to compute large energies and forces. Thus you should either perform
an energy minimization or run dynamics with fix nve/limit to equilibrate such a system, before running
normal dynamics.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See
the lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all
created atoms are assigned the argument fype as their atom type.

The remap keyword only applies to the single style. If it is set to yes, then if the specified position is outside
the simulation box, it will mapped back into the box, assuming the relevant dimensions are periodic. If it is set
to no, no remapping is done and no atom is created if its position is outside the box.

The units keyword determines the meaning of the distance units used to specify the coordinates of the one
atom created by the single style. A box value selects standard distance units as defined by the units command,
e.g. Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multiple
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with
lattice commands specifying different orientations, grain boundaries can be created. By using the
create_atoms command in conjunction with the delete atoms command, reasonably complex geometries can
be created. The create_atoms command can also be used to add atoms to a system previously read in from a
data or restart file. In all these cases, care should be taken to insure that new atoms do not overlap existing
atoms inappropriately. The delete atoms command can be used to handle overlaps.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms
command was invoked. When a simulation is performed on different numbers of processors, there is no
guarantee a particular created atom will be assigned the same ID.

Aside from their ID, atom type, and xyz position, other properties of created atoms are set to default values,
depending on which quantities are defined by the chosen atom style. See the atom style command for more
details. See the set and yelocity commands for info on how to change these values.

e charge = 0.0

¢ dipole moment magnitude = 0.0
¢ diameter = 1.0

® shape =0.00.0 0.0

e density = 1.0

® volume = 1.0

e velocity = 0.0 0.0 0.0

¢ angular velocity = 0.0 0.0 0.0

¢ angular momentum = 0.0 0.0 0.0

create_atoms command 206

LIGGGHTS Users Manual

e quaternion = (1,0,0,0)
® bonds, angles, dihedrals, impropers = none

Note that the sphere atom style sets the default particle diameter to 1.0 as well as the density. This means the
mass for the particle is not 1.0, but is PI/6 * diameter"3 = 0.5236.

Note that the ellipsoid atom style sets the default particle shape to (0.0 0.0 0.0) and the density to 1.0 which
means it is a point particle, not an ellipsoid, and has a mass of 1.0.

Note that the peri style sets the default volume and density to 1.0 and thus also set the mass for the particle to
1.0.

The set command can be used to override many of these default settings.
Restrictions:

An atom_style must be previously defined to use this command.
Related commands:

lattice, region, create box, read data, read restart

Default:

The default for the basis keyword is that all created atoms are assigned the argument fype as their atom type.
The default for remap = no and for units = lattice.

create_atoms command 207

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_box command

Syntax:
create_box N region-ID

¢ N =# of atom types to use in this simulation
¢ region-ID = ID of region to use as simulation domain

Examples:
create_box 2 mybox
Description:

This command creates a simulation box based on the specified region. Thus a region command must first be
used to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LAMMPS encloses the region (block, sphere, etc) with an axis-aligned
orthogonal bounding box which becomes the simulation domain.

If the region is of style prism, LAMMPS creates a non-orthogonal simulation domain shaped as a
parallelepiped with triclinic symmetry. As defined by the region prism command, the parallelepiped has its
"origin" at (xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by A = (xhi-x10,0,0); B
= (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or positive or negative values and are called "tilt
factors" because they are the amount of displacement applied to faces of an originally orthogonal box to
transform it into the parallelipiped.

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box
more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box
length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between
-(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this
example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all geometrically equivalent.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. L.e. if the xy tilt factor is non-zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non-zero and y and z must be
periodic if yz is non-zero. Also note that if your simulation will tilt the box, e.g. via the fix deform command,
the simulation box must be defined as triclinic, even if the tilt factors are initially 0.0.

IMPORTANT NOTE: If the system is non-periodic (in a dimension), then you should not make the lo/hi box
dimensions (as defined in your region command) radically smaller/larger than the extent of the atoms you
eventually plan to create, e.g. via the create atoms command. For example, if your atoms extend from 0O to 50,
you should not specify the box bounds as -10000 and 10000. This is because LAMMPS uses the specified box
size to layout the 3d grid of processors. A huge (mostly empty) box will be sub-optimal for performance when
using "fixed" boundary conditions (see the boundary command). When using "shrink-wrap" boundary
conditions (see the boundary command), a huge (mostly empty) box may cause a parallel simulation to lose

create_box command 208

http://lammps.sandia.gov

LIGGGHTS Users Manual

atoms the first time that LAMMPS shrink-wraps the box around the atoms.
Restrictions:

An atom_style and region must have been previously defined to use this command.
Related commands:

create atoms, region

Default: none

create_box command 209

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_atoms command

Syntax:
delete_atoms style args keyword value
¢ style = group or region or overlap or porosity

group args = group-—-ID
region args = region-ID
overlap args = cutoff groupl-ID group2-ID
cutoff = delete one atom from pairs of atoms within the cutoff (distance units)

groupl-ID = one atom in pair must be in this group

group2-ID = other atom in pair must be in this group
porosity args = region-ID fraction seed

region-ID = region within which to perform deletions

fraction = delete this fraction of atoms
seed = random number seed (positive integer)

¢ zero or more keyword/value pairs may be appended
¢ keyword = compress or mol

compress value = no or yes
mol value = no or yes

Examples:

delete_atoms group edge

delete_atoms region sphere compress no
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity cube 0.1 482793

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to delete
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.

For style region, all atoms in the region volume are deleted. Additional atoms can be deleted if they are in a
molecule for which one or more atoms were deleted within the region; see the mol keyword discussion below.

For style overlap pairs of atoms whose distance of separation is within the specified cutoff distance are
searched for, and one of the 2 atoms is deleted. Only pairs where one of the two atoms is in the first group
specified and the other atom is in the second group are considered. The atom that is in the first group is the
one that is deleted.

Note that it is OK for the two group IDs to be the same (e.g. group all), or for some atoms to be members of
both groups. In these cases, either atom in the pair may be deleted. Also note that if there are atoms which are
members of both groups, the only guarantee is that at the end of the deletion operation, enough deletions will
have occurred that no atom pairs within the cutoff will remain (subject to the group restriction). There is no
guarantee that the minimum number of atoms will be deleted, or that the same atoms will be deleted when
running on different numbers of processors.

For style porosity a specified fraction of atoms are deleted within the specified region. For example, if

delete_atoms command 210

http://lammps.sandia.gov

LIGGGHTS Users Manual

fraction is 0.1, then 10% of the atoms will be deleted. The atoms to delete are chosen randomly. There is no
guarantee that the exact fraction of atoms will be deleted, or that the same atoms will be deleted when running
on different numbers of processors.

If the compress keyword is set to yes, then after atoms are deleted, then atom IDs are re-assigned so that they
run from 1 to the number of atoms in the system. This is not done for molecular systems (see the atom_style
command), regardless of the compress setting, since it would foul up the bond connectivity that has already
been assigned.

It the mol keyword is set to yes, then for every atom that is deleted, all other atoms in the same molecule will
also be deleted. This keyword is only used by the region style. It is a way to insure that entire molecules are
deleted instead of only a subset of atoms in a bond or angle or dihedral interaction.

Restrictions:

The overlap styles requires inter-processor communication to acquire ghost atoms and build a neighbor list.
This means that your system must be ready to perform a simulation before using this command (force fields
setup, atom masses set, etc). Since a neighbor list is used to find overlapping atom pairs, it also means that
you must define a pair style with force cutoffs greater than or equal to the desired overlap cutoff between pairs
of relevant atom types, even though the pair potential will not be evaluated.

If the special bonds command is used with a setting of 0, then a pair of bonded atoms (1-2, 1-3, or 1-4) will
not appear in the neighbor list, and thus will not be considered for deletion by the overlap styles. You
probably don't want to be deleting one atom in a bonded pair anyway.

Related commands:

create atoms

Default:

The option defaults are compress = yes and mol = no.

delete_atoms command 211

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_bonds command
Syntax:
delete_bonds group—-ID style args keyword ...

¢ group-ID = group ID
¢ style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none
atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

¢ zero or more keywords may be appended
¢ keyword = any or undo or remove or special

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is
useful for deleting interactions that have been previously turned off by bond-breaking potentials. It is also
useful for turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turned
off via the neigh modify exclude command. The fix shake command also effectively turns off certain bond
and angle interactions.

For all styles, by default, an interaction is only turned off (or on) if all the atoms involved are in the specified
group. See the any keyword to change the behavior.

For style multi all bond, angle, dihedral, and improper interactions of any type, involving atoms in the group,
are turned off.

Style atom is the same as style multi except that in addition, one or more of the atoms involved in the bond,
angle, dihedral, or improper interaction must also be of the specified atom type.

For style bond, only bonds are candidates for turn-off, and the bond must also be of the specified type. Styles
angle, dihedral, and improper are treated similarly.

For style bond, you can set the type to O to delete bonds that have been previously broken by a bond-breaking
potential (which sets the bond type to 0 when a bond is broken); e.g. see the bond style quartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is
simply reported. This is useful for diagnostic purposes if bonds have been turned off by a bond-breaking

potential during a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a
negative value, but not to permanently remove the interaction. E.g. a bond_type of 2 is set to -2. The neighbor

delete_bonds command 212

http://lammps.sandia.gov

LIGGGHTS Users Manual

list creation routines will not include such an interaction in their interaction lists. The default is also to not
alter the list of 1-2, 1-3, 1-4 neighbors computed by the special bonds command and used to weight pairwise
force and energy calculations. This means that pairwise computations will proceed as if the bond (or angle,
etc) were still turned on.

Several keywords can be appended to the argument list to alter the default behaviors.

The any keyword changes the requirement that all atoms in the bond (angle, etc) must be in the specified
group in order to turn-off the interaction. Instead, if any of the atoms in the interaction are in the specified
group, it will be turned off (or on if the undo keyword is used).

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned on if
they are currently turned off. This means a negative value is toggled to positive. Note that the fix shake
command also sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned-off bonds (angles,
etc) to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts
accordingly. Removal is a permanent change; removed bonds cannot be turned back on via the undo keyword.
Removal does not alter the pairwise 1-2, 1-3, 1-4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It
re-computes the pairwise 1-2, 1-3, 1-4 weighting list. The weighting list computation treats turned-off bonds

the same as turned-on. Thus, turned-off bonds must be removed if you wish to change the weighting list.

Note that the choice of remove and special options affects how 1-2, 1-3, 1-4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter-processor communication to coordinate the deleting of bonds. This means that
your system must be ready to perform a simulation before using this command (force fields setup, atom
masses set, etc).

If deleted bonds (angles, etc) are removed but the 1-2, 1-3, 1-4 weighting list is not recomputed, this can cause
a later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. This
should only happen if the group used in the fix command includes both atoms in the bond, in which case you
probably should be recomputing the weighting list.

Related commands:

neigh modify exclude, special bonds, fix shake

Default: none

delete_bonds command 213

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dielectric command
Syntax:
dielectric value
¢ value = dielectric constant
Examples:
dielectric 2.0
Description:
Set the dielectric constant for Coulombic interactions (pairwise and long-range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interactions - e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.
Restrictions: none
Related commands:
pair_style

Default:

dielectric 1.0

dielectric command 214

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style charmm command

dihedral_style charmm/omp command

Syntax:
dihedral_style charmm
Examples:

dihedral_style charmm
dihedral_coeff 1 120.0 1 60 0.5

Description:

The charmm dihedral style uses the potential
E = K[1 4 cos(n¢ — d)]

See (MacKerell) for a description of the CHARMM force field. This dihedral style can also be used for the
AMBER force field (see comment on weighting factors below). See (Cornell) for a description of the
AMBER force field.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)

® n (integer >= 0)

¢ d (integer value of degrees)
e weighting factor (0.0 to 1.0)

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral, which
are computed by a CHARMM pair_style with epsilon and sigma values specified with a pair_coeff command.
Note that this weighting factor is unrelated to the weighting factor specified by the special bonds command
which applies to all 1-4 interactions in the system.

For CHARMM force fields, the special_bonds 1-4 weighting factor should be set to 0.0. This is because the
pair styles that contain "charmm" (e.g. pair_style lj/charmm/coul/long) define extra 1-4 interaction
coefficients that are used by this dihedral style to compute those interactions explicitly. This means that if any
of the weighting factors defined as dihedral coefficients (4th coeff above) are non-zero, then you must use a
charmm pair style. Note that if you do not set the special_bonds 1-4 weighting factor to 0.0 (which is the
default) then 1-4 interactions in dihedrals will be computed twice, once by the pair routine and once by the
dihedral routine, which is probably not what you want.

For AMBER force fields, the special_bonds 1-4 weighting factor should be set to the AMBER defaults (1/2
and 5/6) and all the dihedral weighting factors (4th coeff above) should be set to 0.0. In this case, you can use
any pair style you wish, since the dihedral does not need any 1-4 information.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in

dihedral_style charmm command 215

http://lammps.sandia.gov

LIGGGHTS Users Manual

Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem B, 102, 3586 (1998).

dihedral_style charmm/omp command 216

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style class2 command

dihedral_style class2/omp command

Syntax:

dihedral_style class2

Examples:

dihedral_style class2

dihedral_ coeff
dihedral_ coeff
dihedral_ coeff
dihedral_ coeff
dihedral_ coeff
dihedral_coeff

* % DN X X

Description:

The class2 dihedral
T e

By =

Epp =

E ebt —

Eat —

Eaat —
LBz =

100 75 100 70 80 60

mbt 3.5945 0.1704 -0.5490 1.5228

ebt 0.3417 0.3264 -0.9036 0.1368 0.0 -0.8080 1.0119 1.1010
at 0.0 -0.1850 -0.7963 -2.0220 0.0 -0.3991 110.2453 105.1270
aat -13.5271 110.2453 105.1270

bbl3 0.0 1.0119 1.1010

style uses the potential

Ed + B+ Beopt <+ Lot + Bigat + Lo
Z K[l — cos(ng — ¢,)]

(r ik — T2) [A1 cos(@) + As cos(2¢0) + Aj cos(30)]
(rij — r1)[B1cos(¢) + Bz cos(2¢) + Bz cos(3¢))]
(rpg — 13)[C1 cos(¢) + Cs cos(2¢) + Cz cos(3¢))]
(6
G

)
)| B &)
)
iik — 01)| Dy cos(@) + Ds cos(2¢) + D3 cos(3¢0)] +
02)

I

ikl — 02)[F1 cos(@) + Eacos(20) + E3 cos(3¢)]
ﬂf(gzjh — 91)(9.}'.&‘! — 92) (_'.(_}E:({_fa".))
i%r(?“ij = T“l)('f“_:-fg m ?“;j)

where Ed is the dihedral term, Embt is a middle-bond-torsion term, Eebt is an end-bond-torsion term, Eat is an
angle-torsion term, Eaat is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.

Thetal and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas must be defined for each dihedral type via
the dihedral coeff command as in the example above, or in the data file or restart files read by the read data
or read restart commands.

dihedral_style class2 command

217

http://lammps.sandia.gov

LIGGGHTS Users Manual

These are the 6 coefficients for the Ed formula:

¢ K1 (energy)
® phil (degrees)
e K2 (energy)
® phi2 (degrees)
® K3 (energy)
® phi3 (degrees)

For the Embt formula, each line in a dihedral coeff command in the input script lists 5 coefficients, the first of
which is "mbt" to indicate they are MiddleBondTorsion coefficients. In a data file, these coefficients should
be listed under a "MiddleBondTorsion Coeffs" heading and you must leave out the "mbt", i.e. only list 4
coefficients after the dihedral type.

* mbt

® Al (energy/distance)
e A2 (energy/distance)
® A3 (energy/distance)
e 12 (distance)

For the Eebt formula, each line in a dihedral coeff command in the input script lists 9 coefficients, the first of
which is "ebt" to indicate they are EndBondTorsion coefficients. In a data file, these coefficients should be
listed under a "EndBondTorsion Coeffs" heading and you must leave out the "ebt", i.e. only list 8 coefficients
after the dihedral type.

® ebt

® B1 (energy/distance)
® B2 (energy/distance)
® B3 (energy/distance)
¢ C1 (energy/distance)
® C2 (energy/distance)
® C3 (energy/distance)
e r] (distance)

e 13 (distance)

For the Eat formula, each line in a dihedral coeff command in the input script lists 9 coefficients, the first of
which is "at" to indicate they are AngleTorsion coefficients. In a data file, these coefficients should be listed
under a "AngleTorsion Coeffs" heading and you must leave out the "at", i.e. only list 8 coefficients after the
dihedral type.

® at

® D1 (energy/radian)
® D2 (energy/radian)
® D3 (energy/radian)
¢ E1 (energy/radian)
e E2 (energy/radian)
¢ E3 (energy/radian)
o thetal (degrees)

o theta2 (degrees)

Thetal and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of D and E are in energy/radian.

For the Eaat formula, each line in a dihedral coeff command in the input script lists 4 coefficients, the first of

dihedral_style class2/omp command 218

LIGGGHTS Users Manual

which is "aat" to indicate they are AngleAngleTorsion coefficients. In a data file, these coefficients should be
listed under a "AngleAngleTorsion Coeffs" heading and you must leave out the "aat", i.e. only list 3
coefficients after the dihedral type.

® aat

® M (energy/radian”2)
o thetal (degrees)

o theta2 (degrees)

Thetal and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of M are in energy/radian”2.

For the Ebb13 formula, each line in a dihedral coeff command in the input script lists 4 coefficients, the first
of which is "bb13" to indicate they are BondBond13 coefficients. In a data file, these coefficients should be
listed under a "BondBond13 Coeffs" heading and you must leave out the "bb13", i.e. only list 3 coefficients
after the dihedral type.

e bbl3

® N (energy/distance”2)
e r] (distance)

e 13 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

dihedral_style class2/omp command 219

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_coeff command

Syntax:
dihedral_coeff N args

¢ N = dihedral type (see asterisk form below)
¢ args = coefficients for one or more dihedral types

Examples:

dihedral _coeff 1 80.0 1
dihedral _coeff * 80.0 1 0.5
dihedral_coeff 2* 80.0 1 3 0.5

3
3

Description:

Specify the dihedral force field coefficients for one or more dihedral types. The number and meaning of the
coefficients depends on the dihedral style. Dihedral coefficients can also be set in the data file read by the
read data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple dihedral types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of dihedral types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a dihedral_coeff command can override a previous setting for the same dihedral type. For
example, these commands set the coeffs for all dihedral types, then overwrite the coeffs for just dihedral type
2:

dihedral_coeff * 80.0 1 3
dihedral_coeff 2 200.0 1 3

A line in a data file that specifies dihedral coefficients uses the exact same format as the arguments of the
dihedral_coeff command in an input script, except that wild-card asterisks should not be used since
coefficients for all N types must be listed in the file. For example, under the "Dihedral Coeffs" section of a
data file, the line that corresponds to the 1st example above would be listed as

180.01 3

The dihedral style class? is an exception to this rule, in that an additional argument is used in the input script
to allow specification of the cross-term coefficients. See its doc page for details.

IMPORTANT NOTE: When comparing the formulas and coefficients for various LAMMPS dihedral styles
with dihedral equations defined by other force fields, note that some force field implementations
divide/multiply the energy prefactor K by the multiple number of torsions that contain the J-K bond in an
I-J-K-L torsion. LAMMPS does not do this, i.e. the listed dihedral equation applies to each individual
dihedral. Thus you need to define K appropriately to account for this difference if necessary.

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral coeff command.

dihedral_coeff command 220

http://lammps.sandia.gov

LIGGGHTS Users Manual

Note that there are also additional dihedral styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the dihedral section of this page.

e dihedral style none - turn off dihedral interactions
e dihedral style hybrid - define multiple styles of dihedral interactions

e dihedral style charmm - CHARMM dihedral

e dihedral style class2 - COMPASS (class 2) dihedral

¢ dihedral style harmonic - harmonic dihedral

e dihedral style helix - helix dihedral

e dihedral style multi/harmonic - multi-harmonic dihedral
e dihedral style opls - OPLS dihedral

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

A dihedral style must be defined before any dihedral coefficients are set, either in the input script or in a data
file.

Related commands:

dihedral style

Default: none

dihedral_coeff command 221

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style cosine/shift/exp command

dihedral_style cosine/shift/exp/omp command
Syntax:

dihedral_style cosine/shift/exp

Examples:

dihedral_style cosine/shift/exp
dihedral _coeff 1 10.0 45.0 2.0

Description:
The cosine/shift/exp dihedral style uses the potential

e —all(0,0p) _ 1

E=-U_. 7 with U(6,60y) = —0.5(1 + cos(0 — b))
E.:If{, —_

where Umin, theta, and a are defined for each dihedral type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter
can be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k=a exp(a) Umin/ [2 (Exp(a)-1)]. For a>3 k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a->0, where it has been implemented
to linear order in a for a < 0.001.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use

the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

dihedral_style cosine/shift/exp command 222

http://lammps.sandia.gov

LIGGGHTS Users Manual

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral coeff, angle cosineshiftexp

Default: none

dihedral_style cosine/shift/exp/omp command 223

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style fourier command

dihedral_style fourier/omp command

Syntax:

dihedral_style fourier

Examples:

dihedral_style fourier
dihedral_coeff 1 3 -0.846200 3 0.0 7.578800 1 0 0.138000 2 -180.0

Description:

The fourier dihedral style uses the potential:

E = Z K;[1.0 + cos(n;¢ — d;)]

1=1,m

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

* m (integer >=1)

¢ K1 (energy)

¢ nl (integer >= 0)
e d1 (degrees)

o cese

¢ Km (energy)

¢ nm (integer >= ()
¢ dm (degrees)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

dihedral_style fourier command 224

http://lammps.sandia.gov

LIGGGHTS Users Manual

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

dihedral_style fourier/omp command 225

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style harmonic command

dihedral_style harmonic/omp command
Syntax:

dihedral_style harmonic

Examples:

dihedral_style harmonic
dihedral _coeff 1 80.0 1 2

Description:

The harmonic dihedral style uses the potential
E = K[1 + dcos(ng)]

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
ed(+1lor-1)
* n (integer >= ()

IMPORTANT NOTE: Here are important points to take note of when defining LAMMPS dihedral
coefficients for the harmonic style, so that they are compatible with how harmonic dihedrals are defined by
other force fields:

e The LAMMPS convention is that the trans position = 180 degrees, while in some force fields trans =
0 degrees.

¢ Some force fields reverse the sign convention on d.

¢ Some force fields let n be positive or negative which corresponds to d = 1 or -1 for the harmonic style.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

dihedral_style harmonic command 226

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making L AMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

dihedral_style harmonic/omp command 227

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style helix command

dihedral_style helix’omp command
Syntax:

dihedral_style helix

Examples:

dihedral_style helix
dihedral _coeff 1 80.0 100.0 40.0

Description:

The helix dihedral style uses the potential
E = A[l — cos(0)] + B[1 + cos(36)] + C[1 + cos(0 + %)]

This coarse-grain dihedral potential is described in (Guo). For dihedral angles in the helical region, the energy
function is represented by a standard potential consisting of three minima, one corresponding to the trans (t)
state and the other to gauche states (g+ and g-). The paper describes how the A,B,C parameters are chosen so
as to balance secondary (largely driven by local interactions) and tertiary structure (driven by long-range
interactions).

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® A (energy)
¢ B (energy)
¢ C (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

dihedral_style helix command 228

http://lammps.sandia.gov

LIGGGHTS Users Manual

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Guo) Guo and Thirumalai, Journal of Molecular Biology, 263, 323-43 (1996).

dihedral_style helix/omp command 229

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style hybrid command
Syntax:
dihedral_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more dihedral styles

Examples:

dihedral_style hybrid harmonic helix
dihedral_ coeff 1 harmonic 6.0 1 3
dihedral_ coeff 2* helix 10 10 10

Description:

The hybrid style enables the use of multiple dihedral styles in one simulation. An dihedral style is assigned to
each dihedral type. For example, dihedrals in a polymer flow (of dihedral type 1) could be computed with a
harmonic potential and dihedrals in the wall boundary (of dihedral type 2) could be computed with a helix
potential. The assignment of dihedral type to style is made via the dihedral coeff command or in the data file.

In the dihedral_coeff commands, the name of a dihedral style must be added after the dihedral type, with the
remaining coefficients being those appropriate to that style. In the example above, the 2 dihedral_coeff
commands set dihedrals of dihedral type 1 to be computed with a harmonic potential with coefficients 6.0, 1,
3 for K, d, n. All other dihedral types (2-N) are computed with a helix potential with coefficients 10, 10, 10 for
A, B, C.

If dihedral coefficients are specified in the data file read via the read data command, then the same rule
applies. E.g. "harmonic" or "helix", must be added after the dihedral type, for each line in the "Dihedral
Coeffs" section, e.g.

Dihedral Coeffs
1 harmonic 6.0 1 3

2 helix 10 10 10

If class2 is one of the dihedral hybrid styles, the same rule holds for specifying additional AngleTorsion (and
EndBondTorsion, etc) coefficients either via the input script or in the data file. L.e. class2 must be added to
each line after the dihedral type. For lines in the AngleTorsion (or EndBondTorsion, etc) section of the data
file for dihedral types that are not class2, you must use an dihedral style of skip as a placeholder, e.g.

AngleTorsion Coeffs
1 skip

2 class2 1.0 1.0 1.0 3.0 3.0 3.0 30.0 50.0

Note that it is not necessary to use the dihedral style skip in the input script, since AngleTorsion (or
EndBondTorsion, etc) coefficients need not be specified at all for dihedral types that are not class2.

A dihedral style of none with no additional coefficients can be used in place of a dihedral style, either in a

input script dihedral_coeff command or in the data file, if you desire to turn off interactions for specific
dihedral types.

dihedral_style hybrid command 230

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making L AMMPS section for more info on packages.

Unlike other dihedral styles, the hybrid dihedral style does not store dihedral coefficient info for individual
sub-styles in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
dihedral_coeff commands.

Related commands:

dihedral coeff

Default: none

dihedral_style hybrid command 231

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style multi’/harmonic command

dihedral_style multi’/harmonic/omp command

Syntax:
dihedral_style multi/harmonic
Examples:

dihedral_style multi/harmonic
dihedral_coeff 1 20 20 20 20 20

Description:

The multi/harmonic dihedral style uses the potential

Br= Z A, cos”‘_l('(j))

n=1.5

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

* Al (energy)
® A2 (energy)
® A3 (energy)
* A4 (energy)
® A5 (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

dihedral_style multi’/harmonic command 232

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
dihedral coeff

Default: none

dihedral_style multi’lharmonic/omp command 233

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style nharmonic command

dihedral_style nharmonic/omp command
Syntax:

dihedral_style nharmonic

Examples:

dihedral_style nharmonic
dihedral_coeff 3 10.0 20.0 30.0

Description:

The nharmonic dihedral style uses the potential:

B= Z A, cos”‘”l(qb)

n=1in

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® n (integer >=1)
¢ Al (energy)
® A2 (energy)

® An (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral_style nharmonic command 234

http://lammps.sandia.gov

LIGGGHTS Users Manual
dihedral coeff

Default: none

dihedral_style nharmonic/omp command 235

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style none command
Syntax:
dihedral_style none

Examples:

dihedral_style none
Description:

Using an dihedral style of none means dihedral forces are not computed, even if quadruplets of dihedral atoms
were listed in the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

dihedral_style none command 236

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style opls command

dihedral_style opls/omp command
Syntax:

dihedral_style opls

Examples:

dihedral_style opls
dihedral _coeff 1 90.0 90.0 90.0 70.0

Description:

The opls dihedral style uses the potential
| _ . _ _ - .
B= K, [1+cos(¢)]+ 5K [1—cos(2¢)]+ 5K [14-cos(3¢)]+ 5Ky [1—cos(4¢)

Note that the usual 1/2 factor is not included in the K values.
This dihedral potential is used in the OPLS force field and is described in (Watkins).

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K1 (energy)
¢ K2 (energy)
¢ K3 (energy)
® K4 (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

dihedral_style opls command 237

http://lammps.sandia.gov

LIGGGHTS Users Manual

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Watkins) Watkins and Jorgensen, J Phys Chem A, 105, 4118-4125 (2001).

dihedral_style opls/omp command 238

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style quadratic command

dihedral_style quadratic/omp command
Syntax:

dihedral_style quadratic

Examples:

dihedral_style quadratic
dihedral_coeff 100.0 80.0

Description:

The guadratic dihedral style uses the potential:
E = K(¢ — ¢y)

This dihedral potential can be used to keep a dihedral in a predefined value.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
® phiO (degrees)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral coeff

dihedral_style quadratic command 239

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

dihedral_style quadratic/omp command 240

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style command
Syntax:
dihedral_style style
¢ style = none or hybrid or charmm or class2 or harmonic or helix or multi/harmonic or opls
Examples:

dihedral_style harmonic
dihedral_style multi/harmonic
dihedral_style hybrid harmonic charmm

Description:
Set the formula(s) LAMMPS uses to compute dihedral interactions between quadruplets of atoms, which
remain in force for the duration of the simulation. The list of dihedral quadruplets is read in by a read data or

read restart command from a data or restart file.

Hybrid models where dihedrals are computed using different dihedral potentials can be setup using the hybrid
dihedral style.

The coefficients associated with a dihedral style can be specified in a data or restart file or via the
dihedral coeff command.

All dihedral potentials store their coefficient data in binary restart files which means dihedral_style and
dihedral coeff commands do not need to be re-specified in an input script that restarts a simulation. See the
read restart command for details on how to do this. The one exception is that dihedral_style hybrid only
stores the list of sub-styles in the restart file; dihedral coefficients need to be re-specified.

IMPORTANT NOTE: When both a dihedral and pair style is defined, the special bonds command often
needs to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 4 bonded

atoms.

In the formulas listed for each dihedral style, phi is the torsional angle defined by the quadruplet of atoms.
This angle has a sign convention as shown in this diagram:

nl positive @
/ :
/ points out
of page

where the [,J,K,L ordering of the 4 atoms that define the dihedral is from left to right.

dihedral_style command 241

http://lammps.sandia.gov

LIGGGHTS Users Manual

This sign convention effects several of the dihedral styles listed below (e.g. charmm, helix) in the sense that
the energy formula depends on the sign of phi, which may be reflected in the value of the coefficients you
specify.

IMPORTANT NOTE: When comparing the formulas and coefficients for various LAMMPS dihedral styles
with dihedral equations defined by other force fields, note that some force field implementations
divide/multiply the energy prefactor K by the multiple number of torsions that contain the J-K bond in an
I-J-K-L torsion. LAMMPS does not do this, i.e. the listed dihedral equation applies to each individual
dihedral. Thus you need to define K appropriately via the dihedral coeff command to account for this
difference if necessary.

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral coeff command.

Note that there are also additional dihedral styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the dihedral section of this page.

e dihedral style none - turn off dihedral interactions
¢ dihedral style hybrid - define multiple styles of dihedral interactions

e dihedral style charmm - CHARMM dihedral

e dihedral style class? - COMPASS (class 2) dihedral

¢ dihedral style harmonic - harmonic dihedral

¢ dihedral style helix - helix dihedral

¢ dihedral style multi/harmonic - multi-harmonic dihedral
e dihedral style opls - OPLS dihedral

Restrictions:

Dihedral styles can only be set for atom styles that allow dihedrals to be defined.

Most dihedral styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
dihedral potentials tell if it is part of a package.

Related commands:

dihedral coeff

Default:

dihedral_style none

dihedral_style command 242

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style table command

dihedral_style table’'omp command

Syntax:
dihedral_style table style Ntable

¢ style = linear or spline = method of interpolation
¢ Ntable = size of the internal lookup table

Examples:

dihedral_style table spline 400
dihedral_style table linear 1000
dihedral coeff 1 file.table DIH_TABLE1l
dihedral_ coeff 2 file.table DIH_TABLE2

Description:

The table dihedral style creates interpolation tables of length Ntable from dihedral potential and derivative
values listed in a file(s) as a function of the dihedral angle "phi". The files are read by the dihedral coeff
command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of Ntable dihedral angles. During a simulation, these tables are used to interpolate
energy and force values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or
spline.

For the linear style, the dihedral angle (phi) is used to find 2 surrounding table values from which an energy
or its derivative is computed by linear interpolation.

For the spline style, cubic spline coefficients are computed and stored at each of the Nrable evenly-spaced
values in the interpolated table. For a given dihedral angle (phi), the appropriate coefficients are chosen from
this list, and a cubic polynomial is used to compute the energy and the derivative at this angle.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a
section of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments). It can begin with one or
more comment or blank lines.

Table of the potential and its negative derivative

DIH_TABLE1l (keyword is the first text on line)
N 30 DEGREES (N, NOF, DEGREES, RADIANS, CHECKU/F)
(blank line)

1 -168.0 -1.40351172223 -0.0423346818422

dihedral_style table command 243

http://lammps.sandia.gov

LIGGGHTS Users Manual

2 -156.0 -1.70447981034 -0.00811786522531
3 -144.0 -1.62956100432 0.0184129719987

30 180.0 -0.707106781187 -0.0719306095245
Example 2: table of the potential. Forces omitted

DIH_TABLE2
N 30 NOF CHECKU testU.dat CHECKF testF.dat

1 -168.0 -1.40351172223
2 -156.0 -1.70447981034
3 -144.0 -1.62956100432

30 180.0 -0.707106781187

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the

dihedral coeff command. The next line lists (in any order) one or more parameters for the table. Each
parameter is a keyword followed by one or more numeric values.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the angle value, the 3rd value is the energy (in energy units), and the 4th is -dE/d(phi)
also in energy units). The 3rd term is the energy of the 4-atom configuration for the specified angle. The 4th
term (when present) is the negative derivative of the energy with respect to the angle (in degrees, or radians
depending on whether the user selected DEGREES or RADIANS). Thus the units of the last term are still
energy, not force. The dihedral angle values must increase from one line to the next.

Dihedral table splines are cyclic. There is no discontinuity at 180 degrees (or at any other angle). Although in
the examples above, the angles range from -180 to 180 degrees, in general, the first angle in the list can have
any value (positive, zero, or negative). However the range of angles represented in the table must be strictly
less than 360 degrees (2pi radians) to avoid angle overlap. (You may not supply entries in the table for both
180 and -180, for example.) If the user's table covers only a narrow range of dihedral angles, strange
numerical behavior can occur in the large remaining gap.

Parameters:

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the dihedral style table command. Let Ntable is the number of table entries
requested dihedral_style command, and let Nfile be the parameter following "N" in the tabulated file ("30" in
the sparse example above). What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and derivative
values at Ntable different points (which are evenly spaced over a 360 degree range, even if the angles in the
file are not). The resulting tables of length Ntable are then used as described above, when computing energy
and force for individual dihedral angles and their atoms. This means that if you want the interpolation tables
of length Ntable to match exactly what is in the tabulated file (with effectively nopreliminary interpolation),
you should set Ntable = Nfile. To insure the nodal points in the user's file are aligned with the interpolated
table entries, the angles in the table should be integer multiples of 360/Ntable degrees, or 2*Pl/Ntable radians
(depending on your choice of angle units).

The optional "NOF" keyword allows the user to omit the forces (negative energy derivatives) from the table
file (normally located in the 4th column). In their place, forces will be calculated automatically by
differentiating the potential energy function indicated by the 3rd column of the table (using either linear or
spline interpolation).

The optional "DEGREES" keyword allows the user to specify angles in degrees instead of radians (default).

dihedral_style table/omp command 244

LIGGGHTS Users Manual

The optional "RADIANS" keyword allows the user to specify angles in radians instead of degrees. (Note:
This changes the way the forces are scaled in the 4th column of the data file.)

The optional "CHECKU" keyword is followed by a filename. This allows the user to save all of the the Ntable
different entries in the interpolated energy table to a file to make sure that the interpolated function agrees
with the user's expectations. (Note: You can temporarily increase the Ntable parameter to a high value for this
purpose. "Ntable" is explained above.)

The optional "CHECKF" keyword is analogous to the "CHECKU" keyword. It is followed by a filename, and
it allows the user to check the interpolated force table. This option is available even if the user selected the
"NOF" option.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.
Restrictions:

This dihedral style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

dihedral_style table/omp command 245

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dimension command

Syntax:
dimension N

eN=2or3
Examples:
dimension 2
Description:
Set the dimensionality of the simulation. By default LAMMPS runs 3d simulations. To run a 2d simulation,
this command should be used prior to setting up a simulation box via the create box or read data commands.
Restart files also store this setting.
See the discussion in Section _howto for additional instructions on how to run 2d simulations.
IMPORTANT NOTE: Some models in LAMMPS treat particles as finite-size spheres or ellipsoids, as
opposed to point particles. In 2d, the particles will still be spheres or ellipsoids, not circular disks or ellipses,
meaning their moment of inertia will be the same as in 3d.
Restrictions:
This command must be used before the simulation box is defined by a read data or create_box command.
Related commands:

fix enforce2d

Default:

dimension 3

dimension command 246

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

displace_atoms command

Syntax:

displace_atoms group-ID style args keyword value

¢ group-ID = ID of group of atoms to displace
e style = move or ramp or random or rotate

move args = delx dely delz
delx,dely,delz = distance to displace in each dimension (distance units)
ramp args = ddim dlo dhi dim clo chi
ddim = x or y or z
dlo,dhi = displacement distance between dlo and dhi (distance units)
dim = x or y or z
clo,chi = lower and upper bound of domain to displace (distance units)
random args = dx dy dz seed
dx,dy,dz = random displacement magnitude in each dimension (distance units)
seed = random # seed (positive integer)
rotate args = Px Py Pz Rx Ry Rz theta

Px,Py,Pz = origin point of axis of rotation (distance units)
Rx,Ry,Rz = axis of rotation vector
theta = angle of rotation (degrees)

¢ zero or more keyword/value pairs may be appended

keyword = units
value = box or lattice

Examples:

displace_atoms top move 0 -5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be used to move atoms a large distance before beginning a simulation or
to randomize atoms initially on a lattice. For example, in a shear simulation, an initial strain can be imposed
on the system. Or two groups of atoms can be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance.

The ramp style displaces atoms a variable amount in one dimension depending on the atom's coordinate in a
(possibly) different dimension. For example, the second example command displaces atoms in the x-direction
an amount between 0.0 and 5.0 distance units. Each atom's displacement depends on the fractional distance its
y coordinate is between 2.0 and 20.5. Atoms with y-coordinates outside those bounds will be moved the
minimum (0.0) or maximum (5.0) amount.

The random style independently moves each atom in the group by a random displacement, uniformly sampled
from a value between -dx and +dx in the x dimension, and similarly for y and z. Random numbers are used in
such a way that the displacement of a particular atom is the same, regardless of how many processors are
being used.

The rotate style rotates each atom in the group by the angle theta around a rotation axis R = (Rx,Ry,Rz) that

goes thru a point P = (Px,Py,Pz). The direction of rotation for the atoms around the rotation axis is consistent
with the right-hand rule: if your right-hand's thumb points along R, then your fingers wrap around the axis in
the direction of positive theta.

displace_atoms command 247

http://lammps.sandia.gov

LIGGGHTS Users Manual

Distance units for displacements and the origin point of the rotate style are determined by the setting of box or
lattice for the units keyword. Box means distance units as defined by the units command - e.g. Angstroms for
real units. Lattice means distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

IMPORTANT NOTE: Care should be taken not to move atoms on top of other atoms. After the move, atoms
are remapped into the periodic simulation box if needed, and any shrink-wrap boundary conditions (see the
boundary command) are enforced which may change the box size. Other than this effect, this command does
not change the size or shape of the simulation box. See the change box command if that effect is desired.

IMPORTANT NOTE: Atoms can be moved arbitrarily long distances by this command. If the simulation box
is non-periodic and shrink-wrapped (see the boundary command), this can change its size or shape. This is not
a problem, except that the mapping of processors to the simulation box is not changed by this command from

its initial 3d configuration; see the processors command. Thus, if the box size/shape changes dramatically, the
mapping of processors to the simulation box may not end up as optimal as the initial mapping attempted to be.

Restrictions:
You cannot rotate around any rotation vector except the z-axis for a 2d simulation.
Related commands:

lattice, change box, fix _move

Default:

The option defaults are units = lattice.

displace_atoms command 248

LIGGGHTS Use

rs Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump command

dump image command
dump movie command
dump molfile command

Syntax:
dump ID group-ID style N file args

¢ ID = user-assigned name for the dump

e group-ID = ID of the group of atoms to be dumped
¢ style = atom or atom/vtk or cfg or dcd or xtc or xyz or image or molfile or local or custom or mesh/stl
or mesh/vtk or mesh/vtk or decomposition/vtk or euler/vtk

¢ N = dump every this many timesteps
¢ file = name of file to write dump info to
e args = list of arguments for a particular style

atom args = none
atom/vtk args = none
cfg args = same as custom args, see below
dcd args = none
xtc args = none
Xyz args = none

image args = discussed on dump image doc page

molfile args = discussed on dump molfile
mesh/stl args = 'local' or 'ghost' or 'al

doc page

1' or 'region' or any ID of a fix mesh/surface

region values = ID for region threshold

mesh/vtk args =
keywords = output
output values = face or interpolate
dump-identifier = 'stress' or 'id'

euler/vtk args = none

decomposition/vtk args = none

local args = list of local attributes
possible attributes = index, c_ID, c_
index = enumeration of local values
c_ID = local vector calculated by a
c_ID[N] = Nth column of local array
f_ID = local vector calculated by a
f_ID[N] = Nth column of local array

custom args = list of atom attributes
possible attributes = id, mol, type,
X, Y, Z, XS, YS
Xsu, ysu, zsu,
vx, vy, vz, fx,
g, mux, muy, mu
radius, diamete

zero or more keyword/ value pairs and one or more dump-identifiers

or 'wear' or 'vel' or 'stresscomponents' or 'owne

ID[N], £_ID, f_ID[N]

compute with ID

calculated by a compute with ID
fix with ID

calculated by a fix with ID

element, mass,
, Zs, Xu, yu, zu,
ix, iy, iz,
fy, fz,
z, mu,
r, omegax, omegay, omegaz,

angmomx, angmomy, angmomz, tgx, tqy, tqgz,

spin, eradius,
c_ID, c_ID[N],

dump command

ervel, erforce,
f_ID, f_ID[N], v_name

249

http://lammps.sandia.gov

LIGGGHTS Users Manual

id = atom ID

mol = molecule ID

type = atom type

element = name of atom element, as defined by dump modify command
mass = atom mass

X,y,z = unscaled atom coordinates

XS,ys,zs = scaled atom coordinates

XU, yu, zu = unwrapped atom coordinates

XsU,ysu,zsu = scaled unwrapped atom coordinates

ix,iy,iz = box image that the atom is in

vx,Vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle
omegax, omegay,omegaz = angular velocity of spherical particle
angmomx, angmomy, angmomz = angular momentum of aspherical particle
tax,tqy,tgz = torque on finite-size particles

spin = electron spin

eradius = electron radius

ervel = electron radial velocity

erforce = electron radial force

c_ID = per-atom vector calculated by a compute with ID

c_ID[N] = Nth column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID
f_ID[N] = Nth column of per—-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name
Examples:

dump myDump all atom 100 dump.atom

dump 2 subgroup atom 50 dump.run.bin

dump 4a all custom 100 dump.myforce.* id type x y vx fx

dump 4b flow custom 100 dump.%.myforce id type c_myF[3] v_ke

dump 2 inner cfg 10 dump.snap.*.cfg mass type XS ys zZs VX Vy Vz

dump snap all cfg 100 dump.config.*.cfg mass type xs ys zs id type c_Stress2
dump 1 all xtc 1000 file.xtc

dump e_data all custom 100 dump.eff id type x y z spin eradius fx fy fz eforce

LIGGGHTS vs. LAMMPS Info:

Two new styles (mesh/stl and mesh/vtk) are available for dumping granular mesh geometry into STL files or

VTK files. The former is used for dumping only the geometry, while the latter command is used to dump the
mesh IDs, stress etc- calculated on a granular mesh using the fix mesh/surface/stress command. Furthermore,
style decomposition/vtk can be used to dump the current parallel domain decomposition to a VTK file. Style

euler/vtk can be used to dump cell-based averages to a VTK file.

Description:

Dump a snapshot of atom quantities to one or more files every N timesteps in one of several styles. The image
style is the exception; it creates a JPG or PPM image file of the atom configuration every N timesteps, as
discussed on the dump image doc page. The timesteps on which dump output is written can also be controlled

by a variable; see the dump modify every command for details.

Only information for atoms in the specified group is dumped. The dump modify thresh and region commands
can also alter what atoms are included. Not all styles support all these options; see details below.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one
per timestep, one big file or multiple smaller files).

dump molfile command 250

LIGGGHTS Users Manual

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

IMPORTANT NOTE: Unless the dump _modify sort option is invoked, the lines of atom information written
to dump files (typically one line per atom) will be in an indeterminate order for each snapshot. This is even
true when running on a single processor, if the atom modify sort option is on, which it is by default. In this
case atoms are re-ordered periodically during a simulation, due to spatial sorting. It is also true when running
in parallel, because data for a single snapshot is collected from multiple processors, each of which owns a
subset of the atoms.

For the atom, custom, cfg, and local styles, sorting is off by default. For the dcd, xtc, xyz, and molfile styles,
sorting by atom ID is on by default. See the dump modify doc page for details.

The style keyword determines what atom quantities are written to the file and in what format. Settings made
via the dump modify command can also alter the format of individual values and the file itself.

The atom, local, and custom styles create files in a simple text format that is self-explanatory when viewing a
dump file. Many of the LAMMPS post-processing tools, including Pizza.py, work with this format, as does
the rerun command.

For post-processing purposes the atom, local, and custom text files are self-describing in the following sense.

The dimensions of the simulation box are included in each snapshot. For an orthogonal simulation box this
information is is formatted as:

ITEM: BOX BOUNDS xx yy zz
xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the x-dimension, and similarly for y and z.
The "xx yy zz" represent 6 characters that encode the style of boundary for each of the 6 simulation box
boundaries (xlo,xhi and ylo,yhi and zlo,zhi). Each of the 6 characters is either p = periodic, f = fixed, s =
shrink wrap, or m = shrink wrapped with a minimum value. See the boundary command for details.

For triclinic simulation boxes (non-orthogonal), an orthogonal bounding box which encloses the triclinic
simulation box is output, along with the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy Xz yzZ XX VY Z2Z
xlo_bound xhi_bound xy
yvlo_bound yhi_bound xz
zlo_bound zhi_bound yz

The presence of the text "xy xz yz" in the ITEM line indicates that the 3 tilt factors will be included on each of
the 3 following lines. This bounding box is convenient for many visualization programs. The meaning of the 6
character flags for "xx yy zz" is the same as above.

Note that the first two numbers on each line are now xlo_bound instead of xlo, etc, since they repesent a
bounding box. See this section of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, simple formulas for how the 6 bounding box extents (xlo_bound,xhi_bound,etc) are calculated
from the triclinic parameters, and how to transform those parameters to and from other commonly used
triclinic representations.

The "ITEM: ATOMS" line in each snapshot lists column descriptors for the per-atom lines that follow. For

example, the descriptors would be "id type xs ys zs" for the default atom style, and would be the atom
attributes you specify in the dump command for the custom style.

dump molfile command 251

http://www.sandia.gov/~sjplimp/pizza.html

LIGGGHTS Users Manual

For style atom, atom coordinates are written to the file, along with the atom ID and atom type. By default,
atom coords are written in a scaled format (from O to 1). I.e. an x value of 0.25 means the atom is at a location
1/4 of the distance from xlo to xhi of the box boundaries. The format can be changed to unscaled coords via
the dump modify settings. Image flags can also be added for each atom via dump_modify.

For style atom/vtk, atom coordinates, velocity, rotational velocity, force, atom ID, atom radius and atom type
are written to VTK files. Note that you have to link against VTK libraries to use this functionality.

Style custom allows you to specify a list of atom attributes to be written to the dump file for each atom.
Possible attributes are listed above and will appear in the order specified. You cannot specify a quantity that is
not defined for a particular simulation - such as g for atom style bond, since that atom style doesn't assign
charges. Dumps occur at the very end of a timestep, so atom attributes will include effects due to fixes that are
applied during the timestep. An explanation of the possible dump custom attributes is given below.

For style local, local output generated by computes and fixes is used to generate lines of output that is written
to the dump file. This local data is typically calculated by each processor based on the atoms it owns, but there
may be zero or more entities per atom, e.g. a list of bond distances. An explanation of the possible dump local
attributes is given below. Note that by using input from the compute property/local command with dump
local, it is possible to generate information on bonds, angles, etc that can be cut and pasted directly into a data
file read by the read data command.

Style cfg has the same command syntax as style custom and writes extended CFG format files, as used by the
AtomEye visualization package. Since the extended CFG format uses a single snapshot of the system per file,
a wildcard "*" must be included in the filename, as discussed below. The list of atom attributes for style cfg
must begin with either "mass type xs ys zs" or "mass type xsu ysu zsu" since these quantities are needed to
write the CFG files in the appropriate format (though the "mass" and "type" fields do not appear explicitly in
the file). Any remaining attributes will be stored as "auxiliary properties" in the CFG files. Note that you will
typically want to use the dump modify element command with CFG-formatted files, to associate element
names with atom types, so that AtomEye can render atoms appropriately. When unwrapped coordinates xsu,
ysu, and zsu are requested, the nominal AtomEye periodic cell dimensions are expanded by a large factor
UNWRAPEXPAND = 10.0, which ensures atoms that are displayed correctly for up to UNWRAPEXPAND/2
periodic boundary crossings in any direction. Beyond this, AtomEye will rewrap the unwrapped coordinates.
The expansion causes the atoms to be drawn farther away from the viewer, but it is easy to zoom the atoms
closer, and the interatomic distances are unaffected.

The dcd style writes DCD files, a standard atomic trajectory format used by the CHARMM, NAMD, and
XPlor molecular dynamics packages. DCD files are binary and thus may not be portable to different
machines. The number of atoms per snapshot cannot change with the dcd style. The unwrap option of the
dump modify command allows DCD coordinates to be written "unwrapped" by the image flags for each
atom. Unwrapped means that if the atom has passed through a periodic boundary one or more times, the value
is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note that
these coordinates may thus be far outside the box size stored with the snapshot.

The xtc style writes XTC files, a compressed trajectory format used by the GROMACS molecular dynamics
package, and described here. The precision used in XTC files can be adjusted via the dump modify
command. The default value of 1000 means that coordinates are stored to 1/1000 nanometer accuracy. XTC
files are portable binary files written in the NFS XDR data format, so that any machine which supports XDR
should be able to read them. The number of atoms per snapshot cannot change with the xtc style. The unwrap
option of the dump modify command allows XTC coordinates to be written "unwrapped" by the image flags
for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one or more times, the
value is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note
that these coordinates may thus be far outside the box size stored with the snapshot.

The xyz style writes XYZ files, which is a simple text-based coordinate format that many codes can read.

dump molfile command 252

http://mt.seas.upenn.edu/Archive/Graphics/A
http://manual.gromacs.org/current/online/xtc.html

LIGGGHTS Users Manual

Specifically it has a line with the number of atoms, then a comment line that is usually ignored followed by
one line per atom with the atom type and the x-, y-, and z-coordinate of that atom. You can use the

dump modify element option to change the output from using the (numerical) atom type to an element name
(or some other label). This will help many visualization programs to guess bonds and colors.

Note that atom, custom, dcd, xtc, and xyz style dump files can be read directly by VMD, a popular molecular
viewing program. See Section tools of the manual and the tools/Imp2vmd/README.txt file for more
information about support in VMD for reading and visualizing LAMMPS dump files.

The mesh/stl style dumps active STL geometries defined via fix mesh commands into the specified file. If you
do not supply the optional list of mesh IDs, all meshes are dumped, irrespective of whether they are used in a
fix wall/gran command or not. By specifying a list of mesh IDs you can explicitly choose which meshes to
dump. The group-ID is ignored, because the command is not applied to particles, but to mesh geometries.
With keywords 'local’, 'owned' or 'ghost' you can decide which parts of the parallel meshes you want to dump
(default is 'local'). If the multiprocessor option is not used (no '%' in filename), data is gathered from all
processors, so using the default will output the whole mesh data across all processors.

Examples:

dump stll all mesh/stl 300 post/dump*.stl

dump stl2 all mesh/stl 300 post/dump_proc%_local*.stl local
dump stl3 all mesh/stl 300 post/dump_proc%_ghost*.stl ghost
dump stl4 all mesh/stl 300 post/dump_proc_all_ghost*.stl ghost

The first command will write one file per time-step containing the complete mesh. The second command will
output one file per time-step per processor containing the local (owned) mesh elements of each processor. The
third command will output one file per time-step per processor containing the ghost (corona) mesh elements
of each processor. The third command will output one file per time-step containing the ghost (corona) mesh
elements of all processors.

With the region keyword, just those mesh element where the element center (arithmetic average of all nodes)
is in the specified region, will be dumped.

This dump is especially useful if a fix move/mesh is registered. If the position of the mesh is changed over
time and you want to dump one file for each dump timestep for post-processing together with the particle
data, you should use a filename like 'mydumpfile*.stl'. Note: This series of files can then be post-processed
together with the particle dump file converted to VTK in Paraview , www.paraview.org

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

The mesh/vtk style can be used to dump active mesh geometries defined via fix mesh commands to a series of
VTK files. Different keywords can be used to dump the per-triangle stress (force magnitude / element area),
id, velocity, wear, stress components (fx / element area, fy / element area, fz / element area), area (area of each
element) or the process which owns the element (visulatisation of the parallel decomposition) into the
specified file using a VTK file format. The list of mesh IDs is optional. As with the stl style, all active meshes
are dumped if you do not supply the optional list of mesh IDs. By specifying list of mesh IDs you can
explicitly choose which meshes to dump. The group-ID is ignored. Again, a series of files can be
post-processed in Paraview , www.paraview.org Most keywords as used for the mesh/vtk style are
self-explanatory. Keyword output controlls if the data is written in a per-face manner or as interpolated values
to VTK. Keywords aedges and acorners dump the number of active edges/corners per face. Keyword nneighs
dumps the number of face neighbors LIGGGHTS has recognized for each face.

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

dump molfile command 253

http://www.ks.uiuc.edu/Research/vmd

LIGGGHTS Users Manual

The euler/vtk style dumps the output of a fix ave/euler command into a series of VTK files. No further args
are expected.

The decomposition/vtk style dumps the processor grid decomposition into a series of VTK files. No further
args are expected.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can also be useful if the dump command is invoked
after a minimization ended on an arbitrary timestep. N can be changed between runs by using the

dump modify every command (not allowed for ded style). The dump modify every command also allows a
variable to be used to determine the sequence of timesteps on which dump files are written. In this mode a
dump on the first timestep of a run will also not be written unless the dump modify first command is used.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
LAMMPS exits. For the dcd and xtc styles, this is a single large binary file.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file
per snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.*
becomes tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. This option is not available for the dcd and xtc
styles. Note that the dump modify pad command can be used to insure all timestep numbers are the same
length (e.g. 00010), which can make it easier to read a series of dump files in order with some post-processing
tools.

If a "%" character appears in the filename, then each of P processors writes a portion of the dump file, and the
"%" character is replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes
tmp.dump.0, tmp.dump.1, ... tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on
parallel machines that support parallel I/O for output. This option is not available for the dcd, xtc, and xyz
styles.

By default, P = the number of processors meaning one file per processor, but P can be set to a smaller value
via the nfile or fileper keywords of the dump modify command. These options can be the most efficient way
of writing out dump files when running on large numbers of processors.

Note that using the "*" and "%" characters together can produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format.
A binary dump file will be about the same size as a text version, but will typically write out much faster. Of
course, when post-processing, you will need to convert it back to text format (see the binary2txt tool) or write
your own code to read the binary file. The format of the binary file can be understood by looking at the
tools/binary2txt.cpp file. This option is only available for the afom and custom styles.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format.
A gzipped dump file will be about 3x smaller than the text version, but will also take longer to write. This
option is not available for the dcd and xzc styles.

This section explains the local attributes that can be specified as part of the local style.

The index attribute can be used to generate an index number from 1 to N for each line written into the dump
file, where N is the total number of local datums from all processors, or lines of output that will appear in the
snapshot. Note that because data from different processors depend on what atoms they currently own, and
atoms migrate between processor, there is no guarantee that the same index will be used for the same info

dump molfile command 254

LIGGGHTS Users Manual

(e.g. a particular bond) in successive snapshots.

The ¢_ID and c_ID[N] attributes allow local vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details. There are computes for calculating local information such as
indices, types, and energies for bonds and angles.

Note that computes which calculate global or per-atom quantities, as opposed to local quantities, cannot be
output in a dump local command. Instead, global quantities can be output by the thermo _style custom
command, and per-atom quantities can be output by the dump custom command.

If c_ID is used as a attribute, then the local vector calculated by the compute is printed. If c_ID[N] is used,
then N must be in the range from 1-M, which will print the Nth column of the M-length local array calculated
by the compute.

The f_ID and f_ID[N] attributes allow local vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If £_ID is used as a attribute, then the local vector calculated by the fix is printed. If £ ID[N] is used, then N
must be in the range from 1-M, which will print the Nth column of the M-length local array calculated by the
fix.

Here is an example of how to dump bond info for a system, including the distance and energy of each bond:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

This section explains the atom attributes that can be specified as part of the custom and cfg styles.
The id, mol, type, element, mass, vx, vy, vz, fx, fy, fz, q attributes are self-explanatory.

Id is the atom ID. Mol is the molecule ID, included in the data file for molecular systems. Type is the atom
type. Element is typically the chemical name of an element, which you must assign to each type via the

dump modify element command. More generally, it can be any string you wish to associated with an atom
type. Mass is the atom mass. Vx, vy, vz, fx, fv, fz, and g are components of atom velocity and force and atomic
charge.

There are several options for outputting atom coordinates. The x, y, z attributes write atom coordinates
"unscaled", in the appropriate distance units (Angstroms, sigma, etc). Use xs, ys, zs if you want the
coordinates "scaled" to the box size, so that each value is 0.0 to 1.0. If the simulation box is triclinic (tilted),
then all atom coords will still be between 0.0 and 1.0. Use xu, yu, zu if you want the coordinates "unwrapped"
by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one
or more times, the value is printed for what the coordinate would be if it had not been wrapped back into the
periodic box. Note that using xu, yu, zu means that the coordinate values may be far outside the box bounds
printed with the snapshot. Using xsu, ysu, zsu is similar to using xu, yu, zu, except that the unwrapped
coordinates are scaled by the box size. Atoms that have passed through a periodic boundary will have the
corresponding cooordinate increased or decreased by 1.0.

The image flags can be printed directly using the ix, iy, iz attributes. For periodic dimensions, they specify
which image of the simulation box the atom is considered to be in. An image of O means it is inside the box as
defined. A value of 2 means add 2 box lengths to get the true value. A value of -1 means subtract 1 box length
to get the true value. LAMMPS updates these flags as atoms cross periodic boundaries during the simulation.

dump molfile command 255

LIGGGHTS Users Manual

The mux, muy, muz attributes are specific to dipolar systems defined with an atom style of dipole. They give
the orientation of the atom's point dipole moment. The mu attribute gives the magnitude of the atom's dipole
moment.

The radius and diameter attributes are specific to spherical particles that have a finite size, such as those
defined with an atom style of sphere.

The omegax, omegay, and omegaz attributes are specific to finite-size spherical particles that have an angular
velocity. Only certain atom styles, such as sphere define this quantity.

The angmomx, angmomy, and angmomz attributes are specific to finite-size aspherical particles that have an
angular momentum. Only the ellipsoid atom style defines this quantity.

The tgx, tqy, tqz attributes are for finite-size particles that can sustain a rotational torque due to interactions
with other particles.

The spin, eradius, ervel, and erforce attributes are for particles that represent nuclei and electrons modeled
with the electronic force field (EFF). See atom_style electron and pair_style eff for more details.

The c_ID and c_ID[N] attributes allow per-atom vectors or arrays calculated by a compute to be output. The
ID in the attribute should be replaced by the actual ID of the compute that has been defined previously in the
input script. See the compute command for details. There are computes for calculating the per-atom energy,
stress, centro-symmetry parameter, and coordination number of individual atoms.

Note that computes which calculate global or local quantities, as opposed to per-atom quantities, cannot be
output in a dump custom command. Instead, global quantities can be output by the thermo_style custom
command, and local quantities can be output by the dump local command.

If c_ID is used as a attribute, then the per-atom vector calculated by the compute is printed. If c_ID[N] is
used, then N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array
calculated by the compute.

The f_ID and f_ID[N] attributes allow vector or array per-atom quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script. The fix ave/atom command is one that calculates per-atom quantities. Since it can time-average
per-atom quantities produced by any compute, fix, or atom-style variable, this allows those time-averaged
results to be written to a dump file.

If £_ID is used as a attribute, then the per-atom vector calculated by the fix is printed. If f_ID[N] is used, then
N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array calculated
by the fix.

The v_name attribute allows per-atom vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only
an atom-style variable can be referenced, since it is the only style that generates per-atom values. Variables of
style afrom can reference individual atom attributes, per-atom atom attributes, thermodynamic keywords, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of creating
quantities to output to a dump file.

See Section _modify of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per-atom quantities which could then be output into dump files.

Restrictions:

dump molfile command 256

LIGGGHTS Users Manual

To write gzipped dump files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the
Making LAMMPS section of the documentation.

To be able to use atom/vtk, you have to link to VTK libraries, please adapt your Makefile accordingly.

The xtc style is part of the XTC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info. This is because some machines may not support the low-level XDR
data format that XTC files are written with, which will result in a compile-time error when a low-level include
file is not found. Putting this style in a package makes it easy to exclude from a LAMMPS build for those
machines. However, the XTC package also includes two compatibility header files and associated functions,
which should be a suitable substitute on machines that do not have the appropriate native header files. This
option can be invoked at build time by adding -DLAMMPS_XDR to the CCFLAGS variable in the
appropriate low-level Makefile, e.g. src/MAKE/Makefile.foo. This compatibility mode has been tested
successfully on Cray XT3/XT4/XT5 and IBM BlueGene/L. machines and should also work on IBM BG/P, and
Windows XP/Vista/7 machines.

Related commands:

dump image, dump modify, undump

Default:

The defaults for the image style are listed on the dump image doc page.

dump molfile command 257

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump image command

dump movie command

Syntax:
dump ID group-ID style N file color diameter keyword value

¢ D = user-assigned name for the dump

e group-ID = ID of the group of atoms to be imaged

o style = image or movie = style of dump command (other styles atom or ¢fg or dcd or xtc or xyz or
local or custom are discussed on the dump doc page)

¢ N = dump every this many timesteps

¢ file = name of file to write image to

e color = atom attribute that determines color of each atom

¢ diameter = atom attribute that determines size of each atom

e zero or more keyword/value pairs may be appended

¢ keyword = adiam or atom or bond or size or view or center or up Or ZoOom Or persp or box or axes or
shiny or ssao

adiam value = number = numeric value for atom diameter (distance units)
atom = yes/no = do or do not draw atoms
bond values = color width = color and width of bonds
color = atom or type or none
width = number or atom or type or none
number = numeric value for bond width (distance units)
size values = width height = size of images
width = width of image in # of pixels
height = height of image in # of pixels
view values = theta phi = view of simulation box
theta = view angle from +z axis (degrees)
phi = azimuthal view angle (degrees)
theta or phi can be a variable (see below)
center values = flag Cx Cy Cz = center point of image
flag = "s" for static, "d" for dynamic
Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
Cx,Cy,Cz can be variables (see below)
up values = Ux Uy Uz = direction that is "up" in image
Ux,Uy,Uz = components of up vector
Ux,Uy,Uz can be variables (see below)
zoom value = zfactor = size that simulation box appears in image
zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
zfactor can be a variable (see below)
persp value = pfactor = amount of "perspective" in image
pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
pfactor can be a variable (see below)
box values = yes/no diam = draw outline of simulation box
yes/no = do or do not draw simulation box lines
diam = diameter of box lines as fraction of shortest box length
axes values = yes/no length diam = draw xyz axes
yes/no = do or do not draw xyz axes lines next to simulation box
length = length of axes lines as fraction of respective box lengths
diam = diameter of axes lines as fraction of shortest box length
shiny value = sfactor = shinyness of spheres and cylinders
sfactor = shinyness of spheres and cylinders from 0.0 to 1.0
ssao value = yes/no seed dfactor = SSAO depth shading
yes/no = turn depth shading on/off
seed = random # seed (positive integer)
dfactor = strength of shading from 0.0 to 1.0

dump image command 258

http://lammps.sandia.gov

LIGGGHTS Users Manual

Examples:

dump dO all image 100 dump.*.]jpg type type

dump dl mobile image 500 snap.*.png element element ssao yes 4539 0.6

dump d2 all image 200 img-*.ppm type type zoom 2.5 adiam 1.5 size 1280 720
dump mO all movie 1000 movie.mpg type type size 640 480

dump ml all movie 1000 movie.avi type type size 640 480

dump m2 all movie 100 movie.md4v type type zoom 1.8 adiam v_value size 1280 720

Description:

Dump a high-quality rendered image of the atom configuration every N timesteps and save the images either
as a sequence of JPG or PNG, or PPM files, or as a single movie file. The options for this command as well as
the dump modify command control what is included in the image or movie and how it appears. A series of
such images can easily be manually converted into an animated movie of your simulation or the process can
be automated without writing the intermediate files using the dump movie style; see further details below.
Other dump styles store snapshots of numerical data asociated with atoms in various formats, as discussed on
the dump doc page.

Note that a set of images or a movie can be made after a simulation has been run, using the rerun command to
read snapshots from an existing dump file, and using these dump commands in the rerun script to generate the
images/movie.

Here are two sample images, rendered as 1024x1024 JPG files. Click to see the full-size images:

Only atoms in the specified group are rendered in the image. The dump modify region and thresh commands
can also alter what atoms are included in the image.

The filename suffix determines whether a JPEG, PNG, or PPM file is created with the image dump style. If
the suffix is ".jpg" or ".jpeg", then a JPEG format file is created, if the suffix is ".png", then a PNG format is
created, else a PPM (aka NETPBM) format file is created. The JPG and PNG files are binary; PPM has a text
mode header followed by binary data. JPG images have lossy compression; PNG has lossless compression;
and PPM files are uncompressed but can be compressed with gzip, if LAMMPS has been compiled with
-DLAMMPS_GZIP and a ".gz" suffix is used.

Similarly, the format of the resulting movie is chosen with the movie dump style. This is handled by the
underlying FFmpeg converter and thus details have to be looked up in the FFmpeg documentation. Typical
examples are: .avi, .mpg, .m4v, .mp4, .mkv, .flv, .mov, .gif Additional settings of the movie compression like
bitrate and framerate can be set using the dump modify command.

To write out JPEG and PNG format files, you must build LAMMPS with support for the corresponding JPEG
or PNG library. To convert images into movies, LAMMPS has to be compiled with the

dump movie command 259

LIGGGHTS Users Manual
-DLAMMPS_FFMPEG flag. See this section of the manual for instructions on how to do this.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom in the image may be slightly outside the simulation box.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump modify
every command.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written.
The "*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump modify pad command can be used to
insure all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of
images into a movie in the correct ordering.

Dump movie filenames on the other hand, must not have any wildcard character since only one file combining
all images into a single movie will be written by the movie encoder.

The color and diameter settings determine the color and size of atoms rendered in the image. They can be any
atom attribute defined for the dump custom command, including type and element. This includes per-atom
quantities calculated by a compute, fix, or variable, which are prefixed by "c_", "f_", or "v_" respectively.
Note that the diameter setting can be overridden with a numeric value by the optional adiam keyword, in
which case you can specify the diameter setting with any valid atom attribute.

If type is specified for the color setting, then the color of each atom is determined by its atom type. By default
the mapping of types to colors is as follows:

e type 1 =red

® type 2 = green
e type 3 = blue

e type 4 = yellow
® type 5 = aqua

® type 6 = cyan

and repeats itself for types > 6. This mapping can be changed by the dump modify acolor command.

If type is specified for the diameter setting then the diameter of each atom is determined by its atom type. By
default all types have diameter 1.0. This mapping can be changed by the dump modify adiam command.

If element is specified for the color and/or diameter setting, then the color and/or diameter of each atom is
determined by which element it is, which in turn is specified by the element-to-type mapping specified by the
"dump_modify element" command. By default every atom type is C (carbon). Every element has a color and
diameter associated with it, which is the same as the colors and sizes used by the AtomEye visualization
package.

If other atom attributes are used for the color or diameter settings, they are interpreted in the following way.
If "vx", for example, is used as the color setting, then the color of the atom will depend on the x-component of
its velocity. The association of a per-atom value with a specific color is determined by a "color map", which

can be specified via the dump modify command. The basic idea is that the atom-attribute will be within a
range of values, and every value within the range is mapped to a specific color. Depending on how the color

dump movie command 260

http://mt.seas.upenn.edu/Archive/Graphics/A

LIGGGHTS Users Manual

map is defined, that mapping can take place via interpolation so that a value of -3.2 is halfway between "red"
and "blue", or discretely so that the value of -3.2 is "orange".

If "vx", for example, is used as the diameter setting, then the atom will be rendered using the x-component of
its velocity as the diameter. If the per-atom value <= 0.0, them the atom will not be drawn. Note that
finite-size spherical particles, as defined by atom_style sphere define a per-particle radius or diameter, which
can be used as the diameter setting.

The various kewords listed above control how the image is rendered. As listed below, all of the keywords
have defaults, most of which you will likely not need to change. The dump modify also has options specific to
the dump image style, particularly for assigning colors to atoms, bonds, and other image features.

The adiam keyword allows you to override the diameter setting to a per-atom attribute with a specified
numeric value. All atoms will be drawn with that diameter, e.g. 1.5, which is in whatever distance units the
input script defines, e.g. Angstroms.

The atom keyword allow you to turn off the drawing of all atoms, if the specified value is no.

The bond keyword allows to you to alter how bonds are drawn. A bond is only drawn if both atoms in the
bond are being drawn due to being in the specified group and due to other selection criteria (e.g. region,
threshhold settings of the dump modify command). By default, bonds are drawn if they are defined in the
input data file as read by the read data command. Using none for both the bond color and width value will
turn off the drawing of all bonds.

If atom is specified for the bond color value, then each bond is drawn in 2 halves, with the color of each half
being the color of the atom at that end of the bond.

If type is specified for the color value, then the color of each bond is determined by its bond type. By default
the mapping of bond types to colors is as follows:

e type 1 =red

® type 2 = green
e type 3 = blue

e type 4 = yellow
® type 5 = aqua

® type 6 = cyan

and repeats itself for bond types > 6. This mapping can be changed by the dump modify beolor command.
The bond width value can be a numeric value or atom or type (or none as indicated above).

If a numeric value is specified, then all bonds will be drawn as cylinders with that diameter, e.g. 1.0, which is
in whatever distance units the input script defines, e.g. Angstroms.

If atom is specified for the width value, then each bond will be drawn with a width corresponding to the
minimum diameter of the 2 atoms in the bond.

If type is specified for the width value then the diameter of each bond is determined by its bond type. By
default all types have diameter 0.5. This mapping can be changed by the dump modify bdiam command.

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of
the image. Basically they control how the simulation box appears in the image.

dump movie command 261

LIGGGHTS Users Manual

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the
way the simulation box appears from image to image, effectively doing a pan or fly-by view of your
simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the
center point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180
degrees. The phi value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0
is a view along the +x axis, towards the center point. If theta or phi are specified via variables, then the
variable values should be in degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy,
and Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation
box. These values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the
center of the image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank
image. Internally, Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static,
then this conversion is done once, at the time the dump command is issued. If flag is set to "d" for dynamic
then the conversion is performed every time a new image is created. If the box size or shape is changing, this
will adjust the center point in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored
as a vector that is in the plane perpendicular to the view vector implied by the thefa and pni values, and which
is also in the plane defined by the view vector and user-specified up vector. Thus this internal vector is
computed from the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector,
implied by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value
of 1 should display an image mostly filled by the atoms in the simulation box. A zfactor > 1 will make the
simulation box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image.
If no is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of
the box are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d).
The color of the box boundaries can be set with the dump modify boxcolor command.

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are
drawn to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the
lower left corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction
of the respective box lengths. The diam setting determines their thickness as a fraction of the shortest box
length in x,y,z (for 3d) or x,y (for 2d).

dump movie command 262

LIGGGHTS Users Manual

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value
must be a value 0.0 <= sfactor <= 1.0, where sfactor =1 is a highly reflective surface and sfactor =0 is a
rough non-shiny surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is
set, then atoms further away from the viewer are darkened via a randomized process, which is perceived as
depth. The calculation of this effect can increase the cost of computing the image by roughly 2x. The strength
of the effect can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPG, PNG, or PPM images can be converted into a movie file and then played as a movie using

commonly available tools. Using dump style movie automates this step and avoids the intermediate step of

writing (many) image snapshot file. But LAMMPS has to be compiled with -DLAMMPS_FFMPEG and an
FFmpeg executable have to be installed.

To manually convert JPG, PNG or PPM files into an animated GIF or MPEG or other movie file you can use:

¢ a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert —-loop 1 *.ppm foo.mpg

Animated GIF files from ImageMagick are unoptimized. You can use a program like gifsicle to
optimize and massively shrink them. MPEG files created by ImageMagick are in MPEG-1 format
with rather inefficient compression and low quality.

® b) Use QuickTime.

Select "Open Image Sequence” under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another
format. QuickTime can generate very high quality and efficiently compressed movie files. Some of
the supported formats require to buy a license and some are not readable on all platforms until
specific runtime libraries are installed.

¢ ¢) Use FFmpeg

FFmpeg is a command line tool that is available on many platforms and allows extremely flexible encoding
and decoding of movies.

cat snap.*.Jjpg | ffmpeg -y -f image2pipe -c:v mjpeg -1 - -b:v 2000k movie.médv
cat snap.*.ppm | ffmpeg -y -f imagelpipe -c:v ppm -i - -b:v 2400k movie.avi

Frontends for FFmpeg exist for multiple platforms. For more information see the EFEmpeg homepage

Play the movie:
¢ a) Use your browser to view an animated GIF movie.

Select "Open File" under the File menu Load the animated GIF file
¢ b) Use the freely available mplayer or ffplay tool to view a movie. Both are available for multiple
OSes and support a large variety of file formats and decoders.

% mplayer foo.mpg
% ffplay bar.avi
¢ ¢) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate ("foo*.jpg")

dump movie command 263

http://www.ffmpeg.org/
http://www.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov/~sjplimp/pizza/doc/animate.html

LIGGGHTS Users Manual

® d) QuickTime and other Windows- or MacOS-based media players can obviously play movie files
directly. Similarly the corresponding tools bundled with Linux desktop environments, however, due
to licensing issues of some of the file formats, some formats may require installing additional
libraries, purchasing a license, or are not supported.

See Section _modify of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per-atom quantities which could then be output into dump files.

Restrictions:

To write JPG images, you must use the -DLAMMPS_JPEG switch when building LAMMPS and link with a
JPEG library. To write PNG images, you must use the -DLAMMPS_PNG switch when building LAMMPS
and link with a PNG library.

To write movie dumps, you must use the -DLAMMPS_FFMPEG switch when building LAMMPS and have
the FFmpeg executable available on the machine where LAMMPS is being run.

See the Making LAMMPS section of the documentation for details on how to configure and compile optional
in LAMMPS.

Related commands:

dump, dump modify, undump

Default:
The defaults for the keywords are as follows:

¢ adiam = not specified (use diameter setting)
® atom = yes

¢ bond = none none (if no bonds in system)
¢ bond = atom 0.5 (if bonds in system)

e size=512512

¢ view = 60 30 (for 3d)

e view = 0 0 (for 2d)

e center =5 0.50.50.5

eup=001 (for 3d)

eup =010 (for 2d)

e zoom = 1.0

® persp = 0.0

® box = yes 0.02

¢ axes =no 0.0 0.0

® shiny = 1.0

® 55320 = NO

dump movie command 264

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump_modify command
Syntax:
dump_modify dump-ID keyword values

e dump-ID = ID of dump to modify

¢ one or more keyword/value pairs may be appended

¢ these keywords apply to various dump styles

¢ keyword = append or buffer or element or every or fileper or first or flush or format or image or label
or nfile or pad or precision or region or scale or sort or thresh or unwrap

append arg = yes Or no

buffer arg = yes or no
element args = E1 E2 ... EN, where N = # of atom types

El,...,EN = element name, e.g. C or Fe or Ga
every arg = N

N = dump every this many timesteps

N can be a variable (see below)
fileper arg = Np

Np = write one file for every this many processors
first arg = yes or no
format arg = C-style format string for one line of output
flush arg = yes or no
image arg = yes Or no
label arg = string

string = character string (e.g. BONDS) to use in header of dump local file
nfile arg = Nf

Nf = write this many files, one from each of Nf processors
pad arg = Nchar = # of characters to convert timestep to
precision arg = power-of-10 value from 10 to 1000000
region arg = region-ID or "none"
scale arg = yes or no
sort arg = off or id or N or -N

off = no sorting of per—-atom lines within a snapshot

id = sort per-atom lines by atom ID

N = sort per-atom lines in ascending order by the Nth column
-N = sort per-atom lines in descending order by the Nth column
thresh args = attribute operation value
attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
Operation = nn or ">:" or nm__mn or "!:"
value = numeric value to compare to

these 3 args can be replaced by the word "none" to turn off thresholding
unwrap arg = yes Or no

¢ these keywords apply only to the image and movie styles
¢ keyword = acolor or adiam or amap or bcolor or bdiam or backcolor or boxcolor or color or bitrate

or framerate
acolor args = type color
type = atom type or range of types (see below)
color = name of color or colorl/color2/...
adiam args = type diam
type = atom type or range of types (see below)
diam = diameter of atoms of that type (distance units)
amap args = lo hi style delta N entryl entry2 ... entryN
lo = number or min = lower bound of range of color map
hi = number or max = upper bound of range of color map
style = 2 letters = "c¢" or "d" or "s" plus "a" or "f"

"c" for continuous
"d" for discrete
"s" for sequential

dump_modify command 265

http://lammps.sandia.gov

LIGGGHTS Users Manual

"a" for absolute
"f" for fractional
delta = binsize (only used for style "s", otherwise ignored)
binsize = range is divided into bins of this width
N = # of subsequent entries
entry = value color (for continuous style)
value = number or min or max = single value within range
color = name of color used for that wvalue
entry = lo hi color (for discrete style)
lo/hi = number or min or max = lower/upper bound of subset of range
color = name of color used for that subset of values
entry = color (for sequential style)
color = name of color used for a bin of values
backcolor arg = color
color = name of color for background
bcolor args = type color
type = bond type or range of types (see below)
color = name of color or colorl/color2/...
bdiam args = type diam
type = bond type or range of types (see below)
diam = diameter of bonds of that type (distance units)
bitrate arg = rate
rate = target bitrate for movie in kbps
boxcolor arg = color

color = name of color for box lines
color args = name R G B

name = name of color

R,G,B = red/green/blue numeric values from 0.0 to 1.0
framerate arg = fps

fps = frames per second for movie

Examples:

dump_modify 1 format "%d %d %20.15g %g %g" scale yes

dump_modify myDump image yes scale no flush yes

dump_modify 1 region mySphere thresh x <0.0 thresh epair >= 3.2

dump_modify xtcdump precision 10000

dump_modify 1 every 1000 nfile 20

dump_modify 1 every v_myVar

dump_modify 1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump
styles.

These keywords apply to various dump styles, including the dump image and dump movie styles. The
description gives details.

The append keyword applies to all dump styles except cfg and xtc and dcd. It also applies only to text output

files, not to binary or gzipped or image/movie files. If specified as yes, then dump snapshots are appended to

the end of an existing dump file. If specified as no, then a new dump file will be created which will overwrite
an existing file with the same name. This keyword can only take effect if the dump_modify command is used
after the dump command, but before the first command that causes dump snapshots to be output, e.g. a run or
minimize command. Once the dump file has been opened, this keyword has no further effect.

The buffer keyword applies only to dump styles atom, custom, local, and xyz. It also applies only to text
output files, not to binary or gzipped files. If specified as yes, which is the default, then each processor writes
its output into an internal text buffer, which is then sent to the processor(s) which perform file writes, and
written by those processors(s) as one large chunk of text. If specified as no, each processor sends its per-atom

dump_modify command 266

LIGGGHTS Users Manual

data in binary format to the processor(s) which perform file wirtes, and those processor(s) format and write it
line by line into the output file.

The buffering mode is typically faster since each processor does the relatively expensive task of formatting
the output for its own atoms. However it requires about twice the memory (per processor) for the extra
buffering.

The element keyword applies only to the the dump cfg, xyz, and image styles. It associates element names
(e.g. H, C, Fe) with LAMMPS atom types. See the list of element names at the bottom of this page.

In the case of dump cfg, this allows the AtomEye visualization package to read the dump file and render
atoms with the appropriate size and color.

In the case of dump image, the output images will follow the same AtomEye convention. An element name is
specified for each atom type (1 to Ntype) in the simulation. The same element name can be given to multiple
atom types.

In the case of xyz format dumps, there are no restrictions to what label can be used as an element name. Any
whitespace separated text will be accepted.

The every keyword changes the dump frequency originally specified by the dump command to a new value.
The every keyword can be specified in one of two ways. It can be a numeric value in which case it must be >
0. Or it can be an equal-style variable, which should be specified as v_name, where name is the variable
name.

In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump
snapshot will be written out. On that timestep the variable will be evaluated again to determine the next
timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() and stride()
math functions for equal-style variables, as examples of useful functions to use in this context. Other similar
math functions could easily be added as options for equal-style variables. Also see the next() function, which
allows use of a file-style variable which reads successive values from a file, each time the variable is
evaluated. Used with the every keyword, if the file contains a list of ascending timesteps, you can output
snapshots whenever you wish.

Note that when using the variable option with the every keyword, you need to use the first option if you want
an initial snapshot written to the dump file. The every keyword cannot be used with the dump dcd style.

For example, the following commands will write snapshots at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreqg(l10,3,10)
dump 1 all atom 100 tmp.dump
dump_modify 1 every v_s first yes

The following commands would write snapshots at the timesteps listed in file tmp.times:

variable f file tmp.times
variable s equal next (f)

dump 1 all atom 100 tmp.dump
dump_modify 1l every v_s

IMPORTANT NOTE: When using a file-style variable with the every keyword, the file of timesteps must list
a first timestep that is beyond the current timestep (e.g. it cannot be 0). And it must list one or more timesteps
beyond the length of the run you perform. This is because the dump command will generate an error if the

next timestep it reads from the file is not a value greater than the current timestep. Thus if you wanted output

dump_modify command 267

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A

LIGGGHTS Users Manual

on steps 0,15,100 of a 100-timestep run, the file should contain the values 15,100,101 and you should also use
the dump_modify first command. Any final value > 100 could be used in place of 101.

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified
in the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if
the setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The flush keyword determines whether a flush operation is invoked after a dump snapshot is written to the
dump file. A flush insures the output in that file is current (no buffering by the OS), even if LAMMPS halts
before the simulation completes. Flushes cannot be performed with dump style xzc.

The text-based dump styles have a default C-style format string which simply specifies %d for integers and
%g for real values. The format keyword can be used to override the default with a new C-style format string.
Do not include a trailing "\n" newline character in the format string. This option has no effect on the dcd and
xtc dump styles since they write binary files. Note that for the cfg style, the first two fields (atom id and type)
are not actually written into the CFG file, though you must include formats for them in the format string.

The fileper keyword is documented below with the nfile keyword.

The image keyword applies only to the dump afom style. If the image value is yes, 3 flags are appended to
each atom's coords which are the absolute box image of the atom in each dimension. For example, an x image
flag of -2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the
box boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style
custom these various values can be printed in the dump file by using the appropriate atom attributes in the
dump command itself.

The label keyword applies only to the dump local style. When it writes local information, such as bond or
angle topology to a dump file, it will use the specified label to format the header. By default this includes 2
lines:

ITEM: NUMBER OF ENTRIES
ITEM: ENTRIES ...

The word "ENTRIES" will be replaced with the string specified, e.g. BONDS or ANGLES.

The nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
dump file name, for all dump styles except the dcd, image, movie, xtc, and xyz styles (for which "%" is not
allowed). As explained on the dump command doc page, the "%" character causes the dump file to be written
in pieces, one piece for each of P processors. By default P = the number of processors the simulation is
running on. The nfile or fileper keyword can be used to set P to a smaller value, which can be more efficient
when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on
100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and
the next 24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example,
if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and
write it to a dump file.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which
becomes the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded
length, e.g. 100 or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading

dump_modify command 268

LIGGGHTS Users Manual

zeroes so they are all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000.
This can be useful so that post-processing programs can easily read the files in ascending timestep order.

The precision keyword only applies to the dump xzc style. A specified value of N means that coordinates are
stored to 1/N nanometer accuracy, e.g. for N = 1000, the coordinates are written to 1/1000 nanometer
accuracy.

The region keyword only applies to the dump custom, cfg, image, and movie styles. If specified, only atoms in
the region will be written to the dump file or included in the image/movie. Only one region can be applied as a
filter (the last one specified). See the region command for more details. Note that a region can be defined as
the "inside" or "outside" of a geometric shape, and it can be the "union" or "intersection" of a series of simpler
regions.

The scale keyword applies only to the dump atom style. A scale value of yes means atom coords are written in
normalized units from 0.0 to 1.0 in each box dimension. If the simluation box is triclinic (tilted), then all atom
coords will still be between 0.0 and 1.0. A value of no means they are written in absolute distance units (e.g.
Angstroms or sigma).

The sort keyword determines whether lines of per-atom output in a snapshot are sorted or not. A sort value of
off means they will typically be written in indeterminate order, either in serial or parallel. This is the case even
in serial if the atom modify sort option is turned on, which it is by default, to improve performance. A sort
value of id means sort the output by atom ID. A sort value of N or -N means sort the output by the value in the
Nth column of per-atom info in either ascending or descending order.

The dump local style cannot be sorted by atom ID, since there are typically multiple lines of output per atom.
Some dump styles, such as ded and xtc, require sorting by atom ID to format the output file correctly. If
multiple processors are writing the dump file, via the "%" wildcard in the dump filename, then sorting cannot
be performed.

IMPORTANT NOTE: Unless it is required by the dump style, sorting dump file output requires extra
overhead in terms of CPU and communication cost, as well as memory, versus unsorted output.

The thresh keyword only applies to the dump custom, cfg, image, and movie styles. Multiple thresholds can be
specified. Specifying "none" turns off all threshold criteria. If thresholds are specified, only atoms whose
attributes meet all the threshold criteria are written to the dump file or included in the image. The possible
attributes that can be tested for are the same as those that can be specified in the dump custom command, with
the exception of the element attribute, since it is not a numeric value. Note that different attributes can be
output by the dump custom command than are used as threshold criteria by the dump_modify command. E.g.
you can output the coordinates and stress of atoms whose energy is above some threshold.

The unwrap keyword only applies to the dump dcd and xtc styles. If set to yes, coordinates will be written
"unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic
boundary one or more times, the value is printed for what the coordinate would be if it had not been wrapped
back into the periodic box. Note that these coordinates may thus be far outside the box size stored with the
snapshot.

These keywords apply only to the dump image and dump movie styles. Any keyword that affects an image,
also affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the
dump movie style. The description gives details.

The acolor keyword can be used with the dump image command, when its atom color setting is fype, to set
the color that atoms of each type will be drawn in the image.

dump_modify command 269

LIGGGHTS Users Manual

The specified type should be an integer from 1 to Ntypes = the number of atom types. A wildcard asterisk can
be used in place of or in conjunction with the type argument to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified atom types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified atom types.

The adiam keyword can be used with the dump image command, when its atom diameter setting is type, to set
the size that atoms of each type will be drawn in the image. The specified fype should be an integer from 1 to
Ntypes. As with the acolor keyword, a wildcard asterisk can be used as part of the rype argument to specify a
range of atomt types. The specified diam is the size in whatever distance units the input script is using, e.g.
Angstroms.

The amap keyword can be used with the dump image command, with its atom keyword, when its atom setting
is an atom-attribute, to setup a color map. The color map is used to assign a specific RGB (red/green/blue)
color value to an individual atom when it is drawn, based on the atom's attribute, which is a numeric value,
e.g. its x-component of velocity if the atom-attribute "vx" was specified.

The basic idea of a color map is that the atom-attribute will be within a range of values, and that range is
associated with a a series of colors (e.g. red, blue, green). An atom's specific value (vx = -3.2) can then
mapped to the series of colors (e.g. halfway between red and blue), and a specific color is determined via an
interpolation procedure.

There are many possible options for the color map, enabled by the amap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the atom attribute. If numeric values are used
for lo and/or hi, then values that are lower/higher than that value are set to the value. L.e. the range is static. If
lo is specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be
calculated each time an image is drawn, based on the set of atoms being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s"
for sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range.
A discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values
covering the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as
values within the range. A fractional color map is one in which the values to which colors are assigned are
specified as a fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red
is to be assigned to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used.
But for a fractional map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting must be specified for all styles, but is only used for the sequential style; otherwise the value
is ignored. It specifies the bin size to use within the range for assigning consecutive colors to. For example, if
the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20 colors will be assigned to the range. The first
will be from -10.0 <= colorl < -9.0, then 2nd from -9.0 <= color2 < -8.0, etc.

dump_modify command 270

LIGGGHTS Users Manual

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range
of values or min or max. The value of the first entry must be min and the value of the last entry must be max.
Any entries in between must have increasing values. Note that numeric values can be specified either as

absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for
the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. X will fall between 2 of the entry values. The color of the atom is linearly interpolated (in each of
the RGB values) between the 2 colors associated with those entries. For example, if X =-5.0 and the 2
surrounding entries are "red" at -10.0 and "blue" at 0.0, then the atom's color will be halfway between "red"
and "blue", which happens to be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or /o can be min or hi can be max. The lo and hi settings of the last entry must be
min and max. Other entries can have any /o and hi values and the sub-ranges of different values can overlap.
Note that numeric /o and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of

non

the range, depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. The entries are scanned from first to last. The first time that /o <= X <= hi, X is assigned the color
associated with that entry. You can think of the last entry as assigning a default color (since it will always be
matched by X), and the earlier entries as colors that override the default. Also note that no interpolation of a
color RGB is done. All atoms will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color
of an individual atom, given the value X of its atom attribute. The range is partitioned into N bins of width
binsize. Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2
bins, it is considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N,
then the colors are repeated. For example if 2 entries with colors red and green are specified, then the odd
numbered bins will be red and the even bins green. The color of the atom is the color of its bin. Note that the
sequential color map is really a shorthand way of defining a discrete color map without having to specify
where all the bin boundaries are.

The backcolor sets the background color of the images. The color name can be any of the 140 pre-defined
colors (see below) or a color name defined by the dump_modify color option.

The bcolor keyword can be used with the dump image command, with its bond keyword, when its color
setting is type, to set the color that bonds of each type will be drawn in the image.

The specified fype should be an integer from 1 to Nbondtypes = the number of bond types. A wildcard
asterisk can be used in place of or in conjunction with the fype argument to specify a range of bond types. This
takes the form "*" or "*n" or "n*" or "m*n". If N = the number of bond types, then an asterisk with no
numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A
trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n
(inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified bond types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified bond types.

dump_modify command 271

LIGGGHTS Users Manual

The bdiam keyword can be used with the dump image command, with its bond keyword, when its diam
setting is fype, to set the diameter that bonds of each type will be drawn in the image. The specified type
should be an integer from 1 to Nbondtypes. As with the bcolor keyword, a wildcard asterisk can be used as
part of the type argument to specify a range of bond types. The specified diam is the size in whatever distance
units you are using, e.g. Angstroms.

The bitrate keyword can be used with the dump movie command to define the size of the resulting movie file
and its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require
less compression and will result in higher quality movies. The quality is also determined by the compression
format and encoder. The default setting is 2000 kbit/s, which will result in average quality with older
compression formats.

IMPORTANT NOTE: Not all movie file formats supported by dump movie allow the bitrate to be set. If not,
the setting is silently ignored.

The boxcolor keyword sets the color of the simulation box drawn around the atoms in each image. See the
"dump image box" command for how to specify that a box be drawn. The color name can be any of the 140
pre-defined colors (see below) or a color name defined by the dump_modify color option.

The color keyword allows definition of a new color name, in addition to the 140-predefined colors (see
below), and associates 3 red/green/blue RGB values with that color name. The color name can then be used
with any other dump_modify keyword that takes a color name as a value. The RGB values should each be
floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined
color names with new RBG values.

The framerate keyword can be used with the dump movie command to define the duration of the resulting
movie file. Movie files written by the dump movie command have a default frame rate of 24 frames per
second and the images generated will be converted at that rate. Thus a sequence of 1000 dump images will
result in a movie of about 42 seconds. To make a movie run longer you can either generate images more
frequently or lower the frame rate. To speed a movie up, you can do the inverse. Using a frame rate higher
than 24 is not recommended, as it will result in simply dropping the rendered images. It is more efficient to
dump images less frequently.

Restrictions: none

Related commands:

dump, dump image, undum

Default:

The option defaults are
¢ append = no
¢ buffer = yes for dump styles atom, custom, loca, and xyz
¢ clement = "C" for every atom type

¢ every = whatever it was set to via the dump command
¢ fileper = # of processors

dump_modify command 272

LIGGGHTS Users Manual

e first = no
e flush = yes

e format = %d and %g for each integer or floating point value

® image = no

e label = ENTRIES
e nfile =1
epad=0

® precision = 1000
® region = none

e scale = yes

e sort = off for dump styles atom, custom, cfg, and local

e sort = id for dump styles dcd, xtc, and xyz
e thresh = none
® unwrap = no

e acolor = * red/green/blue/yellow/aqua/cyan
® adiam = * 1.0

e amap = min max cf 0.0 2 min blue max red
® backcolor = black

® beolor = * red/green/blue/yellow/aqua/cyan

® bdiam = * 0.5
® bitrate = 2000
® boxcolor = yellow
e color = 140 color names are pre-defined as listed below
¢ framerate = 24

These are the standard 109 element names that LAMMPS pre-defines for use with the dump image and
dump_modify commands.

¢ 1-10="H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne"
¢ 11-20 ="Na", "Mg", "Al", "Si", "P", "S", "CI", "Ar", "K", "Ca"
®21-30 ="Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"
®31-40 ="Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr"

¢ 41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn"

® 51-60 ="Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd"

¢ 61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb"
¢ 71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "It", "Pt", "Au", "Hg"

¢ 81-90 ="TI", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th"

¢ 91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm"
¢ 101-109 ="Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt"

These are the 140 colors that LAMMPS pre-defines for use with the dump image and dump_modify
commands. Additional colors can be defined with the dump_modify color command. The 3 numbers listed for
each name are the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0

value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,

215

aqua = 0, 255, 255

aquamarine = 127,
255,212

azure = 240, 255,
255

beige = 245, 245,
220

bisque = 255, 228, 196

black =0, 0, 0

blanchedalmond =
255, 255, 205

blue = 0, 0, 255

blueviolet = 138,
43,226

brown = 165, 42, 42

burlywood = 222, 184,
135

cadetblue = 95, 158,
160

chartreuse = 127,
255,0

coral = 255, 127, 80

dump_modify command

273

chocolate = 210,
105, 30

LIGGGHTS Users Manual

cornflowerblue = 100,
149, 237

cornsilk = 255, 248,
220

crimson = 220,
20, 60

cyan =0, 255,255 |darkblue =0, 0,139 |darkcyan = 0, 139, 139 ?gjfgl‘gie‘l‘?d - ?Zg]f%rgg =169,
darkgreen = 0, 100, |darkkhaki = 189, 183, |darkmagenta = 139, 0, [darkolivegreen = 85, |darkorange =

0 107 139 107, 47 255, 140, 0
S 1 = 135,0,0 [fmbdnon <20 g <143 it
darkslategray = 47, |darkturquoise = 0, 206, |darkviolet =148,0, [|deeppink =255, 20, |deepskyblue =0,
79,79 209 211 147 191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255

firebrick = 178, 34, 34

floralwhite = 255,
250, 240

forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255

gold = 255, 215, 0

goldenrod = 218,
165, 32

gray = 128, 128,

green =0, 128, 0

greenyellow = 173,

honeydew = 240,

hotpink = 255,

128 255, 47 255, 240 105, 180
indianred = 205, 92,[. ..) _ khaki = 240, 230, lavender = 230,
9 indigo =75, 0, 130 ivory = 255, 240, 240 140 230, 250
lavenderblush = _ lemonchiffon = 255, |lightblue = 173, 216, |lightcoral = 240,
255, 240, 245 lawngreen = 124,252, 0 15, 205 230 128, 128
lightcyan = 224, lightgoldenrodyellow = [lightgreen = 144, 238, [lightgrey = 211, lightpink = 255,
255, 255 250, 250, 210 144 211,211 182,193
lightsalmon = 255, (lightseagreen = 32, 178, |lightskyblue = 135, lightslategray = 119, |lightsteelblue =
160, 122 170 206, 250 136, 153 176, 196, 222

lightyellow = 255,

limegreen = 50, 205,

linen = 250, 240,

magenta = 255,

255, 224 lime = 0,255, 0 50 230 0,255
maroon = 128. 0. 0 mediumaquamarine = |[mediumblue =0, 0, |mediumorchid = mediumpurple =
T 102, 205, 170 205 186, 85, 211 147,112,219

mediumseagreen = |mediumslateblue = 123, |mediumspringgreen = |mediumturquoise = |mediumvioletred
60, 179, 113 104, 238 0, 250, 154 72,209, 204 =199, 21, 133
midnightblue = 25, |mintcream = 245, 255, |mistyrose = 255, 228, |moccasin = 255, navajowhite =
25,112 250 225 228, 181 255,222,173

B B . olivedrab = 107, orange = 255,
navy =0, 0, 128 oldlace = 253, 245, 230 |olive = 128, 128, 0 142, 35 165. 0
orangered = 255, L palegoldenrod = 238, |palegreen = 152, paleturquoise =
69, 0 orchid =218, 112,214 1535 170 251, 152 175, 238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213

peru = 205, 133, 63

pink = 255, 192,
203

plum =221, 160, |powderblue = 176, 224, _ B rosybrown =
21 230 purple = 128, 0, 128 |red =255,0, 0 188, 143, 143
royalblue = 65, 105, |saddlebrown = 139, 69, |salmon = 250, 128, sandybrown = 244, [seagreen = 46,
225 19 114 164, 96 139, 87

seashell = 255, 245,
238

sienna = 160, 82, 45

silver = 192, 192, 192

skyblue = 135, 206,
235

slateblue = 106,
90, 205

slategray = 112, _ springgreen = 0, 255, [steelblue =70, 130, [tan =210, 180,
128, 144 snow =255, 250,250 1,5, 180 140
_ S _ turquoise = 64, 224, |violet = 238,
teal =0, 128, 128 [thistle =216, 191, 216 |tomato = 253, 99, 71 208 130, 238
white = 255, 255, 255 yellow = 255, 255, 0
dump_modify command 274

LIGGGHTS Users Manual

wheat = 245, 222, whitesmoke = 245,
179 245, 245

yellowgreen =
154, 205, 50

dump_modify command 275

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump molfile command

Syntax:

dump ID group-ID molfile N file format path

¢ ID = user-assigned name for the dump

¢ group-ID = ID of the group of atoms to be imaged

¢ molfile = style of dump command (other styles atom or cfg or dcd or xtc or xyz or local or custom are
discussed on the dump doc page)

¢ N = dump every this many timesteps

¢ file = name of file to write to

¢ format = file format to be used

¢ path = file path with plugins (optional)

Examples:

dump mfl all molfile 10 meltl.xml hoomd
dump mf2 all molfile 10 melt2-*.pdb pdb .
dump mf3 all molfile 50 melt3.xyz xyz .:/home/akohlmey/vmd/plugins/LINUX/molfile

Description:

Dump a snapshot of atom coordinates and selected additional quantities to one or more files every N timesteps
in one of several formats. Only information for atoms in the specified group is dumped. This specific dump
style uses molfile plugins that are bundled with the VMD molecular visualization and analysis program. See
Section tools of the manual and the tools/Imp2vmd/README.txt file for more information about support in
VMD for reading and visualizing native LAMMPS dump files.

Unless the filename contains a * character, the output will be written to one single file with the specified
format. Otherwise there will be one file per snapshot and the * will be replaced by the time step number when
the snapshot is written.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

The molfile plugin API has a few restrictions that have to be honored by this dump style: the number of atoms
must not change, the atoms must be sorted, outside of the coordinates no change in atom properties (like type,
mass, charge) will be recorded.

The format keyword determines what format is used to write out the dump. For this to work, LAMMPS must
be able to find and load a compatible molfile plugin that supports this format. Settings made via the
dump modify command can alter per atom properties like element names.

The path keyword determines which in directories. This is a "path" like other search paths, i.e. it can contain
multiple directories separated by a colon (or semi-colon on windows). This keyword is optional and default to

nn

.", the current directory.

The unwrap option of the dump modify command allows coordinates to be written "unwrapped" by the
image flags for each atom. Unwrapped means that if the atom has passed through a periodic boundary one or
more times, the value is printed for what the coordinate would be if it had not been wrapped back into the
periodic box. Note that these coordinates may thus be far outside the box size stored with the snapshot.

dump molfile command 276

http://lammps.sandia.gov
http://www.ks.uiuc.edu/Research/vmd

LIGGGHTS Users Manual

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump modify
every command. The dump modify every command also allows a variable to be used to determine the
sequence of timesteps on which dump files are written.

Restrictions:

The molfile dump style is part of the USER-MOLFILE package. It is only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info.

Molfile plugins provide a consistent programming interface to read and write file formats commonly used in
molecular simulations. The USER-MOLFILE package only provides the interface code, not the plugins.
These can be obtained from a VMD installation which has to match the platform that you are using to compile
LAMMPS for. By adding plugins to VMD, support for new file formats can be added to LAMMPS (or VMD
or other programs that use them) without having to recompile the application itself. The plugins are installed
in the directory: /plugins//molfile

NOTE: while the programming interface (API) to the plugins is backward compatible, the binary interface
(ABI) has been changing over time, so it is necessary to compile this package with the plugin header files
from VMD that match the binary plugins. These header files in the directory: /plugins/include For
convenience, the package ships with a set of header files that are compatible with VMD 1.9 and 1.9.1 (June
2012)

Related commands:

dump, dump modify, undump

Default:

The default path is ".". All other properties have to be specified.

dump molfile command 277

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

echo command
Syntax:
echo style
¢ style = none or screen or log or both
Examples:

echo both
echo log

Description:

This command determines whether LAMMPS echoes each input script command to the screen and/or log file
as it is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

The command-line switch -echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

echo command 278

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix adapt command

Syntax:

fix ID group-ID adapt N attribute args ... keyword value

Examples:

fix
fix
fix
fix

e

¢ ID, group-ID are documented in fix command

¢ adapt = style name of this fix command

¢ N = adapt simulation settings every this many timesteps
® one or more attribute/arg pairs may be appended

e attribute = pair or kspace or atom

palir args

pstyl
ppara
I,J =
v_nam

= pstyle pparam I J v_name
e = palir style name, e.g. 1lj/cut
m = parameter to adapt over time
type pair(s) to set parameter for
e = variable with name that calculates value of pparam

kspace arg = v_name

v_name = variable with name that calculates scale factor on K-space terms
atom args = aparam v_name
aparam = parameter to adapt over time

v_nam

e = variable with name that calculates value of aparam

¢ zero or more keyword/value pairs may be appended
¢ keyword = scale or reset

scale value = no or yes

no =
yes =

the variable value is the new setting
the variable value multiplies the original setting

reset value = no or yes

all
all
all
all

no =
yes =

adapt
adapt
adapt
adapt

Description:

values will remain altered at the end of a run
reset altered values to their original values at the end of a run

1 pair soft a 1 1 v_prefactor

1 pair soft a 2* 3 v_prefactor

1 pair 1j/cut epsilon * * v_scalel coul/cut scale 3 3 v_scale2 scale yes reset ye
10 atom diameter v_size

Change or adapt one or more specific simulation attributes or settings over time as a simulation runs. Pair
potential and K-space and atom attributes which can be varied by this fix are discussed below. Many other
fixes can also be used to time-vary simulation parameters, e.g. the "fix deform" command will change the
simulation box size/shape and the "fix move" command will change atom positions and velocities in a
prescribed manner. Also note that many commands allow variables as arguments for specific parameters, if
described in that manner on their doc pages. An equal-style variable can calculate a time-dependent quantity,
so this is another way to vary a simulation parameter over time.

If N is specified as 0, the specified attributes are only changed once, before the simulation begins. This is all
that is needed if the associated variables are not time-dependent. If N > 0, then changes are made every N
steps during the simulation, presumably with a variable that is time-dependent.

Depending on the value of the reset keyword, attributes changed by this fix will or will not be reset back to
their original values at the end of a simulation. Even if reset is specified as yes, a restart file written during a
simulation will contain the modified settings.

fix adapt command 279

http://lammps.sandia.gov

LIGGGHTS Users Manual

If the scale keyword is set to no, then the value the parameter is set to will be whatever the variable generates.
If the scale keyword is set to yes, then the value of the altered parameter will be the initial value of that
parameter multiplied by whatever the variable generates. l.e. the variable is now a "scale factor" applied in
(presumably) a time-varying fashion to the parameter. Internally, the parameters themselves are actually
altered; make sure you use the reset yes option if you want the parameters to be restored to their initial values
after the run.

The pair keyword enables various parameters of potentials defined by the pair_style command to be changed,
if the pair style supports it. Note that the pair_style and pair_coeff commands must be used in the usual
manner to specify these parameters initially; the fix adapt command simply overrides the parameters.

The pstyle argument is the name of the pair style. If pair_style hybrid or hybrid/overlay is used, pstyle should
be a sub-style name. For example, pstyle could be specified as "soft" or "lubricate". The pparam argument is
the name of the parameter to change. This is the current list of pair styles and parameters that can be varied by
this fix. See the doc pages for individual pair styles and their energy formulas for the meaning of these
parameters:

born a,b,c type pairs
buck a,c type pairs
coul/cut |scale type pairs
coul/debye |scale type pairs
coul/long |scale type pairs
1j/cut epsilon,sigma type pairs
lj/expand |epsilon,sigma,delta |type pairs
lubricate |mu global

gauss a type pairs
soft a type pairs

IMPORTANT NOTE: It is easy to add new potentials and their parameters to this list. All it typically takes is
adding an extract() method to the pair_*.cpp file associated with the potential.

Some parameters are global settings for the pair style, e.g. the viscosity setting "mu" for pair_style lubricate.
Other parameters apply to atom type pairs within the pair style, e.g. the prefactor "a" for pair_style soft.

Note that for many of the potentials, the parameter that can be varied is effectively a prefactor on the entire
energy expression for the potential, e.g. the lj/cut epsilon. The parameters listed as "scale" are exactly that,
since the energy expression for the coul/cut potential (for example) has no labeled prefactor in its formula. To
apply an effective prefactor to some potentials, multiple parameters need to be altered. For example, the
Buckingham potential needs both the A and C terms altered together. To scale the Buckingham potential, you
should thus list the pair style twice, once for A and once for C.

If a type pair parameter is specified, the / and J settings should be specified to indicate which type pairs to
apply it to. If a global parameter is specified, the / and J settings still need to be specified, but are ignored.

Similar to the pair_coeff command, I and J can be specified in one of two ways. Explicit numeric values can
be used for each, as in the 1st example above. I <=1 is required. LAMMPS sets the coefficients for the
symmetric J,I interaction to the same values.

A wild-card asterisk can be used in place of or in conjunction with the [,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom
types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types
from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all
types from m to n (inclusive). Note that only type pairs with I <=J are considered; if asterisks imply type

fix adapt command 280

LIGGGHTS Users Manual

pairs where J < I, they are ignored.

IMPROTANT NOTE: If pair_style hybrid or hybrid/overlay is being used, then the pstyle will be a sub-style
name. You must specify I,J arguments that correspond to type pair values defined (via the pair_coeff
command) for that sub-style.

The v_name argument for keyword pair is the name of an equal-style variable which will be evaluated each
time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where name is
the variable name. Equal-style variables can specify formulas with various mathematical functions, and
include thermo_style command keywords for the simulation box parameters and timestep and elapsed time.
Thus it is easy to specify parameters that change as a function of time or span consecutive runs in a
continuous fashion. For the latter, see the start and stop keywords of the run command and the elaplong
keyword of thermo_style custom for details.

For example, these commands would change the prefactor coefficient of the pair_style soft potential from
10.0 to 30.0 in a linear fashion over the course of a simulation:

variable prefactor equal ramp(10,30)
fix 1 all adapt 1 pair soft a * * v_prefactor

The kspace keyword used the specified variable as a scale factor on the energy, forces, virial calculated by
whatever K-Space solver is defined by the kspace style command. If the variable has a value of 1.0, then the
solver is unaltered.

The kspace keyword works this way whether the scale keyword is set to no or yes.

The atom keyword enables various atom properties to be changed. The aparam argument is the name of the
parameter to change. This is the current list of atom parameters that can be varied by this fix:

e charge = charge on particle
¢ diameter = diameter of particle

The v_name argument of the atom keyword is the name of an equal-style variable which will be evaluated
each time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where
name is the variable name. See the discussion above describing the formulas associated with equal-style
variables. The new value is assigned to the corresponding attribute for all atoms in the fix group.

If the atom parameter is diameter and per-atom density and per-atom mass are defined for particles (e.g.
atom_style granular), then the mass of each particle is also changed when the diameter changes (density is
assumed to stay constant).

For example, these commands would shrink the diameter of all granular particles in the "center" group from
1.0 to 0.1 in a linear fashion over the course of a 1000-step simulation:

variable size equal ramp(1.0,0.1)
fix 1 center adapt 10 atom diameter v_size

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.

Restrictions: none

fix adapt command 281

LIGGGHTS Users Manual

Related commands:

compute ti

Default:

The option defaults are scale = no, reset = no.

fix adapt command 282

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix addforce command

fix addforce/cuda command

Syntax:
fix ID group-ID addforce fx fy fz keyword value ...

¢ ID, group-ID are documented in fix command
¢ addforce = style name of this fix command
¢ fx fy,fz = force component values (force units)

any of fx,fy,fz can be a variable (see below)
¢ zero or more keyword/value pairs may be appended to args
¢ keyword = region or energy

region value = region-ID
region-ID = ID of region atoms must be in to have added force
energy value = v_name
v_name = variable with name that calculates the potential energy of each atom in the a

Examples:

fix kick flow addforce
fix kick flow addforce
fix ff boundary addforce

1.0 0.0 0.0
1.0 0.0 v_oscillate
0.0 0.0 v_push energy v_espace

Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be used
to give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

Any of the 3 quantities defining the force components can be specified as an equal-style or atom-style
variable, namely fx, fv, fz. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value(s) used to determine the
force component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent force field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent force field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force to atoms implies a change in their potential energy as they move due to the applied force field.
For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must
be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

fix addforce command 283

http://lammps.sandia.gov

LIGGGHTS Users Manual

The energy keyword is not allowed if the added force is a constant vector F = (fx,fy,fz), with all components
defined as numeric constants and not as variables. This is because LAMMPS can compute the energy for each
atom directly as E = -x dot F = -(x*fx + y*fy + z*fz), so that -Grad(E) = F.

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LAMMPS will set the energy to 0.0,
which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command. The keyword specifies the name of an
atom-style variable which is used to compute the energy of each atom as function of its position. Like
variables used for fx, fy, fz, the energy variable is specified as v_name, where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force were a spring-like F = kx, then the energy formula should be E = -0.5kx”2. If you don't
do this correctly, the minimization will not converge properly.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. L.e.
there is a decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force on the group of
atoms before the forces on individual atoms are changed by the fix. The scalar and vector values calculated by
this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.
The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,

since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the

fix addforce/cuda command 284

LIGGGHTS Users Manual

fix_modify energy option for this fix.
Restrictions: none

Related commands:

fix_setforce, fix aveforce

Default: none

fix addforce/cuda command 285

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix addtorque command

Syntax:
fix ID group-ID addtorque Tx Ty Tz

¢ ID, group-ID are documented in fix command

¢ addtorque = style name of this fix command

¢ Tx, Ty, Tz = torque component values (torque units)
¢ any of Tx,Ty,Tz can be a variable (see below)

Examples:
fix kick bead addtorque 2.0 3.0 5.0
fix kick bead addtorque 0.0 0.0 v_oscillate

Description:
Add a set of forces to each atom in the group such that:

¢ the components of the total torque applied on the group (around its center of mass) are Tx, Ty, Tz
¢ the group would move as a rigid body in the absence of other forces.

This command can be used to drive a group of atoms into rotation.

Any of the 3 quantities defining the torque components can be specified as an equal-style variable, namely Tx,
Ty, Tz. If the value is a variable, it should be specified as v_name, where name is the variable name. In this
case, the variable will be evaluated each timestep, and its value used to determine the torque component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent torque.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
forces to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. L.e.
there is a decrease in potential energy when atoms move in the direction of the added forces.

This fix computes a global scalar and a global 3-vector, which can be accessed by various output commands.
The scalar is the potential energy discussed above. The vector is the total torque on the group of atoms before
the forces on individual atoms are changed by the fix. The scalar and vector values calculated by this fix are
"extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.
The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

fix addtorque command 286

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This fix is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
fix_addforce

Default: none

fix addtorque command 287

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix append/atoms command

Syntax:
fix ID group-ID append/atoms face ... keyword value

¢ ID, group-ID are documented in fix command

¢ append/atoms = style name of this fix command

o face = zhi

¢ zero or more keyword/value pairs may be appended

¢ keyword = basis or size or freq or temp or random Or units

basis values = M itype

M = which basis atom
itype = atom type (1-N) to assign to this basis atom

size args = Lz
Lz = z size of lattice region appended in a single event (distance units)

freq args = freq
freq = the number of timesteps between append events

temp args = target damp seed extent
target = target temperature for the region between zhi-extent and zhi (temperature uni
damp = damping parameter (time units)
seed = random number seed for langevin kicks
extent = extent of thermostated region (distance units)

random args = xmax ymax zmax seed
xmax, ymax, zmax = maximum displacement in particular direction (distance units)
seed = random number seed for random displacement

units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

Examples:

fix 1 all append/atoms zhi size 5.0 freq 295 units lattice
fix 4 all append/atoms zhi size 15.0 freqg 5 units box
fix A all append/atoms zhi size 1.0 freq 1000 units lattice

Description:

This fix creates atoms on a lattice, appended on the zhi edge of the system box. This can be useful when a
shock or wave is propagating from zlo. This allows the system to grow with time to accommodate an
expanding wave. A simulation box must already exist, which is typically created via the create box command.
Before using this command, a lattice must also be defined using the lattice command.

This fix will automatically freeze atoms on the zhi edge of the system, so that overlaps are avoided when new
atoms are appended.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See
the lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all
created atoms are assigned type = 1 unless this keyword specifies differently.

The size keyword defines the size in z of the chunk of material to be added.

The random keyword will give the atoms random displacements around their lattice points to simulate some
initial temperature.

fix append/atoms command 288

http://lammps.sandia.gov

LIGGGHTS Users Manual

The temp keyword will cause a region to be thermostated with a Langevin thermostat on the zhi boundary.
The size of the region is measured from zhi and is set with the extent argument.

The units keyword determines the meaning of the distance units used to define a wall position, but only when
a numeric constant is used. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings. The lattice
command must have been previously used to define the lattice spacings.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions:

This fix style is part of the SHOCK package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

The boundary on which atoms are added with append/atoms must be shrink/minimum. The opposite boundary
may be any boundary type other than periodic.

Related commands:
fix wall/piston command
Default:

The keyword defaults are size = 0.0, freq = 0, units = lattice. All added atoms are of type 1 unless the basis
keyword is used.

fix append/atoms command 289

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix atc command
Syntax:
fix atc

¢ fixID = name of fix
e group = name of group fix is to be applied
e type = thermal or two_temperature or hardy or field

thermal = thermal coupling with fields: temperature

two_temperature = electron-phonon coupling with field: temperature and electron_temperature
hardy = on-the-fly post-processing using kernel localization functions (see "related" section
field = on-the-fly post-processing using mesh-based localization functions (see "related" sect

e parameter_file = name of the file with material parameters. Note: Neither hardy nor field requires a
parameter file

Examples:

fix AtC internal atc thermal Ar_thermal.dat

fix AtC internal atc two_temperature Ar_ttm.mat
fix AtC internal atc hardy

fix AtC internal atc field

Description:

This fix is the beginning to creating a coupled FE/MD simulation and/or an on-the-fly estimation of
continuum fields. The coupled versions of this fix do Verlet integration and the post-processing does not.
After instantiating this fix, several other fix_modify commands will be needed to set up the problem, e.g.
define the finite element mesh and prescribe initial and boundary conditions.

llllfg

AVAVAVAY

[[]]]

N
#‘l’llll

The following coupling example is typical, but non-exhaustive:
... commands to create and initialize the MD system

initial fix to designate coupling type and group to apply it to
tag group physics material_file
fix AtC internal atc thermal Ar_thermal.mat

create a uniform 12 x 2 x 2 mesh that covers region contain the group
nx ny nz region periodicity

fix _modify AtC mesh create 12 2 2 mdRegion f p p

specify the control method for the type of coupling

fix atc command 290

http://lammps.sandia.gov

LIGGGHTS Users Manual

physics control_type
fix modify AtC thermal control flux

specify the initial values for the empirical field "temperature"
field node_group value
fix modify AtC initial temperature all 30

create an output stream for nodal fields
filename output_frequency
fix_modify AtC output atc_fe_output 100

run 1000

likewise for this post-processing example:
... commands to create and initialize the MD system

initial fix to designate post-processing and the group to apply it to
no material file is allowed nor required
fix AtC internal atc hardy

for hardy fix, specific kernel function (function type and range) to # be used as a localizsa
fix AtC kernel quartic_sphere 10.0

create a uniform 1 x 1 x 1 mesh that covers region contain the group
with periodicity this effectively creats a system average
fix_modify AtC mesh create 1 1 1 box p p p

change from default lagrangian map to eulerian
refreshed every 100 steps
fix_modify AtC atom_element_map eulerian 100

start with no field defined
add mass density, potential energy density, stress and temperature
fix_modify AtC fields add density energy stress temperature

create an output stream for nodal fields
filename output_frequency
fix _modify AtC output nvtFE 100 text

run 1000
the mesh's linear interpolation functions can be used as the localization function by using the field option:
fix AtC internal atc field

fix_modify AtC mesh create 1 1 1 boxppp

Note coupling and post-processing can be combined in the same simulations using separate fixes.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. The fix_modify options relevant to this fix
are listed below. No global scalar or vector or per-atom quantities are stored by this fix for access by
various output commands. No parameter of this fix can be used with the start/stop keywords of the run
command. This fix is not invoked during energy minimization.

fix atc command 291

LIGGGHTS Users Manual

Restrictions:

Thermal and two_temperature (coupling) types use a Verlet time-integration algorithm. The hardy type

does not contain its own time-integrator and must be used with a separate fix that does contain one, e.g.

nve, nvt, etc.

¢ Currently,
e - the coupling is restricted to thermal physics
e - the FE computations are done in serial on each processor.

Related commands:

After specifying this fix in your input script, several other fix_modify commands are used to setup the
problem, e.g. define the finite element mesh and prescribe initial and boundary conditions.

fix_modify commands for setup:

¢ fix modify AtC mesh create

e fix modify AtC mesh quadrature

e fix modify AtC mesh read

e fix modify AtC mesh write

¢ fix modify AtC mesh create nodeset

e fix modify AtC mesh add to nodeset

¢ fix modify AtC mesh create faceset box
¢ fix modify AtC mesh create faceset plane
¢ fix modify AtC mesh create elementset

e fix modify AtC mesh delete elements

e fix modify AtC mesh nodeset to elementset
e fix modify AtC boundar

¢ fix modify AtC internal quadrature

e fix_modify AtC time integration (thermal)
e fix_modify AtC time integration (momentum)

e fix modify AtC extrinsic electron integration
e fix modify AtC internal element set
e fix modify AtC decomposition

fix_modify commands for boundary and initial conditions:

e fix modify AtC initial

e fix modify AtC fix

e fix modify AtC unfix

e fix modify AtC fix flux

e fix modify AtC unfix flux

e fix modify AtC source

e fix modify AtC remove source

fix_modify commands for control and filtering:

e fix modify AtC control

¢ fix modify AtC control thermal

e fix modify AtC control thermal correction max iterations
e fix modify AtC control momentum

e fix modify AtC control localized lambda

e fix modify AtC control lumped lambda solve

fix atc command

292

LIGGGHTS Users Manual

e fix _modify AtC control mask direction control
e fix modify AtC filter

e fix modify AtC filter scale

e fix modify AtC filter type

e fix modify AtC equilibrium start
e fix modify AtC extrinsic exchange
e fix modify AtC poisson solver

fix_modify commands for output:

e fix modify AtC output

¢ fix modify AtC output nodeset

¢ fix modify AtC output elementset

¢ fix modify AtC output boundary integral
e fix modify AtC output contour integral
¢ fix modify AtC mesh output

e fix modify AtC write restart

e fix modify AtC read restart

fix_modify commands for post-processing:

e fix modify AtC kernel

e fix modify AtC fields

e fix modify AtC grdients

e fix modify AtC rates

e fix modify AtC computes

e fix modify AtC on the fl

e fix modify AtC pair interactions/bond interactions
e fix modify AtC sample frequenc

e fix modify AtC set

miscellaneous fix_modify commands:

e fix modify AtC atom element ma

e fix modify AtC atom weight

¢ fix modify AtC write atom weights

e fix modify AtC reset time

e fix modify AtC reset atomic reference positions
e fix modify AtC fe md boundar

e fix modify AtC boundary faceset

e fix modify AtC consistent fe initialization
e fix modify AtC mass matrix

¢ fix modify AtC material

e fix modify AtC atomic charge

e fix modify AtC source integration

e fix modify AtC temperature definition

e fix modify AtC track displacement

e fix modify AtC boundary dynamics

e fix modify AtC add species

e fix modify AtC add molecule

¢ fix modify AtC remove species

e fix modify AtC remove molecule

Note: a set of example input files with the attendant material files are included with this package

fix atc command 293

LIGGGHTS Users Manual

Default: None

For detailed exposition of the theory and algorithms please see:

(Wagner) Wagner, GJ; Jones, RE; Templeton, JA; Parks, MA, "An atomistic-to-continuum coupling
method for heat transfer in solids." Special Issue of Computer Methods and Applied Mechanics (2008)
197:3351.

(Zimmerman2004) Zimmerman, JA; Webb, EB; Hoyt, JJ;. Jones, RE; Klein, PA; Bammann, DJ,
"Calculation of stress in atomistic simulation." Special Issue of Modelling and Simulation in Materials
Science and Engineering (2004), 12:S319.

(Zimmerman2010) Zimmerman, JA; Jones, RE; Templeton, JA, "A material frame approach for
evaluating continuum variables in atomistic simulations." Journal of Computational Physics (2010),
229:2364.

(Templeton2010) Templeton, JA; Jones, RE; Wagner, GJ, "Application of a field-based method to
spatially varying thermal transport problems in molecular dynamics." Modelling and Simulation in
Materials Science and Engineering (2010), 18:085007.

(Jones) Jones, RE; Templeton, JA; Wagner, GJ; Olmsted, D; Modine, JA, "Electron transport enhanced
molecular dynamics for metals and semi-metals." International Journal for Numerical Methods in
Engineering (2010), 83:940.

(Templeton2011) Templeton, JA; Jones, RE; Lee, JW; Zimmerman, JA; Wong, BM, "A long-range
electric field solver for molecular dynamics based on atomistic-to-continuum modeling." Journal of
Chemical Theory and Computation (2011), 7:1736.

(Mandadapu) Mandadapu, KK; Templeton, JA; Lee, JW, "Polarization as a field variable from molecular
dynamics simulations." Journal of Chemical Physics (2013), 139:054115.

Please refer to the standard finite element (FE) texts, e.g. T.J.R Hughes " The finite element method ",
Dover 2003, for the basics of FE simulation.

fix atc command 294

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/atom command

Syntax:
fix ID group-ID ave/atom Nevery Nrepeat Nfreq valuel value2

¢ ID, group-ID are documented in fix command

¢ ave/atom = style name of this fix command

¢ Nevery = use input values every this many timesteps

¢ Nrepeat = # of times to use input values for calculating averages

¢ Nfreq = calculate averages every this many timesteps one or more input values can be listed
¢ value =X, Y, z, VX, vy, vz, fx, fy, {z, c_ID, c_ID[i], f{_ID, f_ID[i], v_name

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID

f_ID = per-atom vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

fix 1 all ave/atom 1 100 100 vx vy vz
fix 1 all ave/atom 10 20 1000 c_my_stress[1]

Description:

Use one or more per-atom vectors as inputs every few timesteps, and average them atom by atom over longer
timescales. The resulting per-atom averages can be used by other output commands such as the fix ave/spatial
or dump custom commands.

The group specified with the command means only atoms within the group have their averages computed.
Results are set to 0.0 for atoms not in the group.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable. In the latter cases, the compute, fix, or variable
must produce a per-atom vector, not a global quantity or local quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per-atom vectors or arrays are those which have the word atom in their style name.
See the doc pages for individual fixes to determine which ones produce per-atom vectors or arrays. Variables

of style atom are the only ones that can be used with this fix since they produce per-atom vectors.

Each per-atom value of each input vector is averaged independently.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of
Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the simulation every
Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also,
the timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc.

fix ave/atom command 295

http://lammps.sandia.gov

LIGGGHTS Users Manual

The atom attribute values (X,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

IMPORTANT NOTE: The x,y,z attributes are values that are re-wrapped inside the periodic box whenever an
atom crosses a periodic boundary. Thus if you time average an atom that spends half its time on either side of
the periodic box, you will get a value in the middle of the box. If this is not what you want, consider averaging
unwrapped coordinates, which can be provided by the compute property/atom command via its xu,yu,zu
attributes.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed term is appended, the per-atom vector calculated by the compute is used. If a bracketed term
containing an index I is appended, the Ith column of the per-atom array calculated by the compute is used.
Users can also write code for their own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the per-atom vector calculated by the fix is used. If a bracketed term containing
an index I is appended, the Ith column of the per-atom array calculated by the fix is used. Note that some fixes
only produce their values on certain timesteps, which must be compatible with Nevery, else an error will
result. Users can also write code for their own fix styles and add them to L AMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script
as an atom-style variable Variables of style atom can reference thermodynamic keywords, or invoke other
computes, fixes, or variables when they are evaluated, so this is a very general means of generating per-atom
quantities to time average.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global scalar or vector quantities are stored by this fix for access by various output commands.

This fix produces a per-atom vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array
of values is produced. The per-atom values can only be accessed on timesteps that are multiples of Nfreq since

that is when averaging is performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:
compute, fix ave/histo, fix ave/spatial, fix ave/time, variable,

Default: none

fix ave/atom command 296

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/correlate command

Syntax:

fix ID group-ID ave/correlate Nevery Nrepeat Nfreqg valuel value? keyword args
¢ ID, group-ID are documented in fix command

e ave/correlate = style name of this fix command

¢ Nevery = use input values every this many timesteps

¢ Nrepeat = # of correlation time windows to accumulate

¢ Nfreq = calculate tine window averages every this many timesteps

¢ one or more input values can be listed

e value = c_ID, c_ID[N], f_ID, f ID[N], v_name

c_ID = global scalar calculated by a compute with ID

c_ID[I] = Ith component of global vector calculated by a compute with ID
f_ID = global scalar calculated by a fix with ID

f_ID[I] = Ith component of global vector calculated by a fix with ID
v_name = global value calculated by an equal-style variable with name

e zero or more keyword/arg pairs may be appended
¢ keyword = type or ave or start or prefactor or file or overwrite or titlel or title2 or title3

type arg = auto or upper or lower or auto/upper or auto/lower or full
auto = correlate each value with itself
upper = correlate each value with each succeeding value
lower = correlate each value with each preceding value
auto/upper = auto + upper

auto/lower = auto + lower

full = correlate each value with every other value, including itself = auto + upper +
ave args = one or running
one = zero the correlation accumulation every Nfreq steps

running = accumulate correlations continuously
start args = Nstart

Nstart = start accumulating correlations on this timestep
prefactor args = value

value = prefactor to scale all the correlation data by
file arg = filename

filename = name of file to output correlation data to
overwrite arg = none = overwrite output file with only latest output
titlel arg = string

string = text to print as 1lst line of output file
title2 arg = string

string = text to print as 2nd line of output file
title3 arg = string

string = text to print as 3rd line of output file

Examples:

fix 1 all ave/correlate 5 100 1000 c_myTemp file temp.correlate

fix 1 all ave/correlate 1 50 10000 &
c_thermo_press[l] c_thermo_press[2] c_thermo_press[3] &
type upper ave running titlel "My correlation data"
Description:

Use one or more global scalar values as inputs every few timesteps, calculate time correlations bewteen them
at varying time intervals, and average the correlation data over longer timescales. The resulting correlation
values can be time integrated by variables or used by other output commands such as thermo style custom,

fix ave/correlate command

297

http://lammps.sandia.gov

LIGGGHTS Users Manual

and can also be written to a file.

The group specified with this command is ignored. However, note that specified values may represent
calculations performed by computes and fixes which store their own "group” definitions.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each
case, the compute, fix, or variable must produce a global quantity, not a per-atom or local quantity. If you
wish to spatial- or time-average or histogram per-atom quantities from a compute, fix, or variable, then see the
fix ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per-atom quantity into a single
global quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only
a few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce
such values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom
cannot be used, since they produce per-atom values.

The input values must either be all scalars. What kinds of correlations between input values are calculated is
determined by the type keyword as discussed below.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to
calculate correlation data. The input values are sampled every Nevery timesteps. The correlation data for the
preceding samples is computed on timesteps that are a multiple of Nfreq. Consider a set of samples from some
initial time up to an output timestep. The initial time could be the beginning of the simulation or the last
output time; see the ave keyword for options. For the set of samples, the correlation value Cjj is calculated as:

Cij(delta) = ave(Vi(t)*Vj(t+delta))

which is the correlation value between input values Vi and Vj, separated by time delta. Note that the second
value Vj in the pair is always the one sampled at the later time. The ave() represents an average over every
pair of samples in the set that are separated by time delta. The maximum delta used is of size
(Nrepeat-1)*Nevery. Thus the correlation between a pair of input values yields Nrepeat correlation datums:

Cij(0), Cij(Nevery), Cij(2*Nevery), ..., Cij((Nrepeat-1)*Nevery)

For example, if Nevery=5, Nrepeat=6, and Nfreq=100, then values on timesteps 0,5,10,15,...,100 will be used
to compute the final averages on timestep 100. Six averages will be computed: Cij(0), Cij(5), Cij(10), Cij(15),
Cij(20), and Cij(25). Cij(10) on timestep 100 will be the average of 19 samples, namely Vi(0)*Vj(10),
Vi(5)*Vj(15), Vi(10)*V j20), Vi(15)*Vj(25), ..., Vi(85)*Vj(95), Vi(90)*Vj(100).

Nfreq must be a multiple of Nevery; Nevery and Nrepeat must be non-zero. Also, if the ave keyword is set to
one which is the default, then Nfreq >= (Nrepeat-1)*Nevery is required.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed term is appended, the global scalar calculated by the compute is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/correlate. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and
add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is appended, the
Ith element of the global vector calculated by the fix is used.

fix ave/correlate command 298

LIGGGHTS Users Manual

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Only equal-style variables can be referenced. See the variable command for details. Note that variables
of style equal define a formula which can reference individual atom properties or thermodynamic keywords,
or they can invoke other computes, fixes, or variables when they are evaluated, so this is a very general means
of specifying quantities to time correlate.

Additional optional keywords also affect the operation of this fix.

The type keyword determines which pairs of input values are correlated with each other. For N input values
Vi, fori=1 to N, let the number of pairs = Npair. Note that the second value in the pair Vi(t)*V](t+delta) is
always the one sampled at the later time.

o If type is set to auto then each input value is correlated with itself. I.e. Cii = Vi*Vi, fori=1to N, so
Npair = N.

o If fype is set to upper then each input value is correlated with every succeeding value. L.e. Cij =
Vi*Vj, for i < j, so Npair = N*(N-1)/2.

o If rype is set to lower then each input value is correlated with every preceeding value. L.e. Cij = Vi*Vj,
fori>j, so Npair = N*(N-1)/2.

o If type is set to auto/upper then each input value is correlated with itself and every succeeding value.
Le. Cij = Vi*Vj, for i >=j, so Npair = N*(N+1)/2.

o If rype is set to auto/lower then each input value is correlated with itself and every preceding value.
Le. Cij = Vi*Vj, for i <=j, so Npair = N*(N+1)/2.

o If fype is set to full then each input value is correlated with itself and every other value. L.e. Cij =
Vi*Vj, for i,j = 1,N so Npair = N/2.

The ave keyword determines what happens to the accumulation of correlation samples every Nfreq timesteps.
If the ave setting is one, then the accumulation is restarted or zeroed every Nfreq timesteps. Thus the outputs
on successive Nfreq timesteps are essentially independent of each other. The exception is that the Cij(0) =
Vi(T)*Vj(T) value at a timestep T, where T is a multiple of Nfreq, contributes to the correlation output both at
time T and at time T+Nfreq.

If the ave setting is running, then the accumulation is never zeroed. Thus the output of correlation data at any
timestep is the average over samples accumulated every Nevery steps since the fix was defined. it can only be
restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

The start keyword specifies what timestep the accumulation of correlation samples will begin on. The default
is step 0. Setting it to a larger value can avoid adding non-equilibrated data to the correlation averages.

The prefactor keyword specifies a constant which will be used as a multiplier on the correlation data after it is
averaged. It is effectively a scale factor on Vi*Vj, which can be used to account for the size of the time
window or other unit conversions.

The file keyword allows a filename to be specified. Every Nfreq steps, an array of correlation data is written to
the file. The number of rows is Nrepeat, as described above. The number of columns is the Npair+2, also as

described above. Thus the file ends up to be a series of these array sections.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,

fix ave/correlate command 299

LIGGGHTS Users Manual

so they do not need to be specified.

By default, these header lines are as follows:

Time-correlated data for fix ID
TimeStep Number-of-time-windows
Index TimeDelta Ncount valuel*valued valuel*valued ...

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the value pairs are replaced with the appropriate fields from the
fix ave/correlate command.

Let Sij = a set of time correlation data for input values I and J, namely the Nrepeat values:
Sij = Cij(0), Cij(Nevery), Cij(2*Nevery), ..., Cij(*Nrepeat-1)*Nevery)

As explained below, these datums are output as one column of a global array, which is effectively the
correlation matrix.

The trap function defined for equal-style variables can be used to perform a time integration of this vector of
datums, using a trapezoidal rule. This is useful for calculating various quantities which can be derived from
time correlation data. If a normalization factor is needed for the time integration, it can be included in the
variable formula or via the prefactor keyword.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The values
can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The
global array has # of rows = Nrepeat and # of columns = Npair+2. The first column has the time delta (in
timesteps) between the pairs of input values used to calculate the correlation, as described above. The 2nd
column has the number of samples contributing to the correlation average, as described above. The remaining
Npair columns are for LJ pairs of the N input values, as determined by the type keyword, as described above.

e For type = auto, the Npair = N columns are ordered: C11, C22, ..., CNN.

¢ For type = upper, the Npair = N*(N-1)/2 columns are ordered: C12, C13, ..., CIN, C23, ..., C2N, C34,
..., CN-1IN.

e For type = lower, the Npair = N*(N-1)/2 columns are ordered: C21, C31, C32, C41, C42, C43, ...,
CN1, CN2, ..., CNN-1.

e For type = auto/upper, the Npair = N*(N+1)/2 columns are ordered: C11, C12, C13, ..., CIN, C22,
C23, ..., C2N, C33, C34, ..., CN-1IN, CNN.

e For type = auto/lower, the Npair = N*(N+1)/2 columns are ordered: C11, C21, C22, C31, C32, C33,
C41, ..., C44,CN1, CN2, ..., CNN-1, CNN.

e For type = full, the Npair = N2 columns are ordered: C11, C12, ..., CIN, C21, C22, ..., C2N, C31, ...,
C3N, ..., CNI1, ..., CNN-1, CNN.

The array values calculated by this fix are treated as "intensive". If you need to divide them by the number of
atoms, you must do this in a later processing step, e.g. when using them in a variable.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

fix ave/correlate command 300

LIGGGHTS Users Manual

Related commands:
compute, fix ave/time, fix ave/atom, fix ave/spatial, fix ave/histo, variable

Default: none

The option defaults are ave = one, type = auto, start = 0, no file output, title 1,2,3 = strings as described above,
and prefactor = 1.0.

fix ave/correlate command 301

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix ave/euler command

Syntax:
fix ID group-ID ave/euler nevery N cell_size_relative c

¢ ID, group-ID are documented in fix command

® ave/euler = style name of this fix command

¢ nevery = obligatory keyword

¢ n = calculate average values every this many timesteps
e cell_size_relative = obligatory keyword

¢ ¢ = cell size in multiples of max cutoff

Examples:
fix 1 all ave/euler nevery 100 cell_size_relative 4.5
Description:

Calculate cell-based averages of velocity, radius, volume fraction, and pressure (-1/3 * trace of the stress
tensor) every few timesteps, as specified by the nevery keyword. The size of the cells is calculated as multiple
of the maximum cutoff, via the cell_size_relative. Note that at least a relative cell size of 3 is required.

Note that velocity is favre (mass) averaged, whereas radius is arithmetically averaged. To calculate the stress,
this command internally uses a compute stress/atom . It includes the convective term correctly for granular
particles with non-zero average velocity (which is not included in compute stress/atom). However, it does not
include bond, angle, diahedral or kspace contributions so that the stress tensor finally reads

N,

r l &
‘SEI’? - - ”.‘i'rlrt'lﬂ - t'lf'“'l"r'1ﬂ}(t'|f? - I'I("T-t'l"r'1f?} + a Z(rln Flfj + FIEn FEFJ}

4]

n=1

where vave is the (cell-based) average velocity. The first term is a kinetic energy contribution for atom /. The
second term is a pairwise energy contribution where n loops over the Np neighbors of atom /, r/ and r2 are the
positions of the 2 atoms in the pairwise interaction, and F/ and F2 are the forces on the 2 atoms resulting from
the pairwise interaction.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes the above-mentioned quantities for output via a dump euler/vtk command. The values can
only be accessed on timesteps that are multiples of nevery since that is when calculations are performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Volume fractions and stresses are calculated based on the assumption of a structured (equidistant regular)
grid, so volume fractions and stresses near walls that are not alligned with the grid will be incorrect.

fix ave/euler command 302

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
compute, compute stress/atom, fix ave/atom, fix ave/histo, fix ave/time, fix ave/spatial,

Default: none

fix ave/euler command 303

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix aveforce command

fix aveforce/cuda command

Syntax:
fix ID group-ID aveforce fx fy fz keyword value ...

¢ ID, group-ID are documented in fix command
¢ aveforce = style name of this fix command
¢ fx fy,fz = force component values (force units)

any of fx,fy,fz can be a variable (see below)
¢ zero or more keyword/value pairs may be appended to args
¢ keyword = region

region value = region-ID
region-ID = ID of region atoms must be in to have added force

Examples:

fix pressdown topwall aveforce 0.0 -1.0 0.0
fix 2 bottomwall aveforce NULL -1.0 0.0 region top
fix 2 bottomwall aveforce NULL -1.0 v_oscillate region top

Description:

Apply an additional external force to a group of atoms in such a way that every atom experiences the same
force. This is useful for pushing on wall or boundary atoms so that the structure of the wall does not change
over time.

The existing force is averaged for the group of atoms, component by component. The actual force on each
atom is then set to the average value plus the component specified in this command. This means each atom in
the group receives the same force.

Any of the fx,fy,fz values can be specified as NULL which means the force in that dimension is not changed.
Note that this is not the same as specifying a 0.0 value, since that sets all forces to the same average value
without adding in any additional force.

Any of the 3 quantities defining the force components can be specified as an equal-style variable, namely fx,
. fz. If the value is a variable, it should be specified as v_name, where name is the variable name. In this
case, the variable will be evaluated each timestep, and its value used to determine the average force.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent average force.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for

fix aveforce command 304

http://lammps.sandia.gov

LIGGGHTS Users Manual

round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector
values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

Restrictions: none

Related commands:

fix setforce, fix_addforce

Default: none

fix aveforce/cuda command 305

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/histo command

Syntax:

fix ID group-ID ave/histo Nevery Nrepeat Nfreqg lo hi Nbin valuel value?2

¢ ID, group-ID are documented in fix command

¢ ave/histo = style name of this fix command

¢ Nevery = use input values every this many timesteps
e Nrepeat = # of times to use input values for calculating histogram
¢ Nfreq = calculate histogram every this many timesteps
¢]o,hi = lo/hi bounds within which to histogram

¢ Nbin = # of hist
® one or more inp

ogram bins
ut values can be listed

e value = X, y, z, VX, Vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f ID[N], v_name

X,V,2,VX,Vy
c_ID = scal
c_ID[I] =1
f ID = scal
f_ID[I] =1
v_name = va

,vz,fx,fy,fz = atom attribute
ar or vector
th component
ar or vector
th component
lue (s)

calculated by a fix with

e zero or more keyword/arg pairs may be appended
¢ keyword = mode or file or ave or start or beyond or overwrite or titlel or title2 or title3

mode arg =
scalar =
vector =
file arg =
filename
ave args =
one =
running =
window M
start args
Nstart =
beyond arg
ignore =
end =
extra = ¢
overwrite a
titlel arg
string =
title2 arg
string =
title3 arg
string =

Examples:

fix 1 all
fix 1 all
fix 1 all

ave/histo
ave/histo
ave/histo

Description:

scalar or vector

all input values are scalars

all input values are vectors
filename

= name of file to output histogram(s)
one or running or window

(position,
calculated by a compute with ID
of vector or Ith column of array calculated by a compute with ID

velocity,

ID

to

output a new average value every Nfreqg steps

output cumulative average of all previous Nfreqg steps
= output average of M most recent Nfreqg steps

= Nstart
start averaging on this timestep
= ignore or end or extra

ignore values outside histogram lo/hi bounds

reate 2 extra bins for value

count values outside histogram lo/hi bounds in end bins
outside histogram lo/hi bounds
file with only latest output

rg = none = overwrite output

= string

text to print as 1lst line of output file
= string

text to print as 2nd line of output file
= string

text to print as 3rd line of

100 5 1000
100 5 1000
1 100 1000

-5 5 100 c_thermo_press|[2]

output file,

c_thermo_press|[3]

keyword args

only for vector mode

0.5 1.5 50 c_myTemp file temp.histo ave running

titlel

force component)

of vector or Ith column of array calculated by a fix with ID
calculated by an equal-style or atom-style variable with name

"My output val

-2.0 2.0 18 vx vy vz mode vector ave running beyond extra

Use one or more values as inputs every few timesteps, histogram them, and average the histogram over longer
timescales. The resulting histogram can be used by other output commands, and can also be written to a file.

fix ave/histo command

306

http://lammps.sandia.gov

LIGGGHTS Users Manual

The group specified with this command is ignored for global and local input values. For per-atom input
values, only atoms in the group contribute to the histogram. Note that regardless of the specified group,
specified values may represent calculations performed by computes and fixes which store their own "group”
definition.

A histogram is simply a count of the number of values that fall within a histogram bin. Nbins are defined, with
even spacing between /o and hi. Values that fall outside the lo/hi bounds can be treated in different ways; see
the discussion of the beyond keyword below.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an equal-style or atom-style variable. The set of input values can be either
all global, all per-atom, or all local quantities. Inputs of different kinds (e.g. global and per-atom) cannot be
mixed. Atom attributes are per-atom vector values. See the doc page for individual "compute" and "fix"
commands to see what kinds of quantities they generate.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword.

If mode = vector, then the input values may either be vectors or arrays. If a global array is listed, then it is the
same as if the individual columns of the array had been listed one by one. E.g. these 2 fix ave/histo commands
are equivalent, since the compute com/molecule command creates a global array with 3 columns:

compute myCOM all com/molecule
fix 1 all ave/histo 100 1 100 c_myCOM file tmpl.com mode vector
fix 2 all ave/histo 100 1 100 c_myCOM[1l] c_myCOM[2] c_myCOM[3] file tmp2.com mode vector

The output of this command is a single histogram for all input values combined together, not one histogram
per input value. See below for details on the format of the output of this fix.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the histogram. The final histogram is generated on timesteps that are multiple of Nfreq. It is
averaged over Nrepeat histograms, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the histogram cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on timesteps 90,92,94,96,98,100 will
be used to compute the final histogram on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging of the histogram is done; a histogram
is simply generated on timesteps 100,200,etc.

The atom attribute values (x,y,z,vx,vy,vzfx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global or per-atom or local vector calculated by the compute
is used. Or if the compute calculates an array, all of the columns of the array are used as if they had been
specified as individual vectors (see description above). If a bracketed term is appended, the Ith column of the
global or per-atom or local array calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/histo. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these

fix ave/histo command 307

LIGGGHTS Users Manual

commands which give the IDs of these computes. Users can also write code for their own compute styles and
add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode
= scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed
term is appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global or per-atom or local vector calculated by the fix is used. Or if the fix
calculates an array, all of the columns of the array are used as if they had been specified as individual vectors
(see description above). If a bracketed term is appended, the Ith column of the global or per-atom or local
array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. If mode = scalar, then only equal-style variables can be used, which produce a global value. If mode =
vector, then only atom-style variables can be used, which produce a per-atom vector. See the variable
command for details. Note that variables of style equal and atom define a formula which can reference
individual atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to histogram.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global
vectors. If the mode keyword is set to vector, then all input values must be global or per-atom or local vectors,
or columns of global or per-atom or local arrays.

The beyond keyword determines how input values that fall outside the lo to ki bounds are treated. Values such
that lo <= value <= hi are assigned to one bin. Values on a bin boundary are assigned to the lower of the 2
bins. If beyond is set to ignore then values < lo and values > hi are ignored, i.e. they are not binned. If beyond
is set to end then values < lo are counted in the first bin and values > hi are counted in the last bin. If beyond is
set to extend then two extra bins are created, so that there are Nbins+2 total bins. Values < lo are counted in
the first bin and values > hi are counted in the last bin (Nbins+1). Values between lo and Ai (inclusive) are
counted in bins 2 thru Nbins+1. The "coordinate" stored and printed for these two extra bins is /o and hi.

The ave keyword determines how the histogram produced every Nfreq steps are averaged with histograms
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the histograms produced on timesteps that are multiples of Nfreq are
independent of each other; they are output as-is without further averaging.

If the ave setting is running, then the histograms produced on timesteps that are multiples of Nfreq are
summed and averaged in a cumulative sense before being output. Each bin value in the histogram is thus the
average of the bin value produced on that timestep with all preceding values for the same bin. This running
average begins when the fix is defined; it can only be restarted by deleting the fix via the unfix command, or
by re-defining the fix by re-specifying it.

If the ave setting is window, then the histograms produced on timesteps that are multiples of Nfreq are
summed within a moving "window" of time, so that the last M histograms are used to produce the output. E.g.
if M = 3 and Nfreq = 1000, then the output on step 10000 will be the combined histogram of the individual
histograms on steps 8000,9000,10000. Outputs on early steps will be sums over less than M histograms if they
are not available.

fix ave/histo command 308

LIGGGHTS Users Manual

The start keyword specifies what timestep histogramming will begin on. The default is step 0. Often input
values can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or
windowed histogram.

The file keyword allows a filename to be specified. Every Nfreq steps, one histogram is written to the file.
This includes a leading line that contains the timestep, number of bins, the total count of values contributing
to the histogram, the count of values that were not histogrammed (see the beyond keyword), the minimum
value encountered, and the maximum value encountered. The min/max values include values that were not
histogrammed. Following the leading line, one line per bin is written into the file. Each line contains the bin #,
the coordinate for the center of the bin (between lo and ki), the count of values in the bin, and the normalized
count. The normalized count is the bin count divided by the total count (not including values not
histogrammed), so that the normalized values sum to 1.0 across all bins.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,
so they do not need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number-of-bins Total-counts Missing-counts Min-value Max-value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix-ID. The second line describes the six values that are printed at the
first of each section of output. The third describes the 4 values printed for each bin in the histogram.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a global vector and global array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when a histogram is
generated. The global vector has 4 values:

¢ | = total counts in the histogram

¢ 2 = values that were not histogrammed (see beyond keyword)

¢ 3 = min value of all input values, including ones not histogrammed
¢ 4 = max value of all input values, including ones not histogrammed

The global array has # of rows = Nbins and # of columns = 3. The first column has the bin coordinate, the 2nd
column has the count of values in that histogram bin, and the 3rd column has the bin count divided by the
total count (not including missing counts), so that the values in the 3rd column sum to 1.0.

The vector and array values calculated by this fix are all treated as "intensive". If this is not the case, e.g. due
to histogramming per-atom input values, then you will need to account for that when interpreting the values

produced by this fix.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

fix ave/histo command 309

LIGGGHTS Users Manual

Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/time, variable, fix ave/correlate,

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, beyond = ignore, and title 1,2,3 =
strings as described above.

fix ave/histo command 310

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/spatial command

Syntax:

fix

ID group-ID ave/spatial Nevery Nrepeat Nfreq dim origin delta ... valuel value?2

¢ ID, group-ID are documented in fix command

e ave/spatial = style name of this fix command

¢ Nevery = use input values every this many timesteps

e Nrepeat = # of times to use input values for calculating averages

¢ Nfreq = calculate averages every this many timesteps

¢ dim, origin, delta can be repeated 1, 2, or 3 times for 1d, 2d, or 3d bins

dim = x or y or z
origin = lower or center or upper or coordinate value (distance units)
delta = thickness of spatial bins in dim (distance units)

¢ one or more input values can be listed

e value = vx, vy, vz, fx, fy, fz, density/mass, density/number, c_ID, c_ID[I], f_ID, f_ID[I], v_name

vx,vy,vz, fx,fy,fz = atom attribute (velocity, force component)
density/number, density/mass = number or mass density

c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

e zero or more keyword/arg pairs may be appended
¢ keyword = norm or units or file or ave or overwrite or titlel or title2 or title3 or std

units arg = box or lattice or reduced
norm arg = all or sample
region arg = region-ID

region-ID = ID of region atoms must be in to contribute to spatial averaging
ave args = one or running or window M
one = output new average value every Nfreqg steps

running = output cumulative average of all previous Nfreq steps
window M = output average of M most recent Nfreq steps
file arg = filename
filename = file to write results to
overwrite arg = none = overwrite output file with only latest output
titlel arg = string
string = text to print as 1lst line of output file
title2 arg = string
string = text to print as 2nd line of output file
title3 arg = string
string = text to print as 3rd line of output file
std arg = N1 N2 filename

N1 = lower limit of particle number per bin for sampling
N2 = upper limit of particle number per bin for sampling
filename = file to write results into

Examples:

fix
fix
fix
fix

1 all ave/spatial 10000 1 10000 z lower 0.02 c_myCentro units reduced &
titlel "My output values"

1 flow ave/spatial 100 10 1000 y 0.0 1.0 vx vz norm sample file vel.profile

1 flow ave/spatial 100 5 1000 z lower 1.0 y 0.0 2.5 density/mass ave running

keyword a

1 all ave/spatial 1000 1 1000 x 0 1le-3 y 0 le-3 z 0 le-3 f_tracer[0] file bin_data.dat std 12

fix ave/spatial command

311

http://lammps.sandia.gov

LIGGGHTS Users Manual

Description:

Use one or more per-atom vectors as inputs every few timesteps, bin their values spatially into 1d, 2d, or 3d
bins based on current atom coordinates, and average the bin values over longer timescales. The resulting bin
averages can be used by other output commands such as thermo_style custom, and can also be written to a
file.

The group specified with the command means only atoms within the group contribute to bin averages. If the
region keyword is used, the atom must be in both the group and the specified geometric region in order to
contribute to bin averages.

Each listed value can be an atom attribute (position, velocity, force component), a mass or number density, or
the result of a compute or fix or the evaluation of an atom-style variable. In the latter cases, the compute, fix,
or variable must produce a per-atom quantity, not a global quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per-atom quantities are those which have the word atom in their style name. See the
doc pages for individual fixes to determine which ones produce per-atom quantities. Variables of style atom
are the only ones that can be used with this fix since all other styles of variable produce global quantities.

The per-atom values of each input vector are binned and averaged independently of the per-atom values in
other input vectors.

The size and dimensionality of the bins (1d = layers or slabs, 2d = pencils, 3d = boxes) are determined by the
dim, origin, and delta settings and how many times they are specified (1, 2, or 3). See details below.

IMPORTANT NOTE: This fix works by creating an array of size Nbins by Nvalues on each processor. Nbins
is the total number of bins; Nvalues is the number of input values specified. Each processor loops over its
atoms, tallying its values to the appropriate bin. Then the entire array is summed across all processors. This
means that using a large number of bins (easy to do for 2d or 3d bins) will incur an overhead in memory and
computational cost (summing across processors), so be careful to use reasonable numbers of bins.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to bin
them and contribute to the average. The final averaged quantities are generated on timesteps that are a
multiples of Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the
simulation every Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the average value cannot overlap, i.e. Nfreq >
(Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated
on timesteps 100,200,etc.

Each per-atom property is also averaged over atoms in each bin. Bins can be 1d layers or slabs, 2d pencils, or
3d boxes. This depends on how many times (1, 2, or 3) the dim, origin, and delta settings are specified in the
fix ave/spatial command. For 2d or 3d bins, there is no restriction on specifying dim = x before dim =y, or
dim =y before dim = z. Bins in a particular dim have a bin size in that dimension given by delta. Every Nfreq
steps, when averaging is being performed and the per-atom property is calculated for the first time, the
number of bins and the bin sizes and boundaries are computed. Thus if the simulation box changes size during
a simulation, the number of bins and their boundaries may also change. In each dimension, bins are defined
relative to a specified origin, which may be the lower/upper edge of the simulation box (in dim) or its center
point, or a specified coordinate value. Starting at the origin, sufficient bins are created in both directions to
completely cover the box. On subsequent timesteps every atom is mapped to one of the bins. Atoms beyond

fix ave/spatial command 312

LIGGGHTS Users Manual

the lowermost/uppermost bin in a dimension are counted in the first/last bin in that dimension.

For orthogonal simulation boxes, the bins are also layers, pencils, or boxes aligned with the xyz coordinate
axes. For triclinic (non-orthogonal) simulation boxes, the bins are so that they are parallel to the tilted faces of
the simulation box. See this section of the manual for a discussion of the geometry of triclinic boxes in
LAMMPS. As described there, a tilted simulation box has edge vectors a,b,c. In that nomenclature, bins in the
x dimension have faces with normals in the "b" cross "c" direction. Bins in y have faces normal to the "a"
cross "c" direction. And bins in z have faces normal to the "a" cross "b" direction. Note that in order to define
the size and position of these bins in an unambiguous fashion, the units option must be set to reduced when

using a triclinic simulation box, as noted below.

The atom attribute values (vx,vy,vz,fx,fy,z) are self-explanatory. Note that other atom attributes (including
atom postitions X,y,z) can be used as inputs to this fix by using the compute property/atom command and then
specifying an input value from that compute.

The density/number value means the number density is computed in each bin, i.e. a weighting of 1 for each
atom. The density/mass value means the mass density is computed in each bind, i.e. each atom is weighted by
its mass. The resulting density is normalized by the volume of the bin so that units of number/volume or
density are output. See the units command doc page for the definition of density for each choice of units, e.g.
gram/cm”3.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed integer is appended, the per-atom vector calculated by the compute is used. If a bracketed integer
is appended, the Ith column of the per-atom array calculated by the compute is used. Users can also write code
for their own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed integer is appended, the per-atom vector calculated by the fix is used. If a bracketed integer is
appended, the Ith column of the per-atom array calculated by the fix is used. Note that some fixes only
produce their values on certain timesteps, which must be compatible with Nevery, else an error results. Users
can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Variables of style atom can reference thermodynamic keywords and various per-atom attributes, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of
generating per-atom quantities to spatially average.

Additional optional keywords also affect the operation of this fix.

The units keyword determines the meaning of the distance units used for the bin size delta and for origin if it
is a coordinate value. For orthogonal simulation boxes, any of the 3 options may be used. For non-orthogonal
(triclinic) simulation boxes, only the reduced option may be used.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. A reduced value means normalized unitless values between 0
and 1, which represent the lower and upper faces of the simulation box respectively. Thus an origin value of
0.5 means the center of the box in any dimension. A delta value of 0.1 means 10 bins span the box in that
dimension.

Consider a non-orthogonal box, with bins that are 1d layers or slabs in the x dimension. No matter how the
box is tilted, an origin of 0.0 means start layers at the lower "b" cross "c" plane of the simulation box and an
origin of 1.0 means to start layers at the upper "b" cross "c" face of the box. A delta value of 0.1 means there

will be 10 layers from 0.0 to 1.0, regardless of the current size or shape of the simulation box.

fix ave/spatial command 313

LIGGGHTS Users Manual

The norm keyword affects how averaging is done for the output produced every Nfreq timesteps. For an all
setting, a bin quantity is summed over all atoms in all Nrepeat samples, as is the count of atoms in the bin.
The printed value for the bin is Total-quantity / Total-count. In other words it is an average over the entire
Nfreg timescale.

For a sample setting, the bin quantity is summed over atoms for only a single sample, as is the count, and a
"average sample value" is computed, i.e. Sample-quantity / Sample-count. The printed value for the bin is the
average of the Nrepeat "average sample values", In other words it is an average of an average.

The ave keyword determines how the bin values produced every Nfreq steps are averaged with bin values
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the bin values produced on timesteps that are multiples of Nfreq are independent
of each other; they are output as-is without further averaging.

If the ave setting is running, then the bin values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each output bin value is thus the average of the bin
value produced on that timestep with all preceding values for the same bin. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or re-defining the fix by
re-specifying it.

If the ave setting is window, then the bin values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values for the same bin are used to
produce the output. E.g. if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the
individual bin values on steps 8000,9000,10000. Outputs on early steps will average over less than M values
if they are not available.

The file keyword allows a filename to be specified. Every Nfreg timesteps, a section of bin info will be written
to a text file in the following format. A line with the timestep and number of bin is written. Then one line per
bin is written, containing the bin ID (1-N), the coordinate of the center of the bin, the number of atoms in the
bin, and one or more calculated values. The number of values in each line corresponds to the number of
values specified in the fix ave/spatial command. The number of atoms and the value(s) are average quantities.
If the value of the units keyword is box or lattice, the "coord" is printed in box units. If the value of the units
keyword is reduced, the "coord" is printed in reduced units (0-1).

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,
so they do not need to be specified.

By default, these header lines are as follows:

Spatial-averaged data for fix ID and group name
Timestep Number-of-bins
Bin Coordl Coord2 Coord3 Count valuel value2 ...

In the first line, ID and name are replaced with the fix-ID and group name. The second line describes the two
values that are printed at the first of each section of output. In the third line the values are replaced with the
appropriate fields from the fix ave/spatial command. The Coord2 and Coord3 entries in the third line only
appear for 2d and 3d bins respectively. For 1d bins, the word Coord]1 is replaced by just Coord.

fix ave/spatial command 314

LIGGGHTS Users Manual

If the std keyword is set, mean and standard deviation of the specified values (valuel, value2, etc.) over
samples of a defined size are calculated. The sample size has to be defined by a lower limit (N1) and an upper
limit (N2>N1). All bins containing a particle count between N1 and N2 (including N1 and N2) are used as
samples. Every Nfreq timestep a line is written to a file specified after N1 and N2, including the following
numbers: timestep, total number of atoms, total number of bins, maximum number of atoms per bin, number
of empty bins, number of bins including less atoms than N1, number of bins including more atoms than N2,
number of samples, average number of atoms per sample, followed by three quantities for each defined value:
true average (over all atoms), average over the chosen samples, standard deviation over the chosen samples.
For the calculation of the standard deviation the (known) true average is used instead of the samples average
(the latter is only an estimate for the true average!).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The values
can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The
global array has # of rows = Nbins and # of columns = Ndim+1+Nvalues, where Ndim = 1,2,3 for 1d,2d,3d
bins. The first 1 or 2 or 3 columns have the bin coordinates (center of the bin) in the appropriate dimensions,
the next column has the count of atoms in that bin, and the remaining columns are the Nvalue quantities.
When the array is accessed with an I that exceeds the current number of bins, than a 0.0 is returned by the fix
instead of an error, since the number of bins can vary as a simulation runs, depending on the simulation box
size. 2d or 3d bins are ordered so that the last dimension(s) vary fastest. The array values calculated by this fix
are "intensive", since they are already normalized by the count of atoms in each bin.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

When the ave keyword is set to running or window then the number of bins must remain the same during the
simulation, so that the appropriate averaging can be done. This will be the case if the simulation box size
doesn't change or if the units keyword is set to reduced.

Related commands:

Default:

The option defaults are units = lattice, norm = all, no file output, and ave = one, title 1,2,3 = strings as
described above.

fix ave/spatial command 315

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/time command

Syntax:

fix ID group-ID ave/time Nevery Nrepeat Nfreqg valuel value2 ... keyword args

¢ ID, group-ID are documented in fix command

e ave/time = style name of this fix command

¢ Nevery = use input values every this many timesteps

e Nrepeat = # of times to use input values for calculating averages
¢ Nfreq = calculate averages every this many timesteps

¢ one or more input values can be listed

e value = c_ID, c_ID[N], f_ID, f ID[N], v_name

c_ID = global scalar or vector calculated by a compute with ID

c_ID[I] = Ith component of global vector or Ith column of global array calculated by a c

f_ID = global scalar or vector calculated by a fix with ID

f_ID[I] = Ith component of global vector or Ith column of global array calculated by a f

v_name = global value calculated by an equal-style variable with name
e zero or more keyword/arg pairs may be appended
¢ keyword = mode or file or ave or start or off or overwrite or titlel or title2 or title3

mode arg = scalar or vector

scalar = all input values are global scalars
vector = all input values are global vectors or global arrays

ave args = one or running or window M

one = output a new average value every Nfreqg steps
running = output cummulative average of all previous Nfreqg steps
window M = output average of M most recent Nfreq steps

start args = Nstart

Nstart = start averaging on this timestep

off arg = M = do not average this value

M = value # from 1 to Nvalues

file arg = filename

filename = name of file to output time averages to

overwrite arg = none = overwrite output file with only latest output
titlel arg = string

string = text to print as 1lst line of output file

title2 arg = string

string = text to print as 2nd line of output file

title3 arg = string

Examples:

fix 1 all
fix 1 all

fix 1 all

string = text to print as 3rd line of output file, only for vector mode

ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
ave/time 100 5 1000 c_thermo_press[2] ave window 20 &

titlel "My output values"
ave/time 1 100 1000 f_indent f_indent[l] file temp.indent off 1

Description:

Use one or more global values as inputs every few timesteps, and average them over longer timescales. The
resulting averages can be used by other output commands such as thermo_style custom, and can also be
written to a file. Note that if no time averaging is done, this command can be used as a convenient way to
simply output one or more global values to a file.

fix ave/time command 316

http://lammps.sandia.gov

LIGGGHTS Users Manual

The group specified with this command is ignored. However, note that specified values may represent
calculations performed by computes and fixes which store their own "group” definitions.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each
case, the compute, fix, or variable must produce a global quantity, not a per-atom or local quantity. If you
wish to spatial- or time-average or histogram per-atom quantities from a compute, fix, or variable, then see the
fix ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per-atom quantity into a single
global quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only
a few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce
such values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom
cannot be used, since they produce per-atom values.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword. In both cases, the averaging is performed independently on each input value. I.e. each input scalar is
averaged independently and each element of each input vector (or array) is averaged independently.

If mode = vector, then the input values may either be vectors or arrays and all must be the same "length",
which is the length of the vector or number of rows in the array. If a global array is listed, then it is the same
as if the individual columns of the array had been listed one by one. E.g. these 2 fix ave/time commands are
equivalent, since the compute rdf command creates, in this case, a global array with 3 columns, each of length
50:

compute myRDF all rdf 50 1 2
fix 1 all ave/time 100 1 100 c_myRDF file tmpl.rdf mode vector
fix 2 all ave/time 100 1 100 c_myRDF[1] c_myRDF[2] c_myRDF[3] file tmp2.rdf mode vector

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a mlutiple of
Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the simulation every
Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also,
the timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated
on timesteps 100,200,etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global vector calculated by the compute is used. Or if the
compute calculates an array, all of the columns of the global array are used as if they had been specified as
individual vectors (see description above). If a bracketed term is appended, the Ith column of the global array
calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/time. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and
add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode
= scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed

fix ave/time command 317

LIGGGHTS Users Manual

term is appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global vector calculated by the fix is used. Or if the fix calculates an array, all
of the columns of the global array are used as if they had been specified as individual vectors (see description
above). If a bracketed term is appended, the Ith column of the global array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Variables can only be used as input for mode = scalar. Only equal-style variables can be referenced.
See the variable command for details. Note that variables of style equal define a formula which can reference
individual atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global
vectors. If the mode keyword is set to vector, then all input values must be global vectors, or columns of
global arrays. They can also be global arrays, which are converted into a series of global vectors (one per
column), as explained above.

The ave keyword determines how the values produced every Nfreq steps are averaged with values produced
on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as-is without further averaging.

If the ave setting is running, then the values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cummulative sense before being output. Each output value is thus the average of the value
produced on that timestep with all preceding values. This running average begins when the fix is defined; it
can only be restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

If the ave setting is window, then the values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values are used to produce the output. E.g.
if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual values on steps
8000,9000,10000. Outputs on early steps will average over less than M values if they are not available.

The start keyword specifies what timestep averaging will begin on. The default is step 0. Often input values
can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed
average.

The off keyword can be used to flag any of the input values. If a value is flagged, it will not be time averaged.
Instead the most recent input value will always be stored and output. This is useful if one of more of the
inputs produced by a compute or fix or variable are effectively constant or are simply current values. E.g. they
are being written to a file with other time-averaged values for purposes of creating well-formatted output.

The file keyword allows a filename to be specified. Every Nfreq steps, one quantity or vector of quantities is
written to the file for each input value specified in the fix ave/time command. For mode = scalar, this means a
single line is written each time output is performed. Thus the file ends up to be a series of lines, i.e. one
column of numbers for each input value. For mode = vector, an array of numbers is written each time output is
performed. The number of rows is the length of the input vectors, and the number of columns is the number of
values. Thus the file ends up to be a series of these array sections.

fix ave/time command 318

LIGGGHTS Users Manual

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 2 or 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,
so they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time-averaged data for fix ID
TimeStep valuel value?2

In the first line, ID is replaced with the fix-ID. In the second line the values are replaced with the appropriate
fields from the fix ave/time command. There is no third line in the header of the file, so the fitle3 setting is
ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time-averaged data for fix ID
TimeStep Number-of-rows
Row valuel value?2

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the values are replaced with the appropriate fields from the fix
ave/time command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a global scalar or global vector or global array which can be accessed by various output
commands. The values can only be accessed on timesteps that are multiples of Nfreg since that is when
averaging is performed.

A scalar is produced if only a single input value is averaged and mode = scalar. A vector is produced if
multiple input values are averaged for mode = scalar, or a single input value for mode = vector. In the first
case, the length of the vector is the number of inputs. In the second case, the length of the vector is the same
as the length of the input vector. An array is produced if multiple input values are averaged and mode =
vector. The global array has # of rows = length of the input vectors and # of columns = number of inputs.

If the fix prouduces a scalar or vector, then the scalar and each element of the vector can be either "intensive"
or "extensive". If the fix produces an array, then all elements in the array must be the same, either "intensive"
or "extensive". If a compute or fix provides the value being time averaged, then the compute or fix determines
whether the value is intensive or extensive; see the doc page for that compute or fix for further info. Values

produced by a variable are treated as intensive.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/histo, variable, fix ave/correlate,

fix ave/time command 319

LIGGGHTS Users Manual

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, title 1,2,3 = strings as described
above, and no off settings for any input values.

fix ave/time command 320

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix bond/break command

Syntax:

fix ID group-ID bond/break Nevery bondtype Rmax keyword values ...

¢ ID, group-ID are documented in fix command

¢ bond/break = style name of this fix command

¢ Nevery = attempt bond breaking every this many steps

¢ bondtype = type of bonds to break

¢ Rmax = bond longer than Rmax can break (distance units)
® zero or more keyword/value pairs may be appended to args
¢ keyword = prob

prob values = fraction seed
fraction = break a bond with this probability if otherwise eligible
seed = random number seed (positive integer)

Examples:

fix 5 all bond/break 10 2 1.2
fix 5 polymer bond/break 1 1 2.0 prob 0.5 49829

Description:

Break bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model the dissolution of a polymer network due to stretching of the simulation box or other deformations. In
this context, a bond means an interaction between a pair of atoms computed by the bond style command.
Once the bond is broken it will be permanently deleted. This is different than a pairwise bond-order potential
such as Tersoff or AIREBO which infers bonds and many-body interactions based on the current geometry of
a small cluster of atoms and effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible bond breakage is performed every Nevery timesteps. If two bonded atoms L,J are further
than a distance Rmax of each other, if the bond is of type bondtype, and if both I and J are in the specified fix
group, then L] is labeled as a "possible" bond to break.

If several bonds involving an atom are stretched, it may have multiple possible bonds to break. Every atom
checks its list of possible bonds to break and labels the longest such bond as its "sole" bond to break. After
this is done, if atom I is bonded to atom J in its sole bond, and atom J is bonded to atom I in its sole bond, then
the I,J bond is "eligible" to be broken.

Note that these rules mean an atom will only be part of at most one broken bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to
Rjk > Rij), then this means atom I will not be part of a broken bond on this timestep, even if it has other
possible bond partners.

The prob keyword can effect whether an eligible bond is actually broken. The fraction setting must be a value
between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond is only
broken if the random number < fraction.

When a bond is broken, data structures within LAMMPS that store bond topology are updated to reflect the

breakage. This can also affect subsequent computation of pairwise interactions involving the atoms in the
bond. See the Restriction section below for additional information.

fix bond/break command 321

http://lammps.sandia.gov

LIGGGHTS Users Manual

Computationally, each timestep this fix operates, it loops over bond lists and computes distances between
pairs of bonded atoms in the list. It also communicates between neighboring processors to coordinate which
bonds are broken. Thus it will increase the cost of a timestep. Thus you should be cautious about invoking this
fix too frequently.

You can dump out snapshots of the current bond topology via the dump local command.

IMPORTANT NOTE: Breaking a bond typically alters the energy of a system. You should be careful not to
choose bond breaking criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and break it when 2 atoms are separated by a distance far from the equilibribum bond length,
then the 2 atoms will be dramatically released when the bond is broken. More generally, you may need to
thermostat your system to compensate for energy changes resulting from broken bonds.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes two statistics which it stores in a global vector of length 2, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive".

These are the 2 quantities:

¢ (1) # of bonds broken on the most recent breakage timestep
¢ (2) cummulative # of bonds broken

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models
that would be enabled by it.

When a bond is broken, you might wish to turn off angle and dihedral interactions that include that bond.
However, LAMMPS does not check for these angles and dihedrals, even if your simulation defines an

angle style or dihedral style.

This fix requires that the pairwise weightings defined by the special bonds command be 0,1,1 for 1-2, 1-3,
and 1-4 neighbors within the bond topology. This effectively means that the pairwise interaction between
atoms I and J is turned off when a bond between them exists and will be turned on when the bond is broken. It
also means that the pairwise interaction of I with J's other bond partners is unaffected by the existence of the
bond.

Related commands:

fix bond/create, fix bond/swap, dump local, special bonds

Default:

The option defaults are prob = 1.0.

fix bond/break command 322

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix bond/create command

Syntax:

fix ID group-ID bond/create Nevery itype jtype Rmin bondtype keyword values

¢ ID, group-ID are documented in fix command

® bond/create = style name of this fix command

¢ Nevery = attempt bond creation every this many steps

¢ itype,jtype = atoms of itype can bond to atoms of jtype

¢ Rmin = 2 atoms separated by less than Rmin can bond (distance units)
¢ bondtype = type of created bonds

¢ zero or more keyword/value pairs may be appended to args

¢ keyword = iparam or jparam or prob

iparam values = maxbond, newtype

maxbond = max # of bonds of bondtype the itype atom can have

newtype = change the itype atom to this type when maxbonds exist
jparam values = maxbond, newtype

maxbond = max # of bonds of bondtype the jtype atom can have

newtype = change the jtype atom to this type when maxbonds exist
prob values = fraction seed

fraction = create a bond with this probability if otherwise eligible

seed = random number seed (positive integer)

Examples:

fix 5 all bond/create 10 1 2 0.8 1
fix 5 all bond/create 1 3 3 0.8 1 prob 0.5 85784 iparam 2 3

Description:

Create bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model cross-linking of polymers, the formation of a percolation network, etc. In this context, a bond means an
interaction between a pair of atoms computed by the bond style command. Once the bond is created it will be
permanently in place. This is different than a pairwise bond-order potential such as Tersoff or AIREBO which
infers bonds and many-body interactions based on the current geometry of a small cluster of atoms and
effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible new bonds is performed every Nevery timesteps. If two atoms LJ are within a distance
Rmin of each other, if I is of atom type itype, if J is of atom type jtype, if both I and J are in the specified fix
group, if a bond does not already exist between I and J, and if both I and J meet their respective maxbond
requirement (explained below), then LJ is labeled as a "possible" bond pair.

If several atoms are close to an atom, it may have multiple possible bond partners. Every atom checks its list
of possible bond partners and labels the closest such partner as its "sole" bond partner. After this is done, if
atom I has atom J as its sole partner, and atom J has atom I as its sole partner, then the 1,J bond is "eligible" to
be formed.

Note that these rules mean an atom will only be part of at most one created bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to
Rjk < Rij), then this means atom I will not form a bond on this timestep, even if it has other possible bond
partners.

fix bond/create command 323

http://lammps.sandia.gov

LIGGGHTS Users Manual

It is permissible to have itype = jtype. Rmin must be <= the pairwise cutoff distance between itype and jtype
atoms, as defined by the pair_style command.

The iparam and jparam keywords can be used to limit the bonding functionality of the participating atoms.
Each atom keeps track of how many bonds of bondtype it already has. If atom I of itype already has maxbond
bonds (as set by the iparam keyword), then it will not form any more. Likewise for atom J. If maxbond is set
to 0, then there is no limit on the number of bonds that can be formed with that atom.

The newtype value for iparam and jparam can be used to change the atom type of atom I or J when it reaches
maxbond number of bonds of type bondtype. This means it can now interact in a pairwise fashion with other
atoms in a different way by specifying different pair_coeff coefficients. If you do not wish the atom type to
change, simply specify newtype as itype or jtype.

The prob keyword can also effect whether an eligible bond is actually created. The fraction setting must be a
value between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond
is only created if the random number < fraction.

Any bond that is created is assigned a bond type of bondtype. Data structures within LAMMPS that store
bond topology are updated to reflect the new bond. This can also affect subsequent computation of pairwise
interactions involving the atoms in the bond. See the Restriction section below for additional information.

IMPORTANT NOTE: To create a new bond, the internal LAMMPS data structures that store this information
must have space for it. When LAMMPS is initialized from a data file, the list of bonds is scanned and the
maximum number of bonds per atom is tallied. If some atom will acquire more bonds than this limit as this fix
operates, then the "extra bonds per atom" parameter in the data file header must be set to allow for it. See the
read data command for more details. Note that if this parameter needs to be set, it means a data file must be
used to initialize the system, even if it initially has no bonds. A data file with no atoms can be used if you
wish to add unbonded atoms via the create atoms command, e.g. for a percolation simulation.

IMPORTANT NOTE: LAMMPS also maintains a data structure that stores a list of 1st, 2nd, and 3rd
neighbors of each atom (in the bond topology of the system) for use in weighting pairwise interactions for
bonded atoms. Adding a bond adds a single entry to this list. The "extra" keyword of the special bonds
command should be used to leave space for new bonds if the maximum number of entries for any atom will be
exceeded as this fix operates. See the special bonds command for details.

Note that even if your simulation starts with no bonds, you must define a bond style and use the bond coeff
command to specify coefficients for the bondtype. Similarly, if new atom types are specified by the iparam or
Jjparam keywords, they must be within the range of atom types allowed by the simulation and pairwise
coefficients must be specified for the new types.

Computationally, each timestep this fix operates, it loops over neighbor lists and computes distances between
pairs of atoms in the list. It also communicates between neighboring processors to coordinate which bonds are
created. Thus it roughly doubles the cost of a timestep. Thus you should be cautious about invoking this fix
too frequently.

You can dump out snapshots of the current bond topology via the dump local command.

IMPORTANT NOTE: Creating a bond typically alters the energy of a system. You should be careful not to
choose bond creation criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and create it when 2 atoms are separated by a distance far from the equilibribum bond length,
then the 2 atoms will oscillate dramatically when the bond is formed. More generally, you may need to
thermostat your system to compensate for energy changes resulting from created bonds.

Restart, fix_modify, output, run start/stop, minimize info:

fix bond/create command 324

LIGGGHTS Users Manual

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes two statistics which it stores in a global vector of length 2, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive".

These are the 2 quantities:

® (1) # of bonds created on the most recent creation timestep
¢ (2) cummulative # of bonds created

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models
that would be enabled by it.

When a bond is created, you might wish to induce new angle and dihedral interactions that include that bond.
However, LAMMPS does not create these angles and dihedrals, even if your simulation defines an

angle style or dihedral style.

This fix requires that the pairwise weightings defined by the special bonds command be 0,1,1 for 1-2, 1-3,
and 1-4 neighbors within the bond topology. This effectively means that the pairwise interaction between
atoms I and J will be turned off when a bond between them is created. It also means that the pairwise
interaction of I with J's other bond partners will be unaffected by the new bond.

Related commands:

fix bond/break, fix bond/swap, dump local, special bonds

Default:

The option defaults are iparam = (0,itype), jparam = (0,jtype), and prob = 1.0.

fix bond/create command 325

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix bond/swap command

Syntax:

fix ID group-ID bond/swap fraction cutoff seed

¢ ID, group-ID are documented in fix command

¢ bond/swap = style name of this fix command

e fraction = fraction of group atoms to consider for swapping

e cutoff = distance at which swapping will be considered (distance units)
¢ seed = random # seed (positive integer)

Examples:

fix 1 all bond/swap 0.5 1.3 598934
Description:

In a simulation of polymer chains, this command attempts to swap bonds between two different chains,
effectively grafting the end of one chain onto another chain and vice versa. This is done via Monte Carlo rules
using the Boltzmann acceptance criterion. The purpose is to equilibrate the polymer chain conformations
more rapidly than dynamics alone would do it, by enabling instantaneous large conformational changes in a
dense polymer melt. The polymer chains should thus more rapidly converge to the proper end-to-end
distances and radii of gyration. It is designed for use with systems of FENE or harmonic bead-spring polymer
chains where each polymer is a linear chain of monomers, but LAMMPS does not enforce this requirement,
i.e. any bond style can be used.

A schematic of the kinds of bond swaps that can occur is shown here:

On the left, the red and blue chains have two monomers Al and B1 close to each other, which are currently
bonded to monomers A2 and B2 respectively within their own chains. The bond swap operation will attempt
to delete the A1-A2 and B1-B2 bonds and replace them with A1-B2 and B1-A2 bonds. If the swap is
energetically favorable, the two chains on the right are the result and each polymer chain has undergone a
dramatic conformational change. This reference provides more details on how the algorithm works and its

application: (Sides).

The bond swapping operation is invoked each time neighbor lists are built during a simulation, since it
potentially alters the list of which neighbors are considered for pairwise interaction. At each reneighboring
step, each processor considers a random specified fraction of its atoms as potential swapping monomers for
this timestep. Choosing a small fraction value can reduce the likelihood of a reverse swap occurring soon after
an initial swap.

fix bond/swap command 326

http://lammps.sandia.gov

LIGGGHTS Users Manual

For each monomer Al, its neighbors are examined to find a possible B1 monomer. Both Al and B1 must be
in the fix group, their separation must be less than the specified cufoff, and the molecule IDs of Al and B1
must be the same (see below). If a suitable partner is found, the energy change due to swapping the 2 bonds is
computed. This includes changes in pairwise, bond, and angle energies due to the altered connectivity of the 2
chains. Dihedral and improper interactions are not allowed to be defined when this fix is used.

If the energy decreases due to the swap operation, the bond swap is accepted. If the energy increases it is
accepted with probability exp(-delta/kT) where delta is the increase in energy, k is the Boltzmann constant,
and T is the current temperature of the system. Whether the swap is accepted or rejected, no other swaps are
attempted by this processor on this timestep.

The criterion for matching molecule IDs is how bond swaps performed by this fix conserve chain length. To
use this features you must setup the molecule IDs for your polymer chains in a certain way, typically in the
data file, read by the read data comand. Consider a system of 6-mer chains. You have 2 choices. If the
molecule IDs for monomers on each chain are set to 1,2,3,4,5,6 then swaps will conserve chain length. For a
particular momoner there will be only one other monomer on another chain which is a potential swap partner.
If the molecule IDs for monomers on each chain are set to 1,2,3,3,2,1 then swaps will conserve chain length
but swaps will be able to occur at either end of a chain. Thus for a particular monomer there will be 2 possible
swap partners on another chain. In this scenario, swaps can also occur within a single chain, i.e. the two ends
of a chain swap with each other.

IMPORTANT NOTE: If your simulation uses molecule IDs in the usual way, where all monomers on a single
chain are assigned the same ID (different for each chain), then swaps will only occur within the same chain. If
you assign the same molecule ID to all monomers in all chains then inter-chain swaps will occur, but they will
not conserve chain length. Neither of these scenarios is probably not what you want for this fix.

IMPORTANT NOTE: When a bond swap occurs the image flags of monomers in the new polymer chains can
become inconsistent. See the dump command for a discussion of image flags. This is not an issue for running
dynamics, but can affect calculation of some diagnostic quantities or the printing of unwrapped coordinates to
a dump file.

This fix computes a temperature each time it is invoked for use by the Boltzmann criterion. To do this, the fix
creates its own compute of style temp, as if this command had been issued:

compute fix-ID_temp all temp

See the compute temp command for details. Note that the ID of the new compute is the fix-ID with underscore
+ "temp" appended and the group for the new compute is "all", so that the temperature of the entire system is
used.

Note that this is NOT the compute used by thermodynamic output (see the thermo style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute modify command or print this temperature during thermodyanmic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the
simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted
simulation should produce the same behavior. Also note that each processor generates possible swaps
independently of other processors. Thus if you repeat the same simulation on a different number of
processors, the specific swaps performed will be different.

fix bond/swap command 327

LIGGGHTS Users Manual

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used to compute the temperature for the Boltzmann criterion.

This fix computes two statistical quantities as a global 2-vector of output, which can be accessed by various
output commands. The first component of the vector is the cummulative number of swaps performed by all
processors. The second component of the vector is the cummulative number of swaps attempted (whether
accepted or rejected). Note that a swap "attempt" only occurs when swap partners meeting the criteria
described above are found on a particular timestep. The vector values calculated by this fix are "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

The setings of the "special_bond" command must be 0,1,1 in order to use this fix, which is typical of
bead-spring chains with FENE or harmonic bonds. This means that pairwise interactions between bonded

atoms are turned off, but are turned on between atoms two or three hops away along the chain backbone.

Currently, energy changes in dihedral and improper interactions due to a bond swap are not considered. Thus
a simulation that uses this fix cannot use a dihedral or improper potential.

Related commands: none

Default: none

(Sides) Sides, Grest, Stevens, Plimpton, J Polymer Science B, 42, 199-208 (2004).

fix bond/swap command 328

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix box/relax command
Syntax:
fix ID group-ID box/relax keyword value

¢ ID, group-ID are documented in fix command
¢ box/relax = style name of this fix command

one or more keyword value pairs may be appended

keyword = iso or aniso or tri or X Or y Or z Or Xy Or yz Oor xz or couple or nreset or vmax
iso or aniso or tri value = Ptarget = desired pressure (pressure units)
X Or y Or z Or Xy Or yz or xz value = Ptarget = desired pressure (pressure units)
couple = none Or Xyz Or Xy Or yzZ Or XZ
nreset value = reset reference cell every this many minimizer iterations
vmax value = fraction = max allowed volume change in one iteration
dilate value = all or partial
scaleyz value = yes or no = scale yz with 1z
scalexz value = yes or no = scale xz with 1z
scalexy value = yes or no = scale xy with ly
fixedpoint values = x y z
X,y¥,z = perform relaxation dilation/contraction around this point (distance units)
Examples:

fix 1 all box/relax iso 0.0 vmax 0.001
fix 2 water box/relax aniso 0.0 dilate partial
fix 2 ice box/relax tri 0.0 couple xy nreset 100

Description:

Apply an external pressure or stress tensor to the simulation box during an energy minimization. This allows
the box size and shape to vary during the iterations of the minimizer so that the final configuration will be
both an energy minimum for the potential energy of the atoms, and the system pressure tensor will be close to
the specified external tensor. Conceptually, specifying a positive pressure is like squeezing on the simulation
box; a negative pressure typically allows the box to expand.

The external pressure tensor is specified using one or more of the iso, aniso, tri, x, y, z, Xy, Xz, yz, and couple
keywords. These keywords give you the ability to specify all 6 components of an external stress tensor, and to
couple various of these components together so that the dimensions they represent are varied together during
the mimimization.

Orthogonal simulation boxes have 3 adjustable dimensions (x,y,z). Triclinic (non-orthogonal) simulation
boxes have 6 adjustable dimensions (X,y,z,xy,xz,yz). The create box, read data, and read restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
Xy,Xz,yz tilt factors.

The target pressures Ptarget for each of the 6 components of the stress tensor can be specified independently
via the x, y, z, xy, xz, yz keywords, which correspond to the 6 simulation box dimensions. For example, if the y
keyword is used, the y-box length will change during the minimization. If the xy keyword is used, the xy tilt
factor will change. A box dimension will not change if that component is not specified.

Note that in order to use the xy, xz, or yz keywords, the simulation box must be triclinic, even if its initial tilt
factors are 0.0.

fix box/relax command 329

http://lammps.sandia.gov

LIGGGHTS Users Manual

When the size of the simulation box changes, all atoms are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the atoms in the fix group are re-scaled. This can
be useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

The scaleyz, scalexz, and scalexy keywords control whether or not the corresponding tilt factors are scaled
with the associated box dimensions when relaxing triclinic periodic cells. The default values yes will turn on
scaling, which corresponds to adjusting the linear dimensions of the cell while preserving its shape. Choosing
no ensures that the tilt factors are not scaled with the box dimensions. See below for restrictions and default
values in different situations. In older versions of LAMMPS, scaling of tilt factors was not performed. The old
behavior can be recovered by setting all three scale keywords to no.

The fixedpoint keyword specifies the fixed point for cell relaxation. By default, it is the center of the box.
Whatever point is chosen will not move during the simulation. For example, if the lower periodic boundaries
pass through (0,0,0), and this point is provided to fixedpoint, then the lower periodic boundaries will remain at
(0,0,0), while the upper periodic boundaries will move twice as far. In all cases, the particle positions at each
iteration are unaffected by the chosen value, except that all particles are displaced by the same amount,
different on each iteration.

IMPORTANT NOTE: Appling an external pressure to tilt dimensions xy, xz, yz can sometimes result in
arbitrarily large values of the tilt factors, i.e. a dramatically deformed simulation box. This typically indicates
that there is something badly wrong with how the simulation was constructed. The two most common sources
of this error are applying a shear stress to a liquid system or specifying an external shear stress tensor that
exceeds the yield stress of the solid. In either case the minimization may converge to a bogus conformation or
not converge at all. Also note that if the box shape tilts to an extreme shape, LAMMPS will run less
efficiently, due to the large volume of communication needed to acquire ghost atoms around a processor's
irregular-shaped sub-domain. For extreme values of tilt, LAMMPS may also lose atoms and generate an error.

The couple keyword allows two or three of the diagonal components of the pressure tensor to be "coupled"
together. The value specified with the keyword determines which are coupled. For example, xz means the Pxx
and Pzz components of the stress tensor are coupled. Xyz means all 3 diagonal components are coupled.
Coupling means two things: the instantaneous stress will be computed as an average of the corresponding
diagonal components, and the coupled box dimensions will be changed together in lockstep, meaning coupled
dimensions will be dilated or contracted by the same percentage every timestep. The Ptarget values for any
coupled dimensions must be identical. Couple xyz can be used for a 2d simulation; the z dimension is simply
ignored.

The iso, aniso, and tri keywords are simply shortcuts that are equivalent to specifying several other keywords
together.

The keyword iso means couple all 3 diagonal components together when pressure is computed (hydrostatic
pressure), and dilate/contract the dimensions together. Using "iso Ptarget" is the same as specifying these 4
keywords:

x Ptarget
y Ptarget
z Ptarget
couple xyz

The keyword aniso means x, y, and z dimensions are controlled independently using the Pxx, Pyy, and Pzz
components of the stress tensor as the driving forces, and the specified scalar external pressure. Using "aniso
Ptarget" is the same as specifying these 4 keywords:

x Ptarget
y Ptarget
z Ptarget

fix box/relax command 330

LIGGGHTS Users Manual

couple none

The keyword tri means x, y, z, xy, xz, and yz dimensions are controlled independently using their individual
stress components as the driving forces, and the specified scalar pressure as the external normal stress. Using
"tri Ptarget" is the same as specifying these 7 keywords:

x Ptarget

y Ptarget

z Ptarget
xy 0.0

yz 0.0

xz 0.0
couple none

The vmax keyword can be used to limit the fractional change in the volume of the simulation box that can
occur in one iteration of the minimizer. If the pressure is not settling down during the minimization this can be
because the volume is fluctuating too much. The specified fraction must be greater than 0.0 and should be <<
1.0. A value of 0.001 means the volume cannot change by more than 1/10 of a percent in one iteration when
couple xyz has been specified. For any other case it means no linear dimension of the simulation box can
change by more than 1/10 of a percent.

With this fix, the potential energy used by the minimizer is augmented by an additional energy provided by
the fix. The overall objective function then is:

B=U+ F)t (‘ == ‘0) T Estrain,

where U is the system potential energy, P_t is the desired hydrostatic pressure, V and V_0 are the system and
reference volumes, respectively. E_strain is the strain energy expression proposed by Parrinello and Rahman
(Parrinello1981). Taking derivatives of E w.r.t. the box dimensions, and setting these to zero, we find that at

the minimum of the objective function, the global system stress tensor P will satisfy the relation:

P = PI+S, (hy?) ho

where I is the identity matrix, h_0 is the box dimension tensor of the reference cell, and h_0d is the diagonal
part of h_0. S_z is a symmetric stress tensor that is chosen by LAMMPS so that the upper-triangular
components of P equal the stress tensor specified by the user.

This equation only applies when the box dimensions are equal to those of the reference dimensions. If this is
not the case, then the converged stress tensor will not equal that specified by the user. We can resolve this
problem by periodically resetting the reference dimensions. The keyword nreset_ref controls how often this is
done. If this keyword is not used, or is given a value of zero, then the reference dimensions are set to those of
the initial simulation domain and are never changed. A value of nsfep means that every nstep minimization
steps, the reference dimensions are set to those of the current simulation domain. Note that resetting the
reference dimensions changes the objective function and gradients, which sometimes causes the minimization
to fail. This can be resolved by changing the value of nreset, or simply continuing the minimization from a
restart file.

IMPORTANT NOTE: As normally computed, pressure includes a kinetic- energy or temperature-dependent
component; see the compute pressure command. However, atom velocities are ignored during a minimization,

fix box/relax command 331

LIGGGHTS Users Manual

and the applied pressure(s) specified with this command are assumed to only be the virial component of the
pressure (the non-kinetic portion). Thus if atoms have a non-zero temperature and you print the usual
thermodynamic pressure, it may not appear the system is converging to your specified pressure. The solution
for this is to either (a) zero the velocities of all atoms before performing the minimization, or (b) make sure
you are monitoring the pressure without its kinetic component. The latter can be done by outputting the
pressure from the fix this command creates (see below) or a pressure fix you define yourself.

IMPORTANT NOTE: Because pressure is often a very sensitive function of volume, it can be difficult for the
minimizer to equilibrate the system the desired pressure with high precision, particularly for solids. Some
techniques that seem to help are (a) use the "min_modify line quadratic” option when minimizing with box
relaxations, and (b) minimize several times in succession if need be, to drive the pressure closer to the target
pressure. Also note that some systems (e.g. liquids) will not sustain a non-hydrostatic applied pressure, which
means the minimizer will not converge.

This fix computes a temperature and pressure each timestep. The temperature is used to compute the kinetic
contribution to the pressure, even though this is subsequently ignored by default. To do this, the fix creates its
own computes of style "temp" and "pressure”, as if these commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-I1D pressure fix-ID_temp virial

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the
same as the fix group. Also note that the pressure compute does not include a kinetic component.

Note that these are NOT the computes used by thermodynamic output (see the thermo style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify femp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its temperature and pressure calculation, as described above.
Note that as described above, if you assign a pressure compute to this fix that includes a kinetic energy
component it will affect the minimization, most likely in an undesirable way.

IMPORTANT NOTE: If both the femp and press keywords are used in a single thermo_modify command (or
in two separate commands), then the order in which the keywords are specified is important. Note that a
pressure compute defines its own temperature compute as an argument when it is specified. The temp
keyword will override this (for the pressure compute being used by fix npt), but only if the remp keyword
comes after the press keyword. If the femp keyword comes before the press keyword, then the new pressure
compute specified by the press keyword will be unaffected by the temp setting.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
pressure-volume energy, plus the strain energy, if it exists.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is invoked during energy minimization, but not for the purpose of adding a contribution to the energy
or forces being minimized. Instead it alters the simulation box geometry as described above.

fix box/relax command 332

LIGGGHTS Users Manual

Restrictions:

Only dimensions that are available can be adjusted by this fix. Non-periodic dimensions are not available. z,
xz, and yz, are not available for 2D simulations. xy, xz, and yz are only available if the simulation domain is
non-orthogonal. The create box, read data, and read restart commands specify whether the simulation box is
orthogonal or non-orthogonal (triclinic) and explain the meaning of the xy,xz,yz tilt factors.

The scaleyz yes and scalexz yes keyword/value pairs can not be used for 2D simulations. scaleyz yes, scalexz
yes, and scalexy yes options can only be used if the 2nd dimension in the keyword is periodic, and if the tilt
factor is not coupled to the barostat via keywords #ri, yz, xz, and xy.

Related commands:

fix npt, minimize

Default:

The keyword defaults are dilate = all, vmax = 0.0001, nreset = 0.

(Parrinello1981) Parrinello and Rahman, J Appl Phys, 52, 7182 (1981).

fix box/relax command 333

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix check/timestep/gran command

Syntax:

fix ID group-ID check/timestep/gran nevery fraction_r fraction_h

¢ ID, group-ID are documented in fix command

¢ check/timestep/gran = style name of this fix command

¢ nevery = evaluate time-step size accuracy every this many time-steps

e fraction_r = warn if time-step size exceeds this fraction of the Rayleigh time
e fraction_h = warn if time-step size exceeds this fraction of the Hertz time

Examples:

fix ts_check all check/timestep/gran 1000 0.1 0.1
Description:

Periodically calculate estimations of the Rayleigh- and Hertz time dt_r and dt_h for a granular system every
nevery' time-steps. The user can specify two quantities fraction_r and fraction_h. A warning message is
printed if the time-step size as specified via the timestep command exceeds either of dt_r * fraction_r or dt_h
* fraction_h.

The former quantity is
dt_r = PI*r*sqrt(rho/G)/(0.1631*nu+0.8766),

where rho is particle density, G is the shear modulus and nu is Poisson's ratio. The latter quantity is expressed
by

dt_h = 2.87*(m_eff 2/(r_eff*Y_eff*2*v_max)"0.2.

The effective mass m_eff, the effective radius r_eff and the effective Young's modulus Y_eff are as defined in
pair gran. v_max is the maximum relative velocity, taking mesh movement into account. Please note that the
Hertz criterion will also be used if you use a different granular pair style (e.g. Hooke).

Additionally, this command checks the ratio of skin to the distance that particles can travel relative to each
other in one time-step. This value should be >1, otherwise some interactions may be missed or overlap energy
may be generated artificially. This command will warn you if this is the case.

These criteria are checked every 'nevery' time-steps. Rayleigh time dt_r is calculated for each particle in the
simulation, and the minimum value is taken for further calculations. Hertz time dt_h is estimated by testing a
collision of each particle with itself using v_max as the assumed collision velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. This fix computes a 3-vector, for access by various output commands. The vector consists of the
time-step size expressed as fraction of the Rayleigh and Hertz time-step sizes and the ratio of skin to the
distance particles can travel relative to each other in one time-step, respectively. No parameter of this fix can
be used with the start/stop keywords of the run command. This fix is not invoked during energy minimization.

fix check/timestep/gran command 334

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions: none
Related commands: none

Default: none

fix check/timestep/gran command 335

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix colvars command

Syntax:
fix ID group-ID colvars configfile keyword values ...

¢ ID, group-ID are documented in fix command

¢ colvars = style name of this fix command

¢ configfile = the configuration file for the colvars module
¢ keyword = input or output or seed or tstat

input arg = colvars.state file name or prefix or NULL (default: NULL)
output arg = output filename prefix (default: out)
seed arg = seed for random number generator (default: 1966)
unwrap arg = yes Or no
use unwrapped coordinates in collective variables (default: yes)
tstat arg = fix id of a thermostat or NULL (default: NULL)

Examples:

fix mtd all colvars peptide.colvars.inp seed 2122 input peptide.colvars.state output peptide
fix abf all colvars colvars.inp tstat 1

Description:

This fix interfaces LAMMPS to a "collective variables" or "colvars" module library which allows to calculate
potentials of mean force (PMFs) for any set of colvars, using different sampling methods: currently
implemented are the Adaptive Biasing Force (ABF) method, metadynamics, Steered Molecular Dynamics
(SMD) and Umbrella Sampling (US) via a flexible harmonic restraint bias. The colvars library is hosted at

http://colvars.github.io/

This documentation describes only the fix colvars command itself and LAMMPS specific parts of the code.
The full documentation of the colvars library is available as this supplementary PDF document

A detailed discussion of the implementation of the portable collective variable library is in (Fiorin).
Additional information can be found in (Henin).

There are some example scripts for using this package with LAMMPS in the examples/USER/colvars
directory.

The only mandatory argument to the fix is the filename to the colvars input file that contains the input that is
independent from the MD program in which the colvars library has been integrated.

The group-ID entry is ignored. The collective variable module will always apply to the entire system and
there can only be one instance of the colvars fix at a time. The colvars fix will only communicate the
minimum information necessary and the colvars library supports multiple, completely independent collective
variables, so there is no restriction to functionaliry by limiting the number of colvars fixes.

The input keyword allows to specify a state file that would contain the restart information required in order to
continue a calculation from a prerecorded state. Fix colvars records it state in binary restart files, so when
using the read restart command, this is usually not needed.

The output keyword allows to specify the output prefix. All output files generated will use this prefix
followed by the ".colvars." and a word like "state" or "traj".

fix colvars command 336

http://lammps.sandia.gov
http://colvars.github.io/

LIGGGHTS Users Manual

The seed keyword contains the seed for the random number generator that will be used in the colvars module.
The unwrap keyword controls whether wrapped or unwrapped coordinates are passed to the colvars library for
calculation of the collective variables and the resulting forces. The default is yes, i.e. to use the image flags to
reconstruct the absolute atom positions. Setting this to no will use the current local coordinates that are

wrapped back into the simulation cell at each re-neighboring instead.

The tstat keyword can be either NULL or the label of a thermostating fix that thermostats all atoms in the fix
colvars group. This will be used to provide the colvars module with the current thermostat target temperature.

Restart, fix_modify, output, run start/stop, minimize info:
This fix writes the current status of the colvars module into binary restart files. This is in addition to the text
mode status file that is written by the colvars module itself and the kind of information in both files is

identical.

The fix_modify energy option is supported by this fix to add the energy change from the biasing force added
by the fix to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive".

Restrictions:

This fix is part of the USER-COLVARS package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

There can only be one colvars fix active at a time. Since the interface communicates only the minimum
amount of information and colvars module itself can handle an arbitrary number of collective variables, this is
not a limitation of functionality.

Related commands:

fix smd

Default:

The default options are input = NULL, output = out, seed = 1966, unwrap yes, and tstat = NULL.

(Fiorin) Fiorin , Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594

(Henin) Henin, Fiorin, Chipot, Klein, J. Chem. Theory Comput., 6, 35-47 (2010)

fix colvars command 337

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix deform command
Syntax:
fix ID group-ID deform N parameter args ... keyword value

¢ ID, group-ID are documented in fix command

¢ deform = style name of this fix command

e N = perform box deformation every this many timesteps
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy OY XZ Or yZ
X, y, z args = style value(s)
style = final or delta or scale or vel or erate or trate or volume or wiggle or variab
final values = lo hi
lo hi = box boundaries at end of run (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries at end of run (distance units)
scale values = factor
factor = multiplicative factor for change in box length at end of run
vel value = V
V = change box length at this velocity (distance/time units),
effectively an engineering strain rate
erate value = R
R = engineering strain rate (1/time units)
trate value = R
R = true strain rate (1/time units)
volume value = none = adjust this dim to preserve volume of system
wiggle values = A Tp
A = amplitude of oscillation (distance units)
Tp = period of oscillation (time units)
variable values = v_namel v_name2

v_namel = variable with namel for box length change as function of time
v_name2 = variable with name2 for change rate as function of time
Xy, Xz, yz args = style value
style = final or delta or vel or erate or trate or wiggle

final value = tilt
tilt = tilt factor at end of run (distance units)

delta value = dtilt
dtilt = change in tilt factor at end of run (distance units)

vel value = V
V = change tilt factor at this velocity (distance/time units),
effectively an engineering shear strain rate
erate value = R
R = engineering shear strain rate (1/time units)
trate value = R
R = true shear strain rate (1/time units)
wiggle values = A Tp
A = amplitude of oscillation (distance units)
Tp = period of oscillation (time units)
variable values = v_namel v_name2
v_namel = variable with namel for tilt change as function of time
v_name2 = variable with name2 for change rate as function of time

¢ zero or more keyword/value pairs may be appended
¢ keyword = remap or flip or units

remap value = x or v or none
x = remap coords of atoms in group into deforming box
v = remap velocities of all atoms when they cross periodic boundaries
none = no remapping of x or v
flip value = yes or no

fix deform command 338

http://lammps.sandia.gov

LIGGGHTS Users Manual

allow or disallow box flips when it becomes highly skewed
units value = lattice or box

lattice = distances are defined in lattice units

box = distances are defined in simulation box units

Examples:

fix 1 all deform 1 x final 0.0 9.0 z final 0.0 5.0 units box
fix 1 all deform 1 x trate 0.1 y volume z volume

fix 1 all deform 1 xy erate 0.001 remap v

fix 1 all deform 10 y delta -0.5 0.5 xz vel 1.0

Description:

Change the volume and/or shape of the simulation box during a dynamics run. Orthogonal simulation boxes
have 3 adjustable parameters (x,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
parameters (X,y,Z,Xy,XZ,yZ). Any or all of them can be adjusted independently and simultaneously by this
command. This fix can be used to perform non-equilibrium MD (NEMD) simulations of a continuously
strained system. See the fix nvt/sllod and compute temp/deform commands for more details.

For the x, y, z parameters, the associated dimension cannot be shrink-wrapped. For the xy, yz, xz parameters,
the associated 2nd dimension cannot be shrink-wrapped. Dimensions not varied by this command can be
periodic or non-periodic. Dimensions corresponding to unspecified parameters can also be controlled by a fix
npt or fix nph command.

The size and shape of the simulation box at the beginning of the simulation run were either specified by the
create box or read data or read restart command used to setup the simulation initially if it is the first run, or
they are the values from the end of the previous run. The create box, read data, and read restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
Xy,xz,yz tilt factors. If fix deform changes the xy,xz,yz tilt factors, then the simulation box must be triclinic,
even if its initial tilt factors are 0.0.

As described below, the desired simulation box size and shape at the end of the run are determined by the
parameters of the fix deform command. Every Nth timestep during the run, the simulation box is expanded,
contracted, or tilted to ramped values between the initial and final values.

For the x, y, and z parameters, this is the meaning of their styles and values.

The final, delta, scale, vel, and erate styles all change the specified dimension of the box via "constant
displacement" which is effectively a "constant engineering strain rate". This means the box dimension
changes linearly with time from its initial to final value.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

For style vel, a velocity at which the box length changes is specified in units of distance/time. This is
effectively a "constant engineering strain rate", where rate = V/L0 and LO is the initial box length. The
distance can be in lattice or box distance units. See the discussion of the units keyword below. For example, if
the initial box length is 100 Angstroms, and V is 10 Angstroms/psec, then after 10 psec, the box length will

fix deform command 339

LIGGGHTS Users Manual
have doubled. After 20 psec, it will have tripled.

The erate style changes a dimension of the the box at a "constant engineering strain rate". The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0,
where LO is the original box length and delta is the change relative to the original length. The box length L as
a function of time will change as

L(t) = LO (1 + erate*dt)

where dt is the elapsed time (in time units). Thus if erate R is specified as 0.1 and time units are picoseconds,
this means the box length will increase by 10% of its original length every picosecond. L.e. strain after 1 psec
= 0.1, strain after 2 psec = 0.2, etc. R =-0.01 means the box length will shrink by 1% of its original length
every picosecond. Note that for an "engineering" rate the change is based on the original box length, so
running with R = 1 for 10 picoseconds expands the box length by a factor of 11 (strain of 10), which is
different that what the trate style would induce.

The trate style changes a dimension of the box at a "constant true strain rate". Note that this is not an
"engineering strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which
means the box dimension changes non-linearly with time from its initial to final value. The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0,
where L0 is the original box length and delta is the change relative to the original length.

The box length L as a function of time will change as
L(t) = LO exp(trate*dt)

where dt is the elapsed time (in time units). Thus if trate R is specified as In(1.1) and time units are
picoseconds, this means the box length will increase by 10% of its current (not original) length every
picosecond. L.e. strain after 1 psec = 0.1, strain after 2 psec = 0.21, etc. R = In(2) or In(3) means the box length
will double or triple every picosecond. R = In(0.99) means the box length will shrink by 1% of its current
length every picosecond. Note that for a "true" rate the change is continuous and based on the current length,
so running with R = In(2) for 10 picoseconds does not expand the box length by a factor of 11 as it would with
erate, but by a factor of 1024 since the box length will double every picosecond.

Note that to change the volume (or cross-sectional area) of the simulation box at a constant rate, you can
change multiple dimensions via erate or trate. E.g. to double the box volume in a picosecond picosecond, you
could set "x erate M", "y erate M", "z erate M", with M = pow(2,1/3) - 1 = 0.26, since if each box dimension
grows by 26%, the box volume doubles. Or you could set "x trate M", "y trate M", "z trate M", with M =
In(1.26) = 0.231, and the box volume would double every picosecond.

The volume style changes the specified dimension in such a way that the box volume remains constant while
other box dimensions are changed explicitly via the styles discussed above. For example, "x scale 1.1 y scale
1.1 z volume" will shrink the z box length as the x,y box lengths increase, to keep the volume constant
(product of x,y,z lengths). If "x scale 1.1 z volume" is specified and parameter y is unspecified, then the z box
length will shrink as x increases to keep the product of x,z lengths constant. If "x scale 1.1 y volume z
volume" is specified, then both the y,z box lengths will shrink as x increases to keep the volume constant
(product of x,y,z lengths). In this case, the y,z box lengths shrink so as to keep their relative aspect ratio
constant.

For solids or liquids, note that when one dimension of the box is expanded via fix deform (i.e. tensile strain),
it may be physically undesirable to hold the other 2 box lengths constant (unspecified by fix deform) since
that implies a density change. Using the volume style for those 2 dimensions to keep the box volume constant
may make more physical sense, but may also not be correct for materials and potentials whose Poisson ratio is

fix deform command 340

LIGGGHTS Users Manual

not 0.5. An alternative is to use fix npt aniso with zero applied pressure on those 2 dimensions, so that they
respond to the tensile strain dynamically.

The wiggle style oscillates the specified box length dimension sinusoidally with the specified amplitude and
period. L.e. the box length L as a function of time is given by

L(t) = L0 + A sin(2*pi t/Tp)

where LO is its initial length. If the amplitude A is a positive number the box initially expands, then contracts,
etc. If A is negative then the box initially contracts, then expands, etc. The amplitude can be in lattice or box
distance units. See the discussion of the units keyword below.

The variable style changes the specified box length dimension by evaluating a variable, which presumably is
a function of time. The variable with namel must be an equal-style variable and should calculate a change in
box length in units of distance. Note that this distance is in box units, not lattice units; see the discussion of
the units keyword below. The formula associated with variable namel can reference the current timestep.
Note that it should return the "change" in box length, not the absolute box length. This means it should
evaluate to 0.0 when invoked on the initial timestep of the run following the definition of fix deform. It should
evaluate to a value > 0.0 to dilate the box at future times, or a value < 0.0 to compress the box.

The variable name?2 must also be an gqual-style variable and should calculate the rate of box length change, in
units of distance/time, i.e. the time-derivative of the namel variable. This quantity is used internally by
LAMMPS to reset atom velocities when they cross periodic boundaries. It is computed internally for the other
styles, but you must provide it when using an arbitrary variable.

Here is an example of using the variable style to perform the same box deformation as the wiggle style
formula listed above, where we assume that the current timestep = 0.

variable A equal 5.0

variable Tp equal 10.0

variable displace equal "v_A * sin(2*PI * step*dt/v_Tp)"
variable rate equal "2*PI*v_A/v_Tp * cos(2*PI * step*dt/v_Tp)"
fix 2 all deform 1 x variable v_displace v_rate remap v

For the scale, vel, erate, trate, volume, wiggle, and variable styles, the box length is expanded or compressed
around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

The final, delta, vel, and erate styles all change the shear strain at a "constant engineering shear strain rate".
This means the tilt factor changes linearly with time from its initial to final value.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

For style vel, a velocity at which the tilt factor changes is specified in units of distance/time. This is
effectively an "engineering shear strain rate", where rate = V/L0 and L0 is the initial box length perpendicular
to the direction of shear. The distance can be in lattice or box distance units. See the discussion of the units
keyword below. For example, if the initial tilt factor is 5 Angstroms, and the V is 10 Angstroms/psec, then
after 1 psec, the tilt factor will be 15 Angstroms. After 2 psec, it will be 25 Angstroms.

fix deform command 341

LIGGGHTS Users Manual

The erate style changes a tilt factor at a "constant engineering shear strain rate". The units of the specified
shear strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length,
where length is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and
offset is the displacement distance in the shear direction (e.g. x direction for xy deformation) from the
unstrained orientation.

The tilt factor T as a function of time will change as
T(t) = TO + LO*erate*dt

where TO is the initial tilt factor, LO is the original length of the box perpendicular to the shear direction (e.g.
y box length for xy deformation), and dt is the elapsed time (in time units). Thus if erate R is specified as 0.1
and time units are picoseconds, this means the shear strain will increase by 0.1 every picosecond. L.e. if the xy
shear strain was initially 0.0, then strain after 1 psec = 0.1, strain after 2 psec = 0.2, etc. Thus the tilt factor
would be 0.0 at time 0, 0.1*ybox at 1 psec, 0.2*ybox at 2 psec, etc, where ybox is the original y box length. R
=1 or 2 means the tilt factor will increase by 1 or 2 every picosecond. R = -0.01 means a decrease in shear
strain by 0.01 every picosecond.

The trate style changes a tilt factor at a "constant true shear strain rate". Note that this is not an "engineering
shear strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which means
the tilt factor changes non-linearly with time from its initial to final value. The units of the specified shear
strain rate are 1/time. See the units command for the time units associated with different choices of simulation
units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length, where length
is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and offset is the
displacement distance in the shear direction (e.g. x direction for xy deformation) from the unstrained
orientation.

The tilt factor T as a function of time will change as
T(t) = TO exp(trate*dt)

where TO is the initial tilt factor and dt is the elapsed time (in time units). Thus if trate R is specified as In(1.1)
and time units are picoseconds, this means the shear strain or tilt factor will increase by 10% every
picosecond. L.e. if the xy shear strain was initially 0.1, then strain after 1 psec = 0.11, strain after 2 psec =
0.121, etc. R =1n(2) or In(3) means the tilt factor will double or triple every picosecond. R = In(0.99) means
the tilt factor will shrink by 1% every picosecond. Note that the change is continuous, so running with R =
In(2) for 10 picoseconds does not change the tilt factor by a factor of 10, but by a factor of 1024 since it
doubles every picosecond. Note that the initial tilt factor must be non-zero to use the frate option.

Note that shear strain is defined as the tilt factor divided by the perpendicular box length. The erate and trate
styles control the tilt factor, but assume the perpendicular box length remains constant. If this is not the case
(e.g. it changes due to another fix deform parameter), then this effect on the shear strain is ignored.

The wiggle style oscillates the specified tilt factor sinusoidally with the specified amplitude and period. L.e.
the tilt factor T as a function of time is given by

T(t) = TO + A sin(2*pi t/Tp)

where TO is its initial value. If the amplitude A is a positive number the tilt factor initially becomes more
positive, then more negative, etc. If A is negative then the tilt factor initially becomes more negative, then
more positive, etc. The amplitude can be in lattice or box distance units. See the discussion of the units
keyword below.

fix deform command 342

LIGGGHTS Users Manual

The variable style changes the specified tilt factor by evaluating a variable, which presumably is a function of
time. The variable with namel must be an equal-style variable and should calculate a change in tilt in units of
distance. Note that this distance is in box units, not lattice units; see the discussion of the units keyword
below. The formula associated with variable namel can reference the current timestep. Note that it should
return the "change" in tilt factor, not the absolute tilt factor. This means it should evaluate to 0.0 when
invoked on the initial timestep of the run following the definition of fix deform.

The variable name?2 must also be an equal-style variable and should calculate the rate of tilt change, in units of
distance/time, i.e. the time-derivative of the namel variable. This quantity is used internally by LAMMPS to
reset atom velocities when they cross periodic boundaries. It is computed internally for the other styles, but
you must provide it when using an arbitrary variable.

Here is an example of using the variable style to perform the same box deformation as the wiggle style
formula listed above, where we assume that the current timestep = 0.

variable A equal 5.0

variable Tp equal 10.0

variable displace equal "v_A * sin(2*PI * step*dt/v_Tp)"
variable rate equal "2*PI*v_A/v_Tp * cos(2*PI * step*dt/v_Tp)"
fix 2 all deform 1 xy variable v_displace v_rate remap v

All of the tilt styles change the Xy, xz, yz tilt factors during a simulation. In LAMMPS, tilt factors (xy,xz,yz)
for triclinic boxes are normally bounded by half the distance of the parallel box length. See the discussion of
the flip keyword below, to allow this bound to be exceeded, if desired.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and
5. Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation,
since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25,
... are all equivalent.

To obey this constraint and allow for large shear deformations to be applied via the xy, xz, or yz parameters,
the following algorithm is used. If prd is the associated parallel box length (10 in the example above), then if
the tilt factor exceeds the accepted range of -5 to 5 during the simulation, then the box is flipped to the other
limit (an equivalent box) and the simulation continues. Thus for this example, if the initial xy tilt factor was
0.0 and "xy final 100.0" was specified, then during the simulation the xy tilt factor would increase from 0.0 to
5.0, the box would be flipped so that the tilt factor becomes -5.0, the tilt factor would increase from -5.0 to
5.0, the box would be flipped again, etc. The flip occurs 10 times and the final tilt factor at the end of the
simulation would be 0.0. During each flip event, atoms are remapped into the new box in the appropriate
manner.

The one exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case,
the limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will
simply become inefficient due to the highly skewed simulation box.

Each time the box size or shape is changed, the remap keyword determines whether atom positions are
remapped to the new box. If remap is set to x (the default), atoms in the fix group are remapped; otherwise
they are not. Note that their velocities are not changed, just their positions are altered. If remap is set to v, then
any atom in the fix group that crosses a periodic boundary will have a delta added to its velocity equal to the
difference in velocities between the lo and hi boundaries. Note that this velocity difference can include tilt
components, e.g. a delta in the x velocity when an atom crosses the y periodic boundary. If remap is set to
none, then neither of these remappings take place.

Conceptually, setting remap to x forces the atoms to deform via an affine transformation that exactly matches
the box deformation. This setting is typically appropriate for solids. Note that though the atoms are effectively

fix deform command 343

LIGGGHTS Users Manual

"moving" with the box over time, it is not due to their having a velocity that tracks the box change, but only
due to the remapping. By contrast, setting remap to v is typically appropriate for fluids, where you want the
atoms to respond to the change in box size/shape on their own and acquire a velocity that matches the box
change, so that their motion will naturally track the box without explicit remapping of their coordinates.

IMPORTANT NOTE: When non-equilibrium MD (NEMD) simulations are performed using this fix, the
option "remap v" should normally be used. This is because fix nvt/sllod adjusts the atom positions and
velocities to induce a velocity profile that matches the changing box size/shape. Thus atom coordinates should
NOT be remapped by fix deform, but velocities SHOULD be when atoms cross periodic boundaries, since
that is consistent with maintaining the velocity profile already created by fix nvt/sllod. LAMMPS will warn
you if the remap setting is not consistent with fix nvt/sllod.

IMPORTANT NOTE: For non-equilibrium MD (NEMD) simulations using "remap v" it is usually desirable
that the fluid (or flowing material, e.g. granular particles) stream with a velocity profile consistent with the
deforming box. As mentioned above, using a thermostat such as fix nvt/sllod or fix lavgevin (with a bias
provided by compute temp/deform), will typically accomplish that. If you do not use a thermostat, then there
is no driving force pushing the atoms to flow in a manner consistent with the deforming box. E.g. for a
shearing system the box deformation velocity may vary from O at the bottom to 10 at the top of the box. But
the stream velocity profile of the atoms may vary from -5 at the bottom to +5 at the top. You can monitor
these effects using the fix ave/spatial, compute temp/deform, and compute temp/profile commands. One way
to induce atoms to stream consistent with the box deformation is to give them an initial velocity profile, via
the velocity ramp command, that matches the box deformation rate. This also typically helps the system come
to equilibrium more quickly, even if a thermostat is used.

IMPORTANT NOTE: If a fix rigid is defined for rigid bodies, and remap is set to x, then the center-of-mass
coordinates of rigid bodies will be remapped to the changing simulation box. This will be done regardless of
whether atoms in the rigid bodies are in the fix deform group or not. The velocity of the centers of mass are
not remapped even if remap is set to v, since fix nvt/sllod does not currently do anything special for rigid
particles. If you wish to perform a NEMD simulation of rigid particles, you can either thermostat them
independently or include a background fluid and thermostat the fluid via fix nvt/sllod.

The flip keyword allows the tilt factors for a triclinic box to exceed half the distance of the parallel box length,
as discussed above. If the flip value is set to yes, the bound is enforced by flipping the box when it is
exceeded. If the flip value is set to no, the tilt will continue to change without flipping. Note that if you apply
large deformations, this means the box shape can tilt dramatically LAMMPS will run less efficiently, due to
the large volume of communication needed to acquire ghost atoms around a processor's irregular-shaped
sub-domain. For extreme values of tilt, LAMMPS may also lose atoms and generate an error.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. Note that the units choice also affects the vel style parameters
since it is defined in terms of distance/time. Also note that the units keyword does not affect the variable
style. You should use the xlat, ylat, zlat keywords of the thermo_style command if you want to include lattice
spacings in a variable formula.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands.

This fix can perform deformation over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

fix deform command 344

LIGGGHTS Users Manual
This fix is not invoked during energy minimization.

Restrictions:
You cannot apply x, y, or z deformations to a dimension that is shrink-wrapped via the boundary comamnd.

You cannot apply Xy, yz, or xz deformations to a 2nd dimension (y in xy) that is shrink-wrapped via the
boundary comamnd.

Related commands:

change box

Default:

The option defaults are remap = X, flip = yes, and units = lattice.

fix deform command 345

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

LIGGGHTS Users Manual

fix deposit command

Syntax:

fix ID group-ID deposit N type M seed keyword values

¢ ID, group-ID are documented in fix command

e deposit = style name of this fix command

e N = # of atoms to insert

® type = atom type to assign to inserted atoms
¢ M = insert a single particle every M steps

¢ seed = random # seed (positive integer)

¢ one or more keyword/value pairs may be appended to args
¢ keyword = region or id or global or local or near or attempt or rate or vx or vy or vz Or units

region value = region-ID

region-ID =

id value = max or next

max = atom ID for new atom is max ID of all current atoms plus one
next = atom ID for new atom increments by one for every deposition
lo hi
particle

global values

lo,hi = put new

local values =
lo,hi =

near value = R

R = only insert

attempt value

Q = attempt a single

rate value =V

V = z velocity

put new
delta = lateral

(y in

hi delta

particle
distance

particle

vx values = vxlo vxhi

vxlo,vxhi =

range of x

vy values = vylo vyhi

vylo,vyhi =

range of y

vz values = vzlo vzhi

vzlo,vzhi =
target values
tx,ty,tz =
units value =

range of z
tx ty tz
location of
lattice or

lattice = the geometry
box = the geometry is defined in simulation box units

Examples:

fix 3 all deposit 1000 2 100 29494 region myblock local 1.0 1.0 1.0 units box
fix 2 newatoms deposit 10000 1 500 12345 region disk near 2.0 vz -1.0 -0.8

insertion up

2d) at which

velocities
velocities
velocities
sputtering

box
is defined

ID of region to use as insertion volume

a distance lo-hi above all other particles

if further than R from existing particles

to Q times

insertion volume moves

(distance units)

a distance lo-hi above any nearby particle beneath it (distan
within which a neighbor is considered "nearby" (distance unit

(distance units)

(velocity units)

for inserted particle (velocity units)

for inserted particle (velocity units)

for inserted particle (velocity units)

target (distance units)

in lattice units

fix 4 sputter deposit 1000 2 500 12235 region sphere vz -1.0 -1.0 target 5.0 5.0 0.0 units lattic

Description:

Insert a single particle into the simulation domain every M timesteps until N particles have been inserted. This
is useful for simulating the deposition of particles onto a surface.

Inserted particles have the specified atom type and are assigned to two groups: the default group "all" and the
group specified in the fix deposit command (which can also be "all").

fix deposit command

346

http://lammps.sandia.gov

LIGGGHTS Users Manual

If you are computing temperature values which include inserted particles, you will want to use the
compute modify dynamic option, which insures the current number of atoms is used as a normalizing factor
each time temperature is computed.

Care must be taken that inserted particles are not too near existing particles, using the options described
below. When inserting particles above a surface in a non-periodic box (see the boundary command), the
possibility of a particle escaping the surface and flying upward should be considered, since the particle may be
lost or the box size may grow infinitely large. A fix wall/reflect command can be used to prevent this
behavior. Note that if a shrink-wrap boundary is used, it is OK to insert the new particle outside the box,
however the box will immediately be expanded to include the new particle. When simulating a sputtering
experiment it is probably more realistic to ignore those atoms using the thermo modify command with the
lost ignore option and a fixed boundary.

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. It must be defined with side = in.

Each timestep a particle is to be inserted, its coordinates are chosen as follows. A random position within the
insertion volume is generated. If neither the global or local keyword is used, that is the trial position. If the
global keyword is used, the random X,y values are used, but the z position of the new particle is set above the
highest current atom in the simulation by a distance randomly chosen between lo/hi. (For a 2d simulation, this
is done for the y position.) If the local keyword is used, the z position is set a distance between lo/hi above the
highest current atom in the simulation that is "nearby" the chosen x,y position. In this context, "nearby" means
the lateral distance (in x,y) between the new and old particles is less than the delta parameter.

Once a trial x,y,z location has been computed, the insertion is only performed if no current particle in the
simulation is within a distance R of the new particle. If this test fails, a new random position within the
insertion volume is chosen and another trial is made. Up to Q attempts are made. If an atom is not successfully
deposited, LAMMPS prints a warning message.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables particles to
be inserted from a successively higher height over time. Note that this parameter is ignored if the global or
local keywords are used, since those options choose a z-coordinate for insertion independently.

The vx, vy, and vz components of velocity for the inserted particle are set using the values specified for the
vx, vy, and vz keywords. Note that normally, new particles should be a assigned a negative vertical velocity so
that they move towards the surface.

In case the farget option is used, the velocity vector of the inserted particle will be changed in a way so that it
would pass through the specified coordinate. This allows convenient simulation of a sputtering process.

The id keyword determines how an atom ID is assigned to newly deposited atoms. For the max setting, the
IDs of all current atoms are checked and the new ID is the current maximum value plus one. This means that
if atoms have left the system, the new ID may reflect this fact. For the next setting, the maximum ID of all
atoms is stored at the time the fix is defined. Each time a deposited atom is added, this value is incremented
by one and assigned to the new atom. Thus atom IDs for deposited atoms will be consecutive even if atoms
leave the system over time.

The units keyword determines the meaning of the distance units used for the other deposition parameters. A
box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. Note that the units choice affects all the keyword values that
have units of distance or velocity.

Restart, fix_modify, output, run start/stop, minimize info:

fix deposit command 347

LIGGGHTS Users Manual

This fix writes the state of the deposition to binary restart files. This includes information about how many
atoms have been depositied, the random number generator seed, the next timestep for deposition, etc. See the
read restart command for info on how to re-specify a fix in an input script that reads a restart file, so that the
operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands. No parameter of this fix can be used with the start/stop keywords of
the run command. This fix is not invoked during energy minimization.

Restrictions:

The specified insertion region cannot be a "dynamic" region, as defined by the region command.

Related commands:

fix_pour, region

Default:

The option defaults are id = max, delta = 0.0, near = 0.0, attempt = 10, rate = 0.0, vx = 0.0 0.0, vy = 0.0 0.0,
vz = 0.0 0.0, and units = lattice.

fix deposit command 348

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix drag command
Syntax:
fix ID group-ID drag x y z fmag delta
¢ ID, group-ID are documented in fix command
¢ drag = style name of this fix command
® x,y,z = coord to drag atoms towards
¢ fmag = magnitude of force to apply to each atom (force units)
¢ delta = cutoff distance inside of which force is not applied (distance units)
Examples:
fix center small-molecule drag 0.0 10.0 0.0 5.0 2.0

Description:

Apply a force to each atom in a group to drag it towards the point (x,y,z). The magnitude of the force is
specified by fmag. If an atom is closer than a distance delta to the point, then the force is not applied.

Any of the x,y,z values can be specified as NULL which means do not include that dimension in the distance
calculation or force application.

This command can be used to steer one or more atoms to a new location in the simulation.
Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms by the drag force. The vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix spring, fix spring/self, fix spring/rg, fix smd

Default: none

fix drag command 349

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix dt/reset command

Syntax:
fix ID group-ID dt/reset N Tmin Tmax Xmax keyword values

¢ ID, group-ID are documented in fix command

e dt/reset = style name of this fix command

¢ N = recompute dt every N timesteps

¢ Tmin = minimum dt allowed which can be NULL (time units)

¢ Tmax = maximum dt allowed which can be NULL (time units)

¢ Xmax = maximum distance for an atom to move in one timestep (distance units)
¢ zero or more keyword/value pairs may be appended

¢ keyword = units

units value = lattice or box
lattice = Xmax is defined in lattice units
box = Xmax is defined in simulation box units

Examples:

fix 5 all dt/reset 10 1.0e-5 0.01 0.1
fix 5 all dt/reset 10 0.01 2.0 0.2 units box

Description:

Reset the timestep size every N steps during a run, so that no atom moves further than Xmax, based on current
atom velocities and forces. This can be useful when starting from a configuration with overlapping atoms,
where forces will be large. Or it can be useful when running an impact simulation where one or more
high-energy atoms collide with a solid, causing a damage cascade.

This fix overrides the timestep size setting made by the timestep command. The new timestep size df is
computed in the following manner.

For each atom, the timestep is computed that would cause it to displace Xmax on the next integration step, as a
function of its current velocity and force. Since performing this calculation exactly would require the solution
to a quartic equation, a cheaper estimate is generated. The estimate is conservative in that the atom's

displacement is guaranteed not to exceed Xmax, though it may be smaller.

Given this putative timestep for each atom, the minimum timestep value across all atoms is computed. Then
the Tmin and Tmax bounds are applied, if specified. If one (or both) is specified as NULL, it is not applied.

When the run style is respa, this fix resets the outer loop (largest) timestep, which is the same timestep that
the timestep command sets.

Note that the cumulative simulation time (in time units), which accounts for changes in the timestep size as a
simulation proceeds, can be accessed by the thermo style time keyword.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

fix dt/reset command 350

http://lammps.sandia.gov

LIGGGHTS Users Manual

This fix computes a global scalar which can be accessed by various output commands. The scalar stores the
last timestep on which the timestep was reset to a new value.

The scalar value calculated by this fix is "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

timestep

Default:

The option defaults is units = lattice.

fix dt/reset command 351

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix efield command

Syntax:
fix ID group-ID efield ex ey ez keyword value ...

¢ ID, group-ID are documented in fix command

¢ efield = style name of this fix command

¢ ex,ey,ez = E-field component values (electric field units)

¢ any of ex,ey,ez can be a variable (see below)

¢ zero or more keyword/value pairs may be appended to args
¢ keyword = region or energy

region value = region-ID
region-ID = ID of region atoms must be in to have added force
energy value = v_name
v_name = variable with name that calculates the potential energy of each atom in the a

Examples:
fix kick external-field efield 1.0 0.0 0.0
fix kick external-field efield 0.0 0.0 v_oscillate

Description:

Add a force F = gE to each charged atom in the group due to an external electric field being applied to the
system. If the system contains point-dipoles, also add a torque on the dipoles due to the external electric field.

For charges, any of the 3 quantities defining the E-field components can be specified as an equal-style or
atom-style variable, namely ex, ey, ez. If the value is a variable, it should be specified as v_name, where name
is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine
the E-field component.

For point-dipoles, equal-style variables can be used, but atom-style variables are not currently supported,
since they imply a spatial gradient in the electric field which means additional terms with gradients of the field
are required for the force and torque on dipoles.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent E-field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent E-field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force or torque to atoms implies a change in their potential energy as they move or rotate due to the
applied E-field.

For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must

fix efield command 352

http://lammps.sandia.gov

LIGGGHTS Users Manual

be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

The energy keyword is not allowed if the added field is a constant vector (ex,ey,ez), with all components
defined as numeric constants and not as variables. This is because LAMMPS can compute the energy for each
charged particle directly as E = -x dot qE = -q (x*ex + y*ey + z*ez), so that -Grad(E) = F. Similarly for
point-dipole particles the energy can be computed as E = -mu dot E = -(mux*ex + muy*ey + muz*ez).

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LAMMPS will set the energy to 0.0,
which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command for charged particles. It is not required for
point-dipoles, but a warning is issued since the minimizer in LAMMPS does not rotate dipoles, so you should
not expect to be able to minimize the orientation of dipoles in an applied electric field.

The energy keyword specifies the name of an atom-style variable which is used to compute the energy of each
atom as function of its position. Like variables used for ex, ey, ez, the energy variable is specified as v_name,
where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force due to the electric field were a spring-like F = kx, then the energy formula should be E =
-0.5kx"2. If you don't do this correctly, the minimization will not converge properly.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force due to the electric field to the system's potential energy as part of thermodynamic output. This is a
fictitious quantity but is needed so that the minimize command can include the forces added by this fix in a
consistent manner. L.e. there is a decrease in potential energy when atoms move in the direction of the added
force due to the electric field.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force added to the group
of atoms. The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

fix efield command 353

LIGGGHTS Users Manual

Related commands:
fix_ addforce

Default: none

fix efield command 354

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix enforce2d command

fix enforce2d/cuda command
Syntax:
fix ID group-ID enforce2d

¢ ID, group-ID are documented in fix command
¢ enforce2d = style name of this fix command

Examples:
fix 5 all enforce2d
Description:

Zero out the z-dimension velocity and force on each atom in the group. This is useful when running a 2d
simulation to insure that atoms do not move from their initial z coordinate.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
Restrictions: none

Related commands: none

Default: none

fix enforce2d command 355

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix evaporate command

Syntax:
fix ID group-ID evaporate N M region-ID seed

¢ ID, group-ID are documented in fix command

¢ evaporate = style name of this fix command

¢ N = delete atoms every this many timesteps

® M = number of atoms to delete each time

¢ region-ID = ID of region within which to perform deletions

¢ seed = random number seed to use for choosing atoms to delete
¢ zero or more keyword/value pairs may be appended

keyword = molecule
molecule value = no or yes

Examples:

fix 1 solvent evaporate 1000 10 surface 49892
fix 1 solvent evaporate 1000 10 surface 38277 molecule yes

Description:

Remove M atoms from the simulation every N steps. This can be used, for example, to model evaporation of
solvent particles or moleclues (i.e. drying) of a system. Every N steps, the number of atoms in the fix group
and within the specifed region are counted. M of these are chosen at random and deleted. If there are less than
M eligible particles, then all of them are deleted.

If the setting for the molecule keyword is no, then only single atoms are deleted. In this case, you should
insure you do not delete only a portion of a molecule (only some of its atoms), or LAMMPS will soon
generate an error when it tries to find those atoms. LAMMPS will warn you if any of the atoms eligible for
deletion have a non-zero molecule ID, but does not check for this at the time of deletion.

If the setting for the molecule keyword is yes, then when an atom is chosen for deletion, the entire molecule it
is part of is deleted. The count of deleted atoms is incremented by the number of atoms in the molecule, which
may make it exceed M. If the molecule ID of the chosen atom is 0, then it is assumed to not be part of a
molecule, and just the single atom is deleted.

As an example, if you wish to delete 10 water molecules every N steps, you should set M to 30. If only the
water's oxygen atoms were in the fix group, then two hydrogen atoms would be deleted when an oxygen atom

is selected for deletion, whether the hydrogens are inside the evaporation region or not.

Note that neighbor lists are re-built on timesteps that atoms are removed. Thus you should not remove atoms
too frequently or you will incur overhead due to the cost of building neighbor lists.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar, which can be accessed by various output commands. The scalar is the
cummulative number of deleted atoms. The scalar value calculated by this fix is "intensive".

fix enforce2d/cuda command 356

http://lammps.sandia.gov

LIGGGHTS Users Manual

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix_deposit

Default:

The option defaults are molecule = no.

fix evaporate command 357

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix external command

Syntax:

fix ID group-ID external mode args

¢ ID, group-ID are documented in fix command
e external = style name of this fix command
¢ mode = pf/callback or pf/array

pf/callback args = Ncall Napply
Ncall = make callback every Ncall steps
Napply = apply callback forces every Napply steps
pf/array args = Napply
Napply = apply array forces every Napply steps

Examples:

fix 1 all external pf/callback 1 1
fix 1 all external pf/callback 100 1
fix 1 all external pf/array 10

Description:

This fix allows external programs that are running LAMMPS through its library interface to modify certain
LAMMPS properties on specific timesteps, similar to the way other fixes do. The external driver can be a

C/C++ or Fortran program or a Python script.

If mode is pf/callback then the fix will make a callback every Ncall timesteps or minimization iterations to the
external program. The external program computes forces on atoms by setting values in an array owned by the
fix. The fix then adds these forces to each atom in the group, once every Napply steps, similar to the way the
fix addforce command works. Note that if Ncall > Napply, the force values produced by one callback will
persist, and be used multiple times to update atom forces.

The callback function "foo" is invoked by the fix as:
foo(void *ptr, bigint timestep, int nlocal, int *ids, double **x, double **fexternal);
The arguments are as follows:
e ptr = pointer provided by and simply passed back to external driver
e timestep = current LAMMPS timestep
¢ nlocal = # of atoms on this processor
¢ ids = list of atom IDs on this processor
¢ x = coordinates of atoms on this processor
e fexternal = forces to add to atoms on this processor
Note that timestep is a "bigint" which is defined in src/Imptype.h, typically as a 64-bit integer.
Fexternal are the forces returned by the driver program.
The fix has a set_callback() method which the external driver can call to pass a pointer to its foo() function.

See the couple/lammps_quest/Impgst.cpp file in the LAMMPS distribution for an example of how this is
done. This sample application performs classical MD using quantum forces computed by a density functional

fix external command 358

http://lammps.sandia.gov

LIGGGHTS Users Manual
code Quest.

If mode is pf/array then the fix simply stores force values in an array. The fix adds these forces to each atom
in the group, once every Napply steps, similar to the way the fix addforce command works.

The name of the public force array provided by the FixExternal class is

double **fexternal;

It is allocated by the FixExternal class as an (N,3) array where N is the number of atoms owned by a
processor. The 3 corresponds to the fx, fy, fz components of force.

It is up to the external program to set the values in this array to the desired quantities, as often as desired. For
example, the driver program might perform an MD run in stages of 1000 timesteps each. In between calls to
the LAMMPS run command, it could retrieve atom coordinates from LAMMPS, compute forces, set values in
fexternal, etc.

To use this fix during energy minimization, the energy corresponding to the added forces must also be set so
as to be consistent with the added forces. Otherwise the minimization will not converge correctly.

This can be done from the external driver by calling this public method of the FixExternal class:
void set_energy (double eng);
where eng is the potential energy. Eng is an extensive quantity, meaning it should be the sum over per-atom

energies of all affected atoms. It should also be provided in energy units consistent with the simulation. See
the details below for how to insure this energy setting is used appropriately in a minimization.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" set by the external driver
to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is needed so
that the minimize command can include the forces added by this fix in a consistent manner. I.e. there is a

decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
potential energy discussed above. The scalar stored by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions: none

Related commands: none

Default: none

fix external command 359

http://dft.sandia.gov/Quest

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix freeze command

fix freeze/cuda command
Syntax:
fix ID group-ID freeze

¢ ID, group-ID are documented in fix command
¢ freeze = style name of this fix command

Examples:

fix 2 bottom freeze

Description:

Zero out the force and torque on a granular particle. This is useful for preventing certain particles from

moving in a simulation. The granular pair styles also detect if this fix has been defined and compute
interactions between frozen and non-frozen particles appropriately, as if the frozen particle has infinite mass.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector

values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the GRANULAR package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

fix freeze command 360

http://lammps.sandia.gov

LIGGGHTS Users Manual

There can only be a single freeze fix defined. This is because other the granular pair styles treat frozen
particles differently and need to be able to reference a single group to which this fix is applied.

Related commands: none

atom_style sphere

Default: none

fix freeze/cuda command 361

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix gcmc command

Syntax:

fix ID group-ID gcmc N X M type seed T mu displace keyword values

¢ ID, group-ID are documented in fix command

¢ gcmc = style name of this fix command

¢ N =invoke this fix every N steps

¢ X = number of exchanges to attempt every N steps

® M = number of MC displacements to attempt every N steps

¢ type = atom type or molecule ID of exchanged gas

¢ seed = random # seed (positive integer)

¢ T = temperature of the ideal gas reservoir (temperature units)

¢ mu = chemical potential of the ideal gas reservoir (energy units)

¢ displace = maximum Monte Carlo displacement distance (length units)
 zero or more keyword/value pairs may be appended to args

¢ keyword = molecule, region, maxangle, pressure, or fugacity_coeff

molecule value = no or yes
region value = region-ID
region-ID = ID of region to use as an exchange/move volume

maxangle value = maximum molecular rotation angle (degrees)
pressure value = pressue of the gas reservoir (pressure units)
fugacity_coeff value = fugacity coefficient of the gas reservoir (unitless)

Examples:

fix 2 gas gcmc 10 1000 1000 2 29494 298.0 -0.5 0.01
fix 3 Kr gcmc 10 100 100 1 3456543 3.0 -2.5 0.1 molecule yes maxangle 180
fix 4 my_gas gcmc 1 10 10 1 123456543 300.0 -12.5 1.0 region disk

Description:

This fix performs grand canonical Monte Carlo (GCMC) exchanges of atoms or molecules of the given type
with an imaginary ideal gas reservoir at the specified T and chemical potential (mu) as discussed in (Frenkel).
If used with the fix nvt command, simulations in the grand canonical enemble (muVT, constant chemical
potential, constant volume, and constant temperature) can be performed. Specific uses include computing
isotherms in microporous materials, or computing vapor-liquid coexistence curves.

Perform up to X exchanges of gas atoms or molecules of the given type between the simulation domain and
the imaginary reservoir every N timesteps. Also perform M Monte Carlo displacements or rotations (for
molecules) of gas of the given type within the simulation domain. M should typically be chosen to be
approximately equal to the expected number of gas atoms or molecules of the given type within the domain,
which will result in roughly one MC translation per atom or molecule per MC cycle.

For MC moves of molecular gasses, rotations and translations are each attempted with 50% probability. For
MC moves of atomic gasses, translations are attempted 100% of the time. For MC exchanges of either
molecular or atomic gasses, deletions and insertions are each attempted with 50% probability.

This fix cannot be used to perform MC insertions of gas atoms or molecules other than the exchanged type,
but MC deletions, translations, and rotations can be performed on any atom/molecule in the fix group. All
atoms in the simulation domain can be moved using regular time integration displacements, e.g. via fix_nvt,
resulting in a hybrid GCMC+MD simulation. A smaller-than-usual timestep size may be needed when

fix gcmc command 362

http://lammps.sandia.gov

LIGGGHTS Users Manual

running such a hybrid simulation, especially if the inserted molecules are not well equilibrated.

This command may optionally use the region keyword to define an exchange and move volume. The specified
region must have been previously defined with a region command. It must be defined with side = in. Insertion
attempts occur only within the specified region. Move and deletion attempt candidates are selected from gas
atoms or molecules within the region. If no candidate can be found within the specified region after randomly
selecting candidates 1000 times, the move or deletion attempt is considered a failure. Moves must start within
the specified region, but may move the atom or molecule slightly outside of the region.

If used with fix_nvt, the temperature of the imaginary reservoir, T, should be set to be equivalent to the target
temperature used in fix_nvt. Otherwise, the imaginary reservoir will not be in thermal equilibrium with the
simulation domain.

Note that neighbor lists are re-built every timestep that this fix is invoked, so you should not set N to be too
small. However, periodic rebuilds are necessary in order to avoid dangerous rebuilds and missed interactions.
Specifically, avoid performing so many MC displacements per timestep that atoms can move beyond the
neighbor list skin distance. See the neighbor command for details.

When an atom or molecule is to be inserted, its center-of-mass coordinates are chosen as a random position
within the current simulation domain, and new atom velocities are randomly chosen from the specified
temperature distribution given by T. Relative coordinates for atoms in a molecule are taken from the template
molecule provided by the user. A random initial rotation is used in the case of molecule insertions.

If the setting for the molecule keyword is no, then only single atoms are exchanged. In this case, you should
ensure you do not delete only a portion of a molecule (only some of its atoms), or LAMMPS will soon
generate an error when it tries to find those atoms. LAMMPS will warn you if any of the atoms eligible for
deletion have a non-zero molecule ID, but does not check for this at the time of deletion.

If the setting for the molecule keyword is yes, entire molecules are exchanged. The user must supply a model
molecule in the data file to use as a template for exchanges, and that molecule's number must be given in the
fix GCMC command as the "type" of the exchanged gas. Note that the model molecule must be present
whenever the fix is initialized. This is a limitation that will likely be remedied in the not-to-distant future.

Optionally, users may specify the maximum rotation angle for molecular rotations using the maxangle
keyword and specifying the angle in degrees. The specified angle will apply to all three Euler angles used
internally to define the rotation matrix for molecular rotations. The max angle can be set to zero, but rotations
will be pointless. Note that the default is ten degrees for each Euler angle.

For atomic gasses, inserted atoms have the specified atom type, but deleted atoms are any atoms that have
been inserted or that belong to the user-specified fix group. For molecular gasses, exchanged molecules use
the same atom types as in the template molecule supplied by the user. In both cases, exchanged
atoms/molecules are assigned to two groups: the default group "all" and the group specified in the fix gcmc
command (which can also be "all").

The gas reservoir pressure can be specified using the pressure keyword, in which case the user-specified
chemical potential is ignored. For non-ideal gas reservoirs, the user may also specify the fugacity coefficient
using the fugacity_coeff keyword.

Use of this fix typically will cause the number of atoms to fluctuate, therefore, you will want to use the

compute modify command to insure that the current number of atoms is used as a normalizing factor each
time temperature is computed. Here is the necessary command:

compute_modify thermo_temp dynamic yes

fix gcmc command 363

LIGGGHTS Users Manual

If LJ units are used, note that a value of 0.18292026 is used by this fix as the reduced value for Planck's
constant. This value was derived from LJ paramters for argon, where h* = h/sqrt(sigma”2 * epsilon * mass),
sigma = 3.429 angstroms, epsilon/k = 121.85 K, and mass = 39.948 amu.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the deposition to binary restart files. This includes information about the random
number generator seed, the next timestep for MC exchanges, etc. See the read restart command for info on
how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an
uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix computes a global vector of length 6, which can be accessed by various output commands. The vector
values are the following global cummulative quantities:

¢ | = displacement attempts
¢ 2 = displacement successes
¢ 3 = insertion attempts

® 4 = insertion successes

® 5 = deletion attempts

® 6 = deletion successes

e 7 = rotation attempts

e 8 = rotation successes

The vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Do not set "neigh_modify once yes" or else this fix will never be called. Reneighboring is required.

Only pairwise interactions, as defined by the pair_style command, are included in this calculation. Long-range
interactions due to a kspace style command are not included. Not all pair potentials can be evaluated in a
pairwise mode as required by this fix. For example, 3-body potentials, such as Tersoff and Stillinger-Weber
cannot be used. EAM potentials for metals only include the pair potential portion of the EAM interaction, not
the embedding term.

Can be run in parallel, but aspects of the GCMC part will not scale well in parallel. Only usable for 3D
simulations with orthogonal simulation cells.

Note that very lengthy simulations involving insertions/deletions of billions of gas molecules may run out of
atom or molecule IDs and trigger an error, so it is better to run multiple shorter-duration simulations.
Likewise, very large molecules have not been tested and may turn out to be problematic.

Use of multiple fix gcmec commands in the same input script can be problematic if using a template molecule.
The issue is that the user-referenced template molecule in the second fix gcmc command may no longer exist
since it might have been deleted by the first fix gcmc command. An existing template molecule will need to
be referenced by the user for each subsequent fix gcmc command.

fix gcmc command 364

LIGGGHTS Users Manual

Related commands:

fix_nvt, neighbor, fix _deposit, fix_evaporate, delete atoms

Default:

The option defaults are molecule = no, maxangle = 10.

(Frenkel) Frenkel and Smit, Understanding Molecular Simulation, Academic Press, London, 2002.

fix gcmc command 365

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix gld command

Syntax:
fix ID group-ID gld Tstart Tstop N_k seed series c_1 tau_l ... c_N_k tau_N_k keyword values

¢ ID, group-ID are documented in fix command

¢ gld = style name of this fix command

o Tstart, Tstop = desired temperature at start/end of run (temperature units)

¢ N_k = number of terms in the Prony series representation of the memory kernel
¢ seed = random number seed to use for white noise (positive integer)

e series = pprony is presently the only available option

¢ c_k = the weight of the kth term in the Prony series (mass per time units)

¢ tau_k = the time constant of the kth term in the Prony series (time units)

¢ zero or more keyword/value pairs may be appended

keyword = frozen or zero

frozen value = no or yes
no = initialize extended variables using values drawn from equilibrium distribution at
yes = initialize extended variables to zero (i.e., from equilibrium distribution at =ze
zero value = no or yes
no = do not set total random force to zero
yes = set total random force to zero
Examples:

fix 1 all gld 1.0 1.0 2 82885 pprony 0.5 1.0 1.0 2.0 frozen yes zero yes
fix 3 rouse gld 7.355 7.355 4 48823 pprony 107.1 0.02415 186.0 0.04294 428.6 0.09661 1714 0.38643

Description:

Applies Generalized Langevin Dynamics to a group of atoms, as described in (Baczewski). This is intended to
model the effect of an implicit solvent with a temporally non-local dissipative force and a colored Gaussian
random force, consistent with the Fluctuation-Dissipation Theorem. The functional form of the memory
kernel associated with the temporally non-local force is constrained to be a Prony series.

IMPORTANT NOTE: While this fix bears many similarities to fix langevin, it has one significant difference.
Namely, fix gld performs time integration, whereas fix langevin does NOT. To this end, the specification of

another fix to perform time integration, such as fix nve, is NOT necessary.

With this fix active, the force on the jth atom is given as

fix gld command 366

http://lammps.sandia.gov

LIGGGHTS Users Manual

F,(t) = FO(t) - [Lj(t — s)v;(s) ds + FA()

Ne
Mit—s)=3 Eeeorm

k=1 Tk
(F}(t),Fi(s)) = kgT [yt — s)

Here, the first term is representative of all conservative (pairwise, bonded, etc) forces external to this fix, the
second is the temporally non-local dissipative force given as a Prony series, and the third is the colored
Gaussian random force.

The Prony series form of the memory kernel is chosen to enable an extended variable formalism, with a
number of exemplary mathematical features discussed in (Baczewski). In particular, 3N_k extended variables
are added to each atom, which effect the action of the memory kernel without having to explicitly evaluate the
integral over time in the second term of the force. This also has the benefit of requiring the generation of
uncorrelated random forces, rather than correlated random forces as specified in the third term of the force.

Presently, the Prony series coefficients are limited to being greater than or equal to zero, and the time
constants are limited to being greater than zero. To this end, the value of series MUST be set to pprony, for
now. Future updates will allow for negative coefficients and other representations of the memory kernel. It is
with these updates in mind that the series option was included.

The units of the Prony series coefficients are chosen to be mass per time to ensure that the numerical
integration scheme stably approaches the Newtonian and Langevin limits. Details of these limits, and the
associated numerical concerns are discussed in (Baczewski).

The desired temperature at each timestep is ramped from Tstart to Tstop over the course of the next run.
The random # seed must be a positive integer. A Marsaglia random number generator is used. Each processor

uses the input seed to generate its own unique seed and its own stream of random numbers. Thus the dynamics
of the system will not be identical on two runs on different numbers of processors.

The keyword/value option pairs are used in the following ways.

The keyword frozen can be used to specify how the extended variables associated with the GLD memory
kernel are initialized. Specifying no (the default), the initial values are drawn at random from an equilibrium
distribution at Tstart, consistent with the Fluctuation-Dissipation Theorem. Specifying yes, initializes the
extended variables to zero.

The keyword zero can be used to eliminate drift due to the thermostat. Because the random forces on different
atoms are independent, they do not sum exactly to zero. As a result, this fix applies a small random force to
the entire system, and the center-of-mass of the system undergoes a slow random walk. If the keyword zero is
set to yes, the total random force is set exactly to zero by subtracting off an equal part of it from each atom in
the group. As a result, the center-of-mass of a system with zero initial momentum will not drift over time.

Restart, run start/stop, minimize info:

fix gld command 367

LIGGGHTS Users Manual

The instantaneous values of the extended variables are written to binary restart files. Because the state of the
random number generator is not saved in restart files, this means you cannot do "exact" restarts with this fix,
where the simulation continues on the same as if no restart had taken place. However, in a statistical sense, a
restarted simulation should produce the same behavior.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:
fix langevin, fix viscous, pair_style dpd/tstat
Default:

The option defaults are frozen = no, zero = no.

(Baczewski) A.D. Baczewski and S.D. Bond, J. Chem. Phys. 139, 044107 (2013).

fix gld command 368

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix gravity command
fix gravity/cuda command

fix gravity/omp command

Syntax:

fix ID group gravity magnitude style args

¢ ID, group are documented in fix command

® gravity = style name of this fix command

* magnitude = size of acceleration (force/mass units)
¢ magnitude can be a variable (see below)

e style = chute or spherical or gradient or vector

chute args = angle

angle = angle in +x away from -z or -y axis in 3d/2d (in degrees)
angle can be a variable (see below)

spherical args = phi theta
phi = azimuthal angle from +x axis (in degrees)
theta = angle from +z or +y axis in 3d/2d (in degrees)
phi or theta can be a variable (see below)

vector args = xXx y z
X y z = vector direction to apply the acceleration
X Oor y or z can be a variable (see below)

Examples:

fix 1 all gravity 1.0 chute 24.0

fix 1 all gravity v_increase chute 24.0

fix 1 all gravity 1.0 spherical 0.0 -180.0

fix 1 all gravity 10.0 spherical v_phi v_theta
fix 1 all gravity 100.0 vector 1 1 O
Description:

Impose an additional acceleration on each particle in the group. This fix is typically used with granular
systems to include a "gravity" term acting on the macroscopic particles. More generally, it can represent any
kind of driving field, e.g. a pressure gradient inducing a Poiseuille flow in a fluid. Note that this fix operates
differently than the fix addforce command. The addforce fix adds the same force to each atom, independent of
its mass. This command imparts the same acceleration to each atom (force/mass).

The magnitude of the acceleration is specified in force/mass units. For granular systems (LJ units) this is
typically 1.0. See the units command for details.

Style chute is typically used for simulations of chute flow where the specified angle is the chute angle, with
flow occurring in the +x direction. For 3d systems, the tilt is away from the z axis; for 2d systems, the tilt is
away from the y axis.

Style spherical allows an arbitrary 3d direction to be specified for the acceleration vector. Phi and theta are
defined in the usual spherical coordinates. Thus for acceleration acting in the -z direction, theta would be
180.0 (or -180.0). Theta = 90.0 and phi = -90.0 would mean acceleration acts in the -y direction. For 2d
systems, phi is ignored and theta is an angle in the xy plane where theta = 0.0 is the y-axis.

fix gravity command 369

http://lammps.sandia.gov

LIGGGHTS Users Manual

Style vector imposes an acceleration in the vector direction given by (X,y,z). Only the direction of the vector is
important; it's length is ignored. For 2d systems, the z component is ignored.

Any of the quantities magnitude, angle, phi, theta, x, y, z which define the gravitational magnitude and
direction, can be specified as an equal-style variable. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its
value used to determine the quantity. You should insure that the variable calculates a result in the approriate
units, e.g. force/mass or degrees.

Equal-style variables can specify formulas with various mathematical functions, and include thermo _style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent gravitational field.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the gravitational potential energy of the system
to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. This scalar is the
gravitational potential energy of the particles in the defined field, namely mass * (g dot x) for each particles,
where x and mass are the particles position and mass, and g is the gravitational field. The scalar value

calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:
atom_style sphere, fix addforce

Default: none

fix gravity/omp command 370

LIGGGHTS Users Manual

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix heat/gran command

fix heat/gran/conduction command

Syntax:

fix ID group-ID heat/gran initial_temperature T0 keyword values

fix ID group-ID heat/gran/conduction initial_temperature TO keyword values

¢ ID, group-ID are documented in fix command

e heat/gran/conduction or fix heat/gran = style name of this fix command
¢ initial_temperature = obligatory keyword

¢ TO = initial (default) temperature for the particles

¢ zero or more keyword/value pairs may be appended

¢ keyword = contact_area or area_correction

contact_area values = overlap or constant value or projection
area_correction values = yes or no

Examples:
fix 3 hg heat/gran/conduction initial_ temperature 273.15

LIGGGHTS vs. LAMMPS info:
This command is not available in LAMMPS.
Description:

Calculates heat conduction between particles in contact and temperature update according to

L]
QPJ—M = Vg i=j "ITPJ-PJ

ci-j = k +k contact.i-f
bi e
dT L) L)
¥}
mp cp d = Zpr—pj + Qp.‘ source
t contacts i-j e——

T heat generation
heat conduction due to sources,
by contacts &g reactions

he heat transfer coefficient [i]

ki thermal conductivity of particle | [K;TmJ

) . J
5 fic th / ity | —
cp specific thermal capaci :.'[kgK}

Acontact j-j Particle contact area[m-]

It is assumed that the temperature within the particles is uniform. To make particles adiabatic (so they do

not change the temperature), do not include them in the fix group. However, heat transfer is calculated

fix heat/gran command

371

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS Users Manual

between particles in the group and particles not in the group (but temperature update is not performed for
particles not in the group). Thermal conductivity and specific thermal capacity must be defined for each
atom type used in the simulation by means of fix property/global commands:

fix id all property/global thermalConductivity peratomtype value_1l value_2
(value_i=value for thermal conductivity of atom type 1i)

fix id all property/global thermalCapacity peratomtype value_1 value_2
(value_i=value for thermal capacity of atom type 1)

To set the temperature for a group of particles, you can use the set command with keyword property/atom
and values Temp T. T is the temperature value you want the particles to have. To set heat sources (or sinks)
for a group of particles, you can also use the set command with the set keyword: property/atom and the set
values: heatSource h where h is the heat source value you want the particles to have (in Energy/time units).
A negative value means it is a heat sink. Examples would be:

set region halfbed property/peratom Temp 800.
set region srcreg property/peratom heatSource 0.5

Contact area calculation:

Using keyword contact_area, you can choose from 3 modes of calulating the contact area for
particle-particle heat transfer: If overlap is used, the contact area is calculated from the area of the
sphere-sphere intersection If constant is used, a constant user-defined overlap area is assumed. If projection
is used, the overlap area is assumed to be equal to rmin*rmin*Pi, where rmin is the radius of the smaller of
the two particles in contact.

Area correction:

For contact_area = overlap, an area correction can additionally be performed using keyword
area_correction to account for the fact that the Young's modulus might have been decreased in order to
speed-up the simulation, thus artificially increasing the overlap. In this case, you have to specify the
original Young's modulus of each material by means of a fix property/global command:

fix id all property/global youngsModulusOriginal peratomtype value_1 value_2
(value_i=value for original Young's modulus of atom type 1)

This area correction is performed by scaling the contact area with (Y*/Y*,orig)*a, where Y* and Y*,orig
are calculated as defined in pair_style gran . The scaling factor is given as e.g. a=1 for a Hooke and a=2/3
for a Hertz interaction.

Output info:

You can visualize the heat sources by accessing f_heatSource[0], and the heatFluxes by f_heatFlux[0] .
With f_directionalHeatFlux[0], f_directionalHeatFlux[1] and f_directionalHeatFlux[2] you can access the
conductive heat fluxes in x,y,z directions. The conductive heat fluxes are calculated per-contact and half the
value is stored in each atom participating in the contact. With f_Temp[0] you can access the per-particle
temperature. You can also access the total thermal energy of the fix group (useful for the thermo command)
with f_id .

Restart, fix_modify, run start/stop, minimize info:

The particle temperature and heat source is written is written to binary restart files so simulations can
continue properly. None of the fix_modify options are relevant to this fix.

fix heat/gran/conduction command 372

LIGGGHTS Users Manual

This fix computes a scalar which can be accessed by various output commands. This scalar is the total
thermal energy of the fix group

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:
none
Related commands:

compute temp, compute temp/region

Default: contact_area = overlap, area_correction = off

fix heat/gran/conduction command 373

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix heat command

Syntax:
fix ID group-ID heat N eflux

¢ ID, group-ID are documented in fix command

¢ heat = style name of this fix command

¢ N = add/subtract heat every this many timesteps

¢ eflux = rate of heat addition or subtraction (energy/time units)
¢ eflux can be a variable (see below)

® zero or more keyword/value pairs may be appended to args

¢ keyword = region

region value = region-ID
region-ID = ID of region atoms must be in to have added force

Examples:

fix 3 gin heat 1 1.0
fix 3 gin heat 10 v_flux
fix 4 gout heat 1 -1.0 region top

Description:

Add non-translational kinetic energy (heat) to a group of atoms in a manner that conserves their aggregate
momentum. Two of these fixes can be used to establish a temperature gradient across a simulation domain by
adding heat (energy) to one group of atoms (hot reservoir) and subtracting heat from another (cold reservoir).
E.g. a simulation sampling from the McDLT ensemble.

If the region keyword is used, the atom must be in both the group and the specified geometric region in order
to have energy added or subtracted to it. If not specified, then the atoms in the group are affected wherever
they may move to.

Heat addition/subtraction is performed every N timesteps. The eflux parameter can be specified as a numeric
constant or as a variable (see below). If it is a numeric constant or equal-style variable which evaluates to a
scalar value, then the eflux determines the change in aggregate energy of the entire group of atoms per unit
time, e.g. in eV/psec for metal units. In this case it is an "extensive" quantity, meaning its magnitude should
be scaled with the number of atoms in the group. Note that since eflux has per-time units (i.e. it is a flux), this
means that a larger value of N will add/subtract a larger amount of energy each time the fix is invoked.

If eflux is specified as an atom-style variable (see below), then the variable computes one value per atom. In
this case, each value is the energy flux for a single atom, again in units of energy per unit time. In this case,
each value is an "intensive" quantity, which need not be scaled with the number of atoms in the group.

As mentioned above, the eflux parameter can be specified as an equal-style or atom_style variable. If the value
is a variable, it should be specified as v_name, where name is the variable name. In this case, the variable will
be evaluated each timestep, and its value(s) used to determine the flux.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style

command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent flux.

fix heat command 374

http://lammps.sandia.gov

LIGGGHTS Users Manual

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent flux with optional
time-dependence as well.

IMPORTANT NOTE: If heat is subtracted from the system too aggressively so that the group's kinetic energy
would go to zero, or any individual atom's kinetic energy would go to zero for the case where eflux is an
atom-style variable, then LAMMPS will halt with an error message.

Fix heat is different from a thermostat such as fix nvt or fix temp/rescale in that energy is added/subtracted
continually. Thus if there isn't another mechanism in place to counterbalance this effect, the entire system will
heat or cool continuously. You can use multiple heat fixes so that the net energy change is 0.0 or use fix
viscous to drain energy from the system.

This fix does not change the coordinates of its atoms; it only scales their velocities. Thus you must still use an
integration fix (e.g. fix nve) on the affected atoms. This fix should not normally be used on atoms that have
their temperature controlled by another fix - e.g. fix nvt or fix langevin fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar which can be accessed by various output commands. This scalar is the most
recent value by which velocites were scaled. The scalar value calculated by this fix is "intensive". If eflux is
specified as an atom-style variable, this fix computes the average value by which the velocities were scaled

for all of the atoms that had their velocities scaled.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute temp, compute temp/region

Default: none

fix heat command 375

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix command

Syntax:
fix ID group-ID style args

¢ ID = user-assigned name for the fix

¢ group-ID = ID of the group of atoms to apply the fix to

¢ style = one of a long list of possible style names (see below)
¢ args = arguments used by a particular style

Examples:

fix 1 all nve
fix 3 all nvt temp 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LAMMPS, a "fix" is any operation that is applied to the
system during timestepping or minimization. Examples include updating of atom positions and velocities due
to time integration, controlling temperature, applying constraint forces to atoms, enforcing boundary
conditions, computing diagnostics, etc. There are dozens of fixes defined in LAMMPS and new ones can be

added; see this section for a discussion.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage
of the timestep, they are invoked in the order they were specified in the input script.

The ID of a fix can only contain alphanumeric characters and underscores.

Fixes can be deleted with the unfix command.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with
a similar style will not turn off the first one. This is especially important to realize for integration fixes. For
example, using a fix nve command for a second run after using a fix nvt command for the first run, will not
cancel out the NVT time integration invoked by the "fix nvt" command. Thus two time integrators would be
in place!

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on
the old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one
originally was. Note that this operation also wipes out any additional changes made to the old fix via the
fix_modify command.

The fix modify command allows settings for some fixes to be reset. See the doc page for individual fixes for
details.

Some fixes store an internal "state" which is written to binary restart files via the restart or write restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the

read restart command for info on how to re-specify a fix in an input script that reads a restart file. See the doc
pages for individual fixes for info on which ones can be restarted.

fix command 376

http://lammps.sandia.gov

LIGGGHTS Users Manual

Some fixes calculate one of three styles of quantities: global, per-atom, or local, which can be used by other
commands or output as described below. A global quantity is one or more system-wide values, e.g. the energy
of a wall interacting with particles. A per-atom quantity is one or more values per atom, e.g. the displacement
vector for each atom since time 0. Per-atom values are set to 0.0 for atoms not in the specified fix group.
Local quantities are calculated by each processor based on the atoms it owns, but there may be zero or more
per atoms.

Note that a single fix may produces either global or per-atom or local quantities (or none at all), but never
more than one of these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each fix describes the style and kind of values it produces, e.g. a
per-atom vector. Some fixes produce more than one kind of a single style, e.g. a global scalar and a global
vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via
the following bracket notation, where ID is the ID of the fix:

f ID entire scalar, vector, or array

f ID[I] |one element of vector, one column of array

f_ID[I][J] |]one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
fix values as input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
fix quantity as f_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a fix can be used in several ways:

¢ Global values can be output via the thermo_style custom or fix ave/time command. Or the values can
be referenced in a yariable equal or variable atom command.

® Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

® Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command.

See this howto section for a summary of various LAMMPS output options, many of which involve fixes.

The results of fixes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means
the value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy.
Thermodynamic output will normalize extensive values by the number of atoms in the system, depending on
the "thermo_modify norm" setting. It will not normalize intensive values. If a fix value is accessed in another
way, e.g. by a variable, you may want to know whether it is an intensive or extensive value. See the doc page
for individual fixes for further info.

Each fix style has its own documentation page which describes its arguments and what it does, as listed
below. Here is an alphabetic list of fix styles available in LAMMPS:

¢ adapt - change a simulation parameter over time

fix command 377

LIGGGHTS Users Manual

¢ addforce - add a force to each atom

¢ append/atoms - append atoms to a running simulation

e aveforce - add an averaged force to each atom

® ave/atom - compute per-atom time-averaged quantities

e ave/histo - compute/output time-averaged histograms

® ave/spatial - compute/output time-averaged per-atom quantities by layer
e ave/time - compute/output global time-averaged quantities
¢ bond/break - break bonds on the fly

® bond/create - create bonds on the fly

¢ bond/swap - Monte Carlo bond swapping

® box/relax - relax box size during energy minimization

e deform - change the simulation box size/shape

® deposit - add new atoms above a surface

e drag - drag atoms towards a defined coordinate

e dt/reset - reset the timestep based on velocity, forces

e efield - impose electric field on system

¢ enforce2d - zero out z-dimension velocity and force

® evaporate - remove atoms from simulation periodically

e external - callback to an external driver program

e freeze - freeze atoms in a granular simulation

e gravity - add gravity to atoms in a granular simulation

® gcmc - grand canonical insertions/deletions

® heat - add/subtract momentum-conserving heat

e indent - impose force due to an indenter

® langevin - Langevin temperature control

e lineforce - constrain atoms to move in a line

e momentum - zero the linear and/or angular momentum of a group of atoms
® move - move atoms in a prescribed fashion

e msst - multi-scale shock technique (MSST) integration

® neb - nudged elastic band (NEB) spring forces

¢ nph - constant NPH time integration via Nose/Hoover

¢ nph/asphere - NPH for aspherical particles

¢ nph/sphere - NPH for spherical particles

¢ nphug - constant-stress Hugoniostat integration

® npt - constant NPT time integration via Nose/Hoover

¢ npt/asphere - NPT for aspherical particles

¢ npt/sphere - NPT for spherical particles

® nve - constant NVE time integration

¢ nve/asphere - NVE for aspherical particles

¢ nve/asphere/noforce - NVE for aspherical particles without forces"
¢ nve/body - NVE for body particles

e nve/limit - NVE with limited step length

¢ nve/line - NVE for line segments

¢ nve/noforce - NVE without forces (v only)

¢ nve/sphere - NVE for spherical particles

e nve/tri - NVE for triangles

® nvt - constant NVT time integration via Nose/Hoover

¢ nvt/asphere - NVT for aspherical particles

¢ nvt/sllod - NVT for NEMD with SLLOD equations

¢ nvt/sphere - NVT for spherical particles

e orient/fcc - add grain boundary migration force

e planeforce - constrain atoms to move in a plane

® poems - constrain clusters of atoms to move as coupled rigid bodies
® pour - pour new atoms into a granular simulation domain

fix command

378

LIGGGHTS Users Manual

e press/berendsen - pressure control by Berendsen barostat

e print - print text and variables during a simulation

e property/atom - add customized per-atom values

e reax/bonds - write out ReaxFF bond information recenter - constrain the center-of-mass position of a
group of atoms

e restrain - constrain a bond, angle, dihedral

e rigid - constrain one or more clusters of atoms to move as a rigid body with NVE integration

e rigid/nph - constrain one or more clusters of atoms to move as a rigid body with NPH integration

e rigid/npt - constrain one or more clusters of atoms to move as a rigid body with NPT integration

e rigid/nve - constrain one or more clusters of atoms to move as a rigid body with alternate NVE
integration

e rigid/nvt - constrain one or more clusters of atoms to move as a rigid body with NVT integration

e rigid - constrain many small clusters of atoms to move as a rigid body with NVE integration

o setforce - set the force on each atom

¢ shake - SHAKE constraints on bonds and/or angles

® spring - apply harmonic spring force to group of atoms

® spring/rg - spring on radius of gyration of group of atoms

e spring/self - spring from each atom to its origin

® srd - stochastic rotation dynamics (SRD)

e store/force - store force on each atom

® store/state - store attributes for each atom

¢ temp/berendsen - temperature control by Berendsen thermostat

¢ temp/rescale - temperature control by velocity rescaling

e thermal/conductivity - Muller-Plathe kinetic energy exchange for thermal conductivity calculation

¢ tmd - guide a group of atoms to a new configuration

e (tm - two-temperature model for electronic/atomic coupling

® viscosity - Muller-Plathe momentum exchange for viscosity calculation

® viscous - viscous damping for granular simulations

e wall/colloid - Lennard-Jones wall interacting with finite-size particles

e wall/gran - frictional wall(s) for granular simulations

e wall/harmonic - harmonic spring wall

e wall/lj126 - Lennard-Jones 12-6 wall

¢ wall/lj93 - Lennard-Jones 9-3 wall

e wall/piston - moving reflective piston wall

e wall/reflect - reflecting wall(s)

e wall/region - use region surface as wall

e wall/std - slip/no-slip wall for SRD particles

There are also additional fix styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the fix section of this page.

There are also additional accelerated fix styles included in the LAMMPS distribution for faster performance
on CPUs and GPUs. The list of these with links to the individual styles are given in the pair section of this

page.

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info on packages. The doc pages for individual fixes tell if it is
part of a package.

Related commands:

unfix, fix_modify

fix command 379

LIGGGHTS Users Manual

Default: none

fix command 380

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix imd command

Syntax:
fix ID group-ID imd trate port keyword wvalues

¢ ID, group-ID are documented in fix command

¢ imd = style name of this fix command

¢ port = port number on which the fix listens for an IMD client
¢ keyword = unwrap or fscale or trate

unwrap arg = on or off
off = coordinates are wrapped back into the principal unit cell (default)
on = "unwrapped" coordinates using the image flags used
fscale arg = factor
factor = floating point number to scale IMD forces (default: 1.0)
trate arg = transmission rate of coordinate data sets (default: 1)
nowait arg = on or off

off = LAMMPS waits to be connected to an IMD client before continuing (default)
on = LAMMPS listens for an IMD client, but continues with the run

Examples:

fix vmd all imd 5678
fix comm all imd 8888 trate 5 unwrap on fscale 10.0

Description:

This fix implements the "Interactive MD" (IMD) protocol which allows realtime visualization and
manipulation of MD simulations through the IMD protocol, as initially implemented in VMD and NAMD.
Specifically it allows LAMMPS to connect an IMD client, for example the VMD visualization program, so
that it can monitor the progress of the simulation and interactively apply forces to selected atoms.

If LAMMPS is compiled with the preprocessor flag -DLAMMPS_ASYNC_IMD then fix imd will use POSIX
threads to spawn a IMD communication thread on MPI rank 0 in order to offload data reading and writing
from the main execution thread and potentially lower the inferred latencies for slow communication links.
This feature has only been tested under linux.

There are example scripts for using this package with LAMMPS in examples/USER/imd. Additional
examples and a driver for use with the Novint Falcon game controller as haptic device can be found at:
http://sites.google.com/site/akohlmey/software/vrpn-icms.

The source code for this fix includes code developed by the Theoretical and Computational Biophysics Group
in the Beckman Institute for Advanced Science and Technology at the University of Illinois at
Urbana-Champaign. We thank them for providing a software interface that allows codes like LAMMPS to
hook to VMD.

Upon initialization of the fix, it will open a communication port on the node with MPI task 0 and wait for an
incoming connection. As soon as an IMD client is connected, the simulation will continue and the fix will
send the current coordinates of the fix's group to the IMD client at every trate MD step. When using r-RESPA,
trate applies to the steps of the outmost RESPA level. During a run with an active IMD connection also the
IMD client can request to apply forces to selected atoms of the fix group.

fix imd command 381

http://lammps.sandia.gov
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

LIGGGHTS Users Manual

The port number selected must be an available network port number. On many machines, port numbers <
1024 are reserved for accounts with system manager privilege and specific applications. If multiple imd fixes
would be active at the same time, each needs to use a different port number.

The nowait keyword controls the behavior of the fix when no IMD client is connected. With the default
setting of off, LAMMPS will wait until a connection is made before continuing with the execution. Setting
nowait to on will have the LAMMPS code be ready to connect to a client, but continue with the simulation.
This can for example be used to monitor the progress of an ongoing calculation without the need to be
permanently connected or having to download a trajectory file.

The trate keyword allows to select how often the coordinate data is sent to the IMD client. It can also be
changed on request of the IMD client through an IMD protocol message. The unwrap keyword allows to send
"unwrapped" coordinates to the IMD client that undo the wrapping back of coordinates into the principle unit
cell, as done by default in LAMMPS. The fscale keyword allows to apply a scaling factor to forces
transmitted by the IMD client. The IMD protocols stipulates that forces are transferred in kcal/mol/angstrom
under the assumption that coordinates are given in angstrom. For LAMMPS runs with different units or as a
measure to tweak the forces generated by the manipulation of the IMD client, this option allows to make
adjustments.

To connect VMD to a listening LAMMPS simulation on the same machine with fix imd enabled, one needs to
start VMD and load a coordinate or topology file that matches the fix group. When the VMD command
prompts appears, one types the command line:

imd connect localhost 5678
This assumes that fix imd was started with 5678 as a port number for the IMD protocol.
The steps to do interactive manipulation of a running simulation in VMD are the following:

In the Mouse menu of the VMD Main window, select "Mouse -> Force -> Atom". You may alternately select
"Residue", or "Fragment" to apply forces to whole residues or fragments. Your mouse can now be used to
apply forces to your simulation. Click on an atom, residue, or fragment and drag to apply a force. Click
quickly without moving the mouse to turn the force off. You can also use a variety of 3D position trackers to
apply forces to your simulation. Game controllers or haptic devices with force-feedback such as the Novint
Falcon or Sensable PHANTOM allow you to feel the resistance due to inertia or interactions with neighbors
that the atoms experience you are trying to move, as if they were real objects. See the VMD IMD Homepage
and the VRPN-ICMS Homepage for more details.

If IMD control messages are received, a line of text describing the message and its effect will be printed to the
LAMMPS output screen, if screen output is active.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global scalar or vector or per-atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is
not invoked during energy minimization.

Restrictions:

This fix is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

When used in combination with VMD, a topology or coordinate file has to be loaded, which matches (in
number and ordering of atoms) the group the fix is applied to. The fix internally sorts atom IDs by ascending

fix imd command 382

http://www.ks.uiuc.edu/Research/vmd/imd/
http://sites.google.com/site/akohlmey/software/vrpn-icms

LIGGGHTS Users Manual

integer value; in VMD (and thus the IMD protocol) those will be assigned 0-based consecutive index
numbers.

When using multiple active IMD connections at the same time, each needs to use a different port number.
Related commands: none

Default: none

fix imd command 383

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix indent command

Syntax:

fix ID group-ID indent K keyword values

¢ ID, group-ID are documented in fix command

¢ indent = style name of this fix command

¢ K = force constant for indenter surface (force/distance”2 units)
¢ one or more keyword/value pairs may be appended

¢ keyword = sphere or cylinder or plane or side or units

sphere args = x y z R
X,y,z = initial position of center of indenter (distance units)
R = sphere radius of indenter (distance units)
any of x,y,z,R can be a variable (see below)

cylinder args = dim cl c2 R
dim = x or y or z = axis of cylinder
cl,c2 = coords of cylinder axis in other 2 dimensions (distance units)

R = cylinder radius of indenter (distance units)
any of cl,c2,R can be a variable (see below)
plane args = dim pos side
dim = x or y or z = plane perpendicular to this dimension
pos = position of plane in dimension x, y, or z (distance units)
pos can be a variable (see below)

side = lo or hi
side value = in or out
in = the indenter acts on particles inside the sphere or cylinder
out = the indenter acts on particles outside the sphere or cylinder
units value = lattice or box

lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

fix 1 all indent 10.0 sphere 0.0 0.0 15.0 3.0
fix 1 all indent 10.0 sphere v_x v_y 0.0 v_radius side in
fix 2 flow indent 10.0 cylinder z 0.0 0.0 10.0 units box

Description:

Insert an indenter within a simulation box. The indenter repels all atoms that touch it, so it can be used to push
into a material or as an obstacle in a flow. Or it can be used as a constraining wall around a simulation; see the
discussion of the side keyword below.

The indenter can either be spherical or cylindrical or planar. You must set one of those 3 keywords.

A spherical indenter exerts a force of magnitude

F(r) = - K (r — R)"2

on each atom where K is the specified force constant, r is the distance from the atom to the center of the
indenter, and R is the radius of the indenter. The force is repulsive and F(r) = 0 for r > R.

A cylindrical indenter exerts the same force, except that r is the distance from the atom to the center axis of
the cylinder. The cylinder extends infinitely along its axis.

fix indent command 384

http://lammps.sandia.gov

LIGGGHTS Users Manual

Spherical and cylindrical indenters account for periodic boundaries in two ways. First, the center point of a
spherical indenter (X,y,z) or axis of a cylindrical indenter (c1,c2) is remapped back into the simulation box, if
the box is periodic in a particular dimension. This occurs every timestep if the indenter geometry is specified
with a variable (see below), e.g. it is moving over time. Second, the calculation of distance to the indenter
center or axis accounts for periodic boundaries. Both of these mean that an indenter can effectively move
through and straddle one or more periodic boundaries.

A planar indenter is really an axis-aligned infinite-extent wall exerting the same force on atoms in the system,
where R is the position of the plane and r-R is the distance from the plane. If the side parameter of the plane is
specified as /o then it will indent from the lo end of the simulation box, meaning that atoms with a coordinate
less than the plane's current position will be pushed towards the hi end of the box and atoms with a coordinate
higher than the plane's current position will feel no force. Vice versa if side is specified as /i.

Any of the 4 quantities defining a spherical indenter's geometry can be specified as an equal-style variable,
namely x, y, z, or R. Similarly, for a cylindrical indenter, any of c/, c2, or R, can be a variable. For a planar
indenter, pos can be a variable. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value used to define the
indenter geometry.

Note that equal-style variables can specify formulas with various mathematical functions, and include
thermo_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is
easy to specify indenter properties that change as a function of time or span consecutive runs in a continuous
fashion. For the latter, see the start and stop keywords of the run command and the elaplong keyword of

thermo_style custom for details.

For example, if a spherical indenter's x-position is specfied as v_x, then this variable definition will keep it's
center at a relative position in the simulation box, 1/4 of the way from the left edge to the right edge, even if
the box size changes:

variable x equal "xlo + 0.25*1x"

Similarly, either of these variable definitions will move the indenter from an initial position at 2.5 at a
constant velocity of 5:

variable x equal "2.5 + 5*elaplong*dt"
variable x equal vdisplace(2.5,5)

If a spherical indenter's radius is specified as v_r, then these variable definitions will grow the size of the
indenter at a specfied rate.

variable r0 equal 0.0
variable rate equal 1.0
variable r equal "v_r0 + step*dt*v_rate"

If the side keyword is specified as out, which is the default, then particles outside the indenter are pushded
away from its outer surface, as described above. This only applies to spherical or cylindrical indenters. If the
side keyword is specified as in, the action of the indenter is reversed. Particles inside the indenter are pushed
away from its inner surface. In other words, the indenter is now a containing wall that traps the particles inside
it. If the radius shrinks over time, it will squeeze the particles.

The units keyword determines the meaning of the distance units used to define the indenter geometry. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. The (x,y,z) coords of the indenter position are scaled by the x,y,z
lattice spacings respectively. The radius of a spherical or cylindrical indenter is scaled by the x lattice spacing.

fix indent command 385

LIGGGHTS Users Manual

Note that the units keyword only affects indenter geometry parameters specified directly with numbers, not
those specified as variables. In the latter case, you should use the xlat, ylat, zlat keywords of the thermo _style
command if you want to include lattice spacings in a variable formula.

The force constant K is not affected by the units keyword. It is always in force/distance”2 units where force
and distance are defined by the units command. If you wish K to be scaled by the lattice spacing, you can
define K with a variable whose formula contains x/at, ylat, zlat keywords of the thermo_style command, e.g.

variable k equal 100.0/xlat/xlat
fix 1 all indent $k sphere ...

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and the
indenter to the system's potential energy as part of thermodynamic output. The energy of each particle

interacting with the indenter is K/3 (r - R)"3.

This fix computes a global scalar energy and a global 3-vector of forces (on the indenter), which can be
accessed by various output commands. The scalar and vector values calculated by this fix are "extensive".

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
Note that if you define the indenter geometry with a variable using a time-dependent formula, LAMMPS uses
the iteration count in the minimizer as the timestep. But it is almost certainly a bad idea to have the indenter
change its position or size during a minimization. LAMMPS does not check if you have done this.
IMPORTANT NOTE: If you want the atom/indenter interaction energy to be included in the total potential
energy of the system (the quantity being minimized), you must enable the fix_modify energy option for this
fix.

Restrictions: none

Related commands: none

Default:

The option defaults are side = out and units = lattice.

fix indent command 386

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix insert/pack command
Syntax:
fix ID group-ID insert/pack seed seed_value distributiontemplate dist-ID general_keywords general

¢ ID, group-ID are documented in fix command

e insert/pack = style names of this fix command

¢ seed = obligatory keyword

¢ seed_value = random # seed (positive integer)

¢ distributiontemplate = obligatory keyword

e dist-ID = ID of a fix_particledistribution discrete to be used for particle insertion

¢ one or more general keyword/value pairs can be appended

¢ general_keywords = verbose or maxattampt or insert_every or overlapcheck or all_in or
random_distribute or vel constant or vel uniform or vel gaussian or orientation or omega

verbose = yes Or no
maxattempt value = ma
ma = max # of insertion attempts per atom (positive integer)
insert_every value = once or ie
once = value to signalise that isertion takes place only once (the step after the fix
ie = every how many time-steps particles are inserted - insertion happens periodically
start value = ts
ts = time-step at which insertion should start (positive integer larger than current t
overlapcheck value = yes or no
all _in value = yes or no
random_distribute value = exact or uncorrelated
vel constant values = vx Vy Vz
vx = x-velocity at insertion (velocity units)
vy = y-velocity at insertion (velocity units)
vz = z-velocity at insertion (velocity units)
vel uniform values = vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
vz = mean z-velocity at insertion (velocity units)
vFluctx = amplitude of uniform x-velocity fluctuation at insertion (velocity units)
vFlucty = amplitude of uniform y-velocity fluctuation at insertion (velocity units)
vFluctz = amplitude of uniform z-velocity fluctuation at insertion (velocity units)
vel gaussian values = vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
vz = mean z-velocity at insertion (velocity units)

vFluctx = standard deviation of Gaussian x-velocity fluctuation at insertion (velocity

vFlucty = standard deviation of Gaussian y-velocity fluctuation at insertion (velocity

vFluctz = standard deviation of Gaussian z-velocity fluctuation at insertion (velocity
orientation values = random or template

random = randomize rotational orientation
template = use orientation from particle template
omega values = constant omegax omegay omegaz
constant = obligatory word
omegax = x—-comonent of angular velocity (1/time units)
omegay = y-comonent of angular velocity (1/time units)
omegaz = z-comonent of angular velocity (1/time units)
¢ following the general keyword/value section, one or more pack keyword/value pairs can be appended
for the fix insert/pack command
¢ pack_keywords = region or volumefraction_region or particles_in_region or mass_in_region or
ntry_mc

pack_keywords = where exactly one out of volumefraction_region or particles _in_region or m

fix insert/pack command 387

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS Users Manual

region value = region-ID

region-ID = ID of the region where the particles will be generated (positive integer)
volumefraction_region values = vol

vol = desired volume fraction for the region (positive float, 0 <vol <1)
particles_in_region values = np

np = desired number of particles in the region (positive integer)
mass_in_region values = m

m = desired mass in the region (positive float, m > 0)
ntry_mc values = n

n = number of Monte-Carlo steps for calculating the region's volume (positive integer

Examples:

fix ins all insert/pack seed 1001 distributiontemplate pddl insert_every once overlapcheck yes vc
Description:

Insert particles into a granular run either once or every few timesteps within the specified region, as defined
via the region keyword.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

At each insertion step, fix insert/pack tries inserts as many particles as needed to reach a defined target, which
can be either a region volume fraction (keyword volumefraction_region), the total number of particles in the
region (keyword particles_in_region), or the total particle mass in the region (keyword mass_in_region).
Exactly one out of the keywords volumefraction_region, particles_in_region, mass_in_region must be
defined.

The frequency of the particle insertion can be controlled by the keyword insert_every, which defines the
number of time-steps between two insertions. Alternatively, by specifying insert_every once, particles are
inserted only once.

The start keyword can be used to set the time-step at which the insertion should start.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution discrete and
fix_particletemplate sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

The all_in flag determines if the particle is completely contained in the insertion region (all_in yes) or only
the particle center (all_in no). Currently all_in yes is not yet supported for all types of insertion.

fix insert/pack command 388

LIGGGHTS Users Manual

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

The initial velocity and rotational velocity can be controlled via the ve/ and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation.

Description for fix insert/pack:

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. Dynamic regions are not supported as insertion region. Each
timestep particles are inserted, they are placed randomly inside the insertion volume.

The volumefraction option specifies what volume fraction of the insertion volume will be filled with particles.
The higher the value, the more particles are inserted each timestep. Since inserted particles should not overlap,
the maximum volume fraction should be no higher than about 0.6.

To determine the volume of the insertion region, a Monte Carlo approach might be used for some cases where
the volume is difficult to calculate or where the volume calculation is simply not implemented by the region.
The ntry_mc keyword is used to control the number of MC tries that are used for the volume calculation.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation while
inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during gnergy minimization.

Restrictions:

The overlapcheck = 'yes' option performs an inherently serial operation and will thus not scale well in parallel.
For this reason, if you want to generate large systems, you are advised to turn overlapcheck off and let the
packing relax afterwards to generate a valid packing.

Keywords duration and extrude_length can not be used together.

Currently all_in yes is not yet supported for all types of insertion.

Dynamic regions are not supported as insertion region.

Related commands:

fix insert/pack command 389

LIGGGHTS Users Manual
fix_insert stream, fix_insert rate region, fix deposit, region, fix _pour

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, ntry_mc = 100000, random_distribute = exact

fix insert/pack command 390

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix insert/rate/region command
Syntax:
fix ID group-ID insert/rate/region seed seed_value distributiontemplate dist-ID general_keyword

¢ ID, group-ID are documented in fix command

e insert/pack and insert/stream = style names of these fix commands

¢ seed = obligatory keyword

¢ seed_value = random # seed (positive integer)

¢ distributiontemplate = obligatory keyword

e dist-ID = ID of a fix_particledistribution discrete to be used for particle insertion

¢ one or more general keyword/value pairs can be appended

¢ general_keywords = verbose or maxattampt or nparticles or mass or particlerate or massrate or
insert_every or overlapcheck or all_in or random_distribute or vel constant or vel uniform or vel
gaussian or orientation or omega

verbose = yes Or no
maxattempt value = ma
ma = max # of insertion attempts per atom (positive integer)

nparticles values = np or INF
np = number of particles to insert (positive integer)
INF = insert as many particles as possible

mass values = mp
mp = mass of particles to be inserted (positive float)
INF = insert as many particles as possible
particlerate values = pr
pr = particle inseration rate (particles/time units)
massrate values = mr
mr = mass inseration rate (mass/time units)
insert_every value = once or ie
once = value to signalise that isertion takes place only once (the step after the fix
ie = every how many time-steps particles are inserted - insertion happens periodically
start value = ts
ts = time-step at which insertion should start (positive integer larger than current t
overlapcheck value = yes or no
all _in value = yes or no
random _distribute value = exact or uncorrelated
vel constant values = vx Vy Vz
vx = x-velocity at insertion (velocity units)
vy = y-velocity at insertion (velocity units)
vz = z-velocity at insertion (velocity units)
vel uniform values = vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
vz = mean z-velocity at insertion (velocity units)
vFluctx = amplitude of uniform x-velocity fluctuation at insertion (velocity units)
vFlucty = amplitude of uniform y-velocity fluctuation at insertion (velocity units)
vFluctz = amplitude of uniform z-velocity fluctuation at insertion (velocity units)
vel gaussian values = vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
vz = mean z-velocity at insertion (velocity units)

vFluctx = standard deviation of Gaussian x-velocity fluctuation at insertion (velocity

vFlucty = standard deviation of Gaussian y-velocity fluctuation at insertion (velocity

vFluctz = standard deviation of Gaussian z-velocity fluctuation at insertion (velocity
orientation values = random or template

random = randomize rotational orientation
template = use orientation from particle template
omega values = constant omegax omegay omegaz

fix insert/rate/region command 391

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS Users Manual

constant = obligatory word
omegax = x—comonent of angular velocity (1/time units)
omegay = y-comonent of angular velocity (1/time units)
omegaz = z-comonent of angular velocity (1/time units)
¢ following the general keyword/value section, one or more rate_region keyword/value pairs can be
appended for the fix insert/rate/region command

e rate_region keywords = region or ntry_mc

region value = region-ID
region-ID = ID of the region where the particles will be generated (positive integer)
ntry_mc values = n

n = number of Monte-Carlo steps for calculating the region's volume (positive integer

Examples:

fix ins all insert/rate/region seed 1001 distributiontemplate pddl nparticles 1000 particlerate 5
General description:
Insert particles into a granular run every few timesteps within a specified region at a specified rate.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. Dynamic regions are not supported as insertion region. Each
timestep particles are inserted, they are placed randomly inside the insertion volume.

To specify the number of particles to be inserted, you must use either the nparticles or the mass keyword (but
not both). In the latter case, the number of particles to be inserted is calculated from the mass expectancy
given by the particle distribution.

Likewise, you can use the particlerate or the massrate keyword (but not both) to control the insertion rate.

The frequency of the particle insertion is controlled by the keyword insert_every, which defines the number of
time-steps between two insertions. The number of particles to be inserted at each insertion event is calculated
from the insertion rate and insert_every. The start keyword can be used to set the time-step at which the
insertion should start.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution discrete and
fix_particletemplate sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

fix insert/rate/region command 392

LIGGGHTS Users Manual

The all_in flag determines if the particle is completely contained in the insertion region (all_in yes) or only
the particle center (all_in no). Currently all_in yes is not yet supported for all types of insertion.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

The initial velocity and rotational velocity can be controlled via the ve/ and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation simulation
while inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during gnergy minimization.
Restrictions:

The overlapcheck = 'yes' option performs an inherently serial operation and will thus not scale well in parallel.
For this reason, if you want to generate large systems, you are advised to turn overlapcheck off and let the
packing relax afterwards to generate a valid packing.

Keywords duration and extrude_length can not be used together.

Currently all_in yes is not yet supported for all types of insertion.

Dynamic regions are not supported as insertion region.

Related commands:

fix_insert stream, fix_insert pack, fix deposit, fix _gravity, region, fix_pour dev, fix pour

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, ntry_mc = 100000, random_distribute = exact

fix insert/rate/region command 393

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix insert/stream command
Syntax:
fix ID group-ID insert/stream seed seed_value distributiontemplate dist-ID general_keywords gener

¢ ID, group-ID are documented in fix command

¢ insert/stream = style name of this fix command

¢ seed = obligatory keyword

¢ seed_value = random # seed (positive integer)

¢ distributiontemplate = obligatory keyword

e dist-ID = ID of a fix_particledistribution discrete to be used for particle insertion

¢ one or more general keyword/value pairs can be appended

¢ general_keywords = verbose or maxattampt or nparticles or mass or particlerate or massrate or
insert_every or overlapcheck or all_in or random_distribute orvel constant or vel uniform or vel
gaussian or orientation or omega

verbose = yes Or no
maxattempt value = ma
ma = max # of insertion attempts per atom (positive integer)

nparticles values = np or INF
np = number of particles to insert (positive integer)
INF = insert as many particles as possible

mass values = mp
mp = mass of particles to be inserted (positive float)
INF = insert as many particles as possible

particlerate values = pr
pr = particle inseration rate (particles/time units)

massrate values = mr

mr = mass inseration rate (mass/time units)
insert_every value = ie

ie = every how many time-steps particles are inserted - insertion happens periodically
start value = ts

ts = time-step at which insertion should start (positive integer larger than current t

all _in value = yes or no
random _distribute value = exact or uncorrelated
vel constant values = vx Vy VzZ
vx = x-velocity at insertion (velocity units)
vy = y-velocity at insertion (velocity units)
vz = z-velocity at insertion (velocity units)
vel uniform values = vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
vz = mean z-velocity at insertion (velocity units)
vFluctx = amplitude of uniform x-velocity fluctuation at insertion (velocity units)
vFlucty = amplitude of uniform y-velocity fluctuation at insertion (velocity units)
vFluctz = amplitude of uniform z-velocity fluctuation at insertion (velocity units)
vel gaussian values = vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
vz = mean z-velocity at insertion (velocity units)

vFluctx = standard deviation of Gaussian x-velocity fluctuation at insertion (velocity

vFlucty = standard deviation of Gaussian y-velocity fluctuation at insertion (velocity

vFluctz = standard deviation of Gaussian z-velocity fluctuation at insertion (velocity
orientation values = random or template

random = randomize rotational orientation

template = use orientation from particle template
omega values = constant omegax omegay omegaz

constant = obligatory word

omegax = x—-comonent of angular velocity (1/time units)

fix insert/stream command 394

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS Users Manual

omegay = y-comonent of angular velocity (1/time units)
omegaz = z-comonent of angular velocity (1/time units)

¢ following the general keyword/value section, one or more stream keyword/value pairs can be
appended for the fix insert/stream command
e stream_keywords = duration or parallel or insertion_face or extrude_length

insertion_face value = mesh-ID

mesh—-ID = ID of the fix mesh/surface or fix mesh/surface/planar to use as starting fac
extrude_length values = L

L = length for extruding the insertion face in normal direction so to generate in ins
parallel values = yes Or no

yes, no = pre-calculate location of overlap of processor subdomains and extrusion volul
duration values = du

du = duration of insertion in time-steps

Examples:

fix ins all insert/stream seed 1001 distributiontemplate pdd1 nparticles 5000 vel constant 0. -0.5 -2.
particlerate 1000 overlapcheck yes insertion_face ins_mesh extrude_length 0.6

Description:

Insert particles into a granular run either once or every few timesteps within a specified region until either np
particles have been inserted or the desired particle mass (mp) has been reached.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a
stream of poured particles. The insertion volume is generated by extruding the insertion face as specified via
insertion_face in the direction of the face normal. The sign of this face normal is automatically flipped so that
it is opposite to the normal component of the insertion velocity.

To specify the number of particles to be inserted, you must use either the nparticles or the mass keyword (but
not both). In the latter case, the number of particles to be inserted is calculated from the mass expectancy
given by the particle distribution. The start keyword can be used to set the time-step at which the insertion
should start.

Likewise, you can use the particlerate or the massrate keyword (but not both) to control the insertion rate.
Particles are not inserted continuously, but in packets (for efficiency reasons). Particles are inserted again after
enough time has elapsed that the previously inserted particles have left the insertion volume.

One of the two keywords insert_every and extrude_length must be provided by the user (but not both).

In case insert_every is defined, this sets the frequency of the particle insertion directly, i.e. the number of
time-steps between two insertions. The number of particles to be inserted at each insertion event is calculated
from the insertion rate and insert_every.

If extrude_length is specified, the amount of extrusion is fixed and the insertion frequency is calculated from
extrude_length and the insertion velocity normal to the insertion face.

When defining insert_every, you have the possibility to define the duration of each insertion via the duration
keyword. duration < insert_every will generate a "pulsed” stream as opposed to a continuous stream.
Example: Setting insert_every = 1000 and duration = 600 will produce a stream that pours material for 600
time-steps, will pause for 400 time-steps, pour for another 600 time-steps etc.

fix insert/stream command 395

LIGGGHTS Users Manual

As mentioned above, particles are inserted again after enough time has elapsed that the previously inserted
particles have left the insertion volume. Until the time these particles reach the insertion face, no other forces
affect the particles (pair forces, gravity etc.). Fix insert/stream internally issues a special integrator to take care
of this. This procedure guarantees that the specified velocity, omega etc. values are perfectly met at the
specified insertion face.

The larger the volume, the more particles that can be inserted at one insertion step. Insertions will continue
until the desired # of particles has been inserted.

NOTE: The insertion face must be a planar face, and the insertion velocity projected on the face normal must
be non-zero.

NOTE: Keywords insert_every and extrude_length may not be used together
NOTE: Keywords duration and extrude_length cannot be used together.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution discrete and
fix_particletemplate sphere command (all of which can also be "all").

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

The all_in flag determines if the particle is completely contained in the insertion region (all_in = yes) or only
the particle center (all_in = no).Using all_in = yes requires you to use an insertion face of style fix

mesh/surface/planar

NOTE: You also have to use fix mesh/surface/planar if there is a run command between the definition of the
insertion face and the fix insert/stream command. Otherwise, a fix mesh/surface/planar will do.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

If keyword parallel is set to 'yes', LIGGGHTS tries to pre-calculate more accurately the overlap of process
subdomains and extrusion volume. For cases where the insertion volume is highly divided between different
processes, this can lead to a speed-up of insertion as random number generation is more efficient. For cases
where the extrusion volume is divided among few processes this will impose a small computation overhead.

The initial velocity and rotational velocity can be controlled via the ve/ and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities

fix insert/stream command 396

LIGGGHTS Users Manual

with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation. The insertion velocity must be non-zero.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation simulation
while inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during energy minimization.
Restrictions:

Keywords duration and extrude_length can not be used together. The insertion face cannot move.

Related commands:

fix_insert pack, fix_insert rate region, fix deposit, fix pour dev, fix pour

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, random_distribute = exact, parallel = no

fix insert/stream command 397

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix langevin/eff command

Syntax:
fix ID group-ID langevin/eff Tstart Tstop damp seed keyword values

¢ ID, group-ID are documented in fix command

¢ langevin/eff = style name of this fix command

o Tstart, Tstop = desired temperature at start/end of run (temperature units)
¢ damp = damping parameter (time units)

¢ seed = random number seed to use for white noise (positive integer)

¢ zero or more keyword/value pairs may be appended

keyword = scale or tally or zero
scale values = type ratio
type = atom type (1-N)
ratio = factor by which to scale the damping coefficient
tally values = no or yes
no = do not tally the energy added/subtracted to atoms
yes = do tally the energy added/subtracted to atoms

zero value = no or yes
no = do not set total random force to zero
yes = set total random force to zero
Examples:

fix 3 boundary langevin/eff 1.0 1.0 10.0 699483
fix 1 all langevin/eff 1.0 1.1 10.0 48279 scale 3 1.5

Description:

Apply a Langevin thermostat as described in (Schneider) to a group of nuclei and electrons in the glectron
force field model. Used with fix nve/eff, this command performs Brownian dynamics (BD), since the total
force on each atom will have the form:

F = Fc + Ff + Fr
Ff = - (m / damp) v
Fr is proportional to sqgrt(Kb T m / (dt damp))

Fc is the conservative force computed via the usual inter-particle interactions (pair_style).
The Ff and Fr terms are added by this fix on a per-particle basis.

The operation of this fix is exactly like that described by the fix langevin command, except that the
thermostatting is also applied to the radial electron velocity for electron particles.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the

simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted
simulation should produce the same behavior.

fix langevin/eff command 398

http://lammps.sandia.gov

LIGGGHTS Users Manual

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change induced by Langevin
thermostatting to the system's potential energy as part of thermodynamic output. Note that use of this option
requires setting the rally keyword to yes.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive". Note that

calculation of this quantity requires setting the tally keyword to yes.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions: none

This fix is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:
fix langevin
Default:

The option defaults are scale = 1.0 for all types and tally = no.

(Dunweg) Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).

(Schneider) Schneider and Stoll, Phys Rev B, 17, 1302 (1978).

fix langevin/eff command 399

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix langevin command

Syntax:
fix ID group-ID langevin Tstart Tstop damp seed keyword values

¢ ID, group-ID are documented in fix command

¢ langevin = style name of this fix command

o Tstart, Tstop = desired temperature at start/end of run (temperature units)
e Tstart can be a variable (see below)

¢ damp = damping parameter (time units)

¢ seed = random number seed to use for white noise (positive integer)

¢ zero or more keyword/value pairs may be appended

¢ keyword = angmom or omega or scale or tally or zero

angmom value = no or scale
no = do not thermostat rotational degrees of freedom via the angular momentum
factor = do thermostat rotational degrees of freedom via the angular momentum and appl
gjf value = no or yes
no = use standard formulation
yes = use Gronbech-Jensen/Farago formulation
omega value = no or yes
no = do not thermostat rotational degrees of freedom via the angular velocity
yes = do thermostat rotational degrees of freedom via the angular velocity

scale values = type ratio
type = atom type (1-N)
ratio = factor by which to scale the damping coefficient

tally value = no or yes
no = do not tally the energy added/subtracted to atoms
yes = do tally the energy added/subtracted to atoms

zero value = no or yes
no = do not set total random force to zero
yes = set total random force to zero

Examples:

fix 3 boundary langevin 1.0 1.0 1000.0 699483
fix 1 all langevin 1.0 1.1 100.0 48279 scale 3 1.5
fix 1 all langevin 1.0 1.1 100.0 48279 angmom 3.333

Description:

Apply a Langevin thermostat as described in (Schneider) to a group of atoms which models an interaction
with a background implicit solvent. Used with fix nve, this command performs Brownian dynamics (BD),
since the total force on each atom will have the form:

F = Fc + Ff + Fr
Ff = - (m / damp) v
Fr is proportional to sqgrt(Kb T m / (dt damp))

Fc is the conservative force computed via the usual inter-particle interactions (pair_style, bond_style, etc).

The Ff and Fr terms are added by this fix on a per-particle basis. See the pair_style dpd/tstat command for a
thermostatting option that adds similar terms on a pairwise basis to pairs of interacting particles.

Ff is a frictional drag or viscous damping term proportional to the particle's velocity. The proportionality
constant for each atom is computed as m/damp, where m is the mass of the particle and damp is the damping

fix langevin command 400

http://lammps.sandia.gov

LIGGGHTS Users Manual

factor specified by the user.

Fr is a force due to solvent atoms at a temperature T randomly bumping into the particle. As derived from the
fluctuation/dissipation theorem, its magnitude as shown above is proportional to sqrt(Kb T m / dt damp),
where Kb is the Boltzmann constant, T is the desired temperature, m is the mass of the particle, dt is the
timestep size, and damp is the damping factor. Random numbers are used to randomize the direction and
magnitude of this force as described in (Dunweg), where a uniform random number is used (instead of a
Gaussian random number) for speed.

Note that unless you use the omega or angmom keywords, the thermostat effect of this fix is applied to only
the translational degrees of freedom for the particles, which is an important consideration for finite-size
particles, which have rotational degrees of freedom, are being thermostatted. The translational degrees of
freedom can also have a bias velocity removed from them before thermostatting takes place; see the
description below.

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies forces to effect thermostatting. Thus
you must use a separate time integration fix, like fix nve to actually update the velocities and positions of
atoms using the modified forces. Likewise, this fix should not normally be used on atoms that also have their
temperature controlled by another fix - e.g. by fix nvt or fix temp/rescale commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop.

Tstart can be specified as an equal-style or atom-style variable. In this case, the Tsfop setting is ignored. If the
value is a variable, it should be specified as v_name, where name is the variable name. In this case, the
variable will be evaluated each timestep, and its value used to determine the target temperature.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent temperature.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent temperature with optional
time-dependence as well.

Like other fixes that perform thermostatting, this fix can be used with compute commands that remove a
"bias" from the atom velocities. E.g. removing the center-of-mass velocity from a group of atoms or removing
the x-component of velocity from the calculation. This is not done by default, but only if the fix_modify
command is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages
for individual compute commands to determine which ones include a bias. In this case, the thermostat works
in the following manner: bias is removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.

The damp parameter is specified in time units and determines how rapidly the temperature is relaxed. For
example, a value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or
fmsec or psec - see the units command). The damp factor can be thought of as inversely related to the
viscosity of the solvent. I.e. a small relaxation time implies a hi-viscosity solvent and vice versa. See the
discussion about gamma and viscosity in the documentation for the fix viscous command for more details.

The random # seed must be a positive integer. A Marsaglia random number generator is used. Each processor
uses the input seed to generate its own unique seed and its own stream of random numbers. Thus the dynamics

fix langevin command 401

LIGGGHTS Users Manual

of the system will not be identical on two runs on different numbers of processors.

The keyword/value option pairs are used in the following ways.

The keyword angmom and omega keywords enable thermostatting of rotational degrees of freedom in
addition to the usual translational degrees of freedom. This can only be done for finite-size particles.

A simulation using atom_style sphere defines an omega for finite-size spheres. A simulation using atom_style
ellipsoid defines a finite size and shape for aspherical particles and an angular momentum. The Langevin
formulas for thermostatting the rotational degrees of freedom are the same as those above, where force is
replaced by torque, m is replaced by the moment of inertia I, and v is replaced by omega (which is derived
from the angular momentum in the case of aspherical particles).

The rotational temperature of the particles can be monitored by the compute temp/sphere and compute
temp/asphere commands with their rotate options.

For the omega keyword there is also a scale factor of 10.0/3.0 that is applied as a multiplier on the Ff
(damping) term in the equation above and of sqrt(10.0/3.0) as a multiplier on the Fr term. This does not affect
the thermostatting behaviour of the Langevin formalism but insures that the randomized rotational diffusivity
of spherical particles is correct.

For the angmom keyword a similar scale factor is needed which is 10.0/3.0 for spherical particles, but is
anisotropic for aspherical particles (e.g. ellipsoids). Currently LAMMPS only applies an isotropic scale factor,
and you can choose its magnitude as the specified value of the angmom keyword. If your aspherical particles
are (nearly) spherical than a value of 10.0/3.0 = 3.333 is a good choice. If they are highly aspherical, a value
of 1.0 is as good a choice as any, since the effects on rotational diffusivity of the particles will be incorrect
regardless. Note that for any reasonable scale factor, the thermostatting effect of the angmom keyword on the
rotational temperature of the aspherical particles should still be valid.

The keyword scale allows the damp factor to be scaled up or down by the specified factor for atoms of that
type. This can be useful when different atom types have different sizes or masses. It can be used multiple
times to adjust damp for several atom types. Note that specifying a ratio of 2 increases the relaxation time
which is equivalent to the solvent's viscosity acting on particles with 1/2 the diameter. This is the opposite
effect of scale factors used by the fix viscous command, since the damp factor in fix langevin is inversely
related to the gamma factor in fix viscous. Also note that the damping factor in fix langevin includes the
particle mass in Ff, unlike fix viscous. Thus the mass and size of different atom types should be accounted for
in the choice of ratio values.

The keyword tally enables the calculation of the cumulative energy added/subtracted to the atoms as they are
thermostatted. Effectively it is the energy exchanged between the infinite thermal reservoir and the particles.
As described below, this energy can then be printed out or added to the potential energy of the system to
monitor energy conservation.

The keyword zero can be used to eliminate drift due to the thermostat. Because the random forces on different
atoms are independent, they do not sum exactly to zero. As a result, this fix applies a small random force to
the entire system, and the center-of-mass of the system undergoes a slow random walk. If the keyword zero is
set to yes, the total random force is set exactly to zero by subtracting off an equal part of it from each atom in
the group. As a result, the center-of-mass of a system with zero initial momentum will not drift over time.

The keyword gjf can be used to run the Gronbech-Jensen/Farago time-discretization of the Langevin model.
The effective random force is composed of the average of two random forces representing half-contributions
from the previous and current time intervals. This discretization has been shown to be consistent with the
underlying physical model of Langevin dynamics and produces the correct Boltzmann distribution of
positions for large timesteps, up to the numerical stability limit. Because the discretized momenta generated

fix langevin command 402

LIGGGHTS Users Manual

by the time integration scheme are not exactly conjugate to the positions, the kinetic energy distribution is
systematically lower than the Boltzmann distribution by an amount that grows with the timestep.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the
simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted
simulation should produce the same behavior.

The fix_modify femp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change induced by Langevin
thermostatting to the system's potential energy as part of thermodynamic output. Note that use of this option
requires setting the fally keyword to yes.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive". Note that

calculation of this quantity requires setting the tally keyword to yes.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions: none

Related commands:

fix nvt, fix temp/rescale, fix viscous, fix nvt, pair_style dpd/tstat

Default:

The option defaults are angmom = no, omega = no, scale = 1.0 for all types, tally = no, zero = no, gjf = no.

(Dunweg) Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).

(Schneider) Schneider and Stoll, Phys Rev B, 17, 1302 (1978).

(Gronbech-Jensen) Gronbech-Jensen and Farago, Mol Phys, 111, 983 (2013); Gronbech-Jensen, Hayre, and
Farago, arXiv:1303.7011.v2 (2013)

fix langevin command 403

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix Ib/fluid command

Syntax:

fix ID group-ID 1lb/fluid nevery LBtype viscosity density keyword values

¢ ID, group-ID are documented in fix command

¢ |b/fluid = style name of this fix command

¢ nevery = update the lattice-Boltzmann fluid every this many timesteps

¢ LBtype = 1 to use the standard finite difference LB integrator, 2 to use the LB integrator of Ollila et
al.

e viscosity = the fluid viscosity (units of mass/(time*length)).

e density = the fluid density.

¢ zero or more keyword/value pairs may be appended

e keyword = setArea or setGamma or scaleGamma or dx or dm or a0 or noise or calcforce or trilinear
or D3Q19 or read_restart or write_restart or zwall_velocity or bodyforce or printfluid

setArea values = type node_area
type = atom type (1-N)
node_area = portion of the surface area of the composite object associated with the

setGamma values = gamma
gamma = user set value for the force coupling constant.
scaleGamma values = type gammaFactor
type = atom type (1-N)
gammaFactor = factor to scale the setGamma gamma value by, for the specified atom ty:
dx values = dx_LB = the lattice spacing.
dm values = dm_LB = the lattice-Boltzmann mass unit.
a0 values = a_0_real = the square of the speed of sound in the fluid.
noise values = Temperature seed
Temperature = fluid temperature.

seed = random number generator seed (positive integer)
calcforce values = N forcegroup—-ID
N = output the force and torque every N timesteps
forcegroup-ID = ID of the particle group to calculate the force and torque of

trilinear values = none (used to switch from the default Peskin interpolation stencil to
D3019 values = none (used to switch from the default D3Q15, 15 velocity lattice, to the
read_restart values = restart file = name of the restart file to use to restart a fluid

write_restart values = N = write a restart file every N MD timesteps.

zwall_velocity values = velocity_bottom velocity_top = velocities along the y-direction
bodyforce values = bodyforcex bodyforcey bodyforcez = the x,y and z components of a cons
printfluid values = N = print the fluid density and velocity at each grid point every N

Examples:
fix 1 all 1b/fluid 1 2 1.0 1.0 setGamma 13.0 dx 4.0 dm 10.0 calcforce spherel
fix 1 all 1b/fluid 1 1 1.0 0.0009982071 setArea 1 1.144592082 dx 2.0 dm 0.3 trilinear noise 300.0

Description:

Implement a lattice-Boltzmann fluid on a uniform mesh covering the LAMMPS simulation domain. The MD
particles described by group-ID apply a velocity dependent force to the fluid.

The lattice-Boltzmann algorithm solves for the fluid motion governed by the Navier Stokes equations,

fix Ib/fluid command 404

http://lammps.sandia.gov

LIGGGHTS Users Manual

Op + 95 (pug) =0
Ot (pua) + 05 (puaup) = 9s0ap + Fo + 05 (NapywOyuy)

with,
Napgyy = 1) Oa y O_Bu o O(w O»B“,‘ -

where rho is the fluid density, u is the local fluid velocity, sigma is the stress tensor, F is a local external force,
and eta and Lambda are the shear and bulk viscosities respectively. Here, we have implemented

O—OB - _PCU'_:)' — —/)(1'000;3

with a_0 set to 1/3 (dx/dt)*2 by default.

The algorithm involves tracking the time evolution of a set of partial distribution functions which evolve
according to a velocity discretized version of the Boltzmann equation,

: 1
(0 + €iaBa) fi = == (fi = fi) + W,

where the first term on the right hand side represents a single time relaxation towards the equilibrium
distribution function, and tau is a parameter physically related to the viscosity. On a technical note, we have
implemented a 15 velocity model (D3Q15) as default; however, the user can switch to a 19 velocity model
(D3Q19) through the use of the D3Q19 keyword. This fix provides the user with the choice of two algorithms
to solve this equation, through the specification of the keyword LBtype. If LBtype is set equal to 1, the
standard finite difference LB integrator is used. If LBtype is set equal to 2, the algorithm of Ollila et al. is
used.

Physical variables are then defined in terms of moments of the distribution functions,

P = E Ji
i
ptia =" fitia
i
Full details of the lattice-Boltzmann algorithm used can be found in Mackay et al..

fix Ib/fluid command 405

LIGGGHTS Users Manual

The fluid is coupled to the MD particles described by group-ID through a velocity dependent force. The
contribution to the fluid force on a given lattice mesh site j due to MD particle alpha is calculated as:

Fja =0 (Vn — uf) Gia

where v_n is the velocity of the MD particle, u_f is the fluid velocity interpolated to the particle location, and
gamma is the force coupling constant. Zeta is a weight assigned to the grid point, obtained by distributing the
particle to the nearest lattice sites. For this, the user has the choice between a trilinear stencil, which provides
a support of 8 lattice sites, or the immersed boundary method Peskin stencil, which provides a support of 64
lattice sites. While the Peskin stencil is seen to provide more stable results, the trilinear stencil may be better
suited for simulation of objects close to walls, due to its smaller support. Therefore, by default, the Peskin
stencil is used; however the user may switch to the trilinear stencil by specifying the keyword, trilinear.

By default, the force coupling constant, gamma, is calculated according to

gt I o (M (1)
My, + My Atcau’isian

Here, m_v is the mass of the MD particle, m_u is a representative fluid mass at the particle location, and
dt_collision is a collision time, chosen such that tau/dt_collision = 1 (see Mackay and Denniston for full
details). In order to calculate m_u, the fluid density is interpolated to the MD particle location, and multiplied
by a volume, node_area*dx_lb, where node_area represents the portion of the surface area of the composite
object associated with a given MD particle. By default, node_area is set equal to dx_Ib*dx_lb; however
specific values for given atom types can be set using the setArea keyword.

The user also has the option of specifying their own value for the force coupling constant, for all the MD
particles associated with the fix, through the use of the setGamma keyword. This may be useful when
modelling porous particles. See Mackay et al. for a detailed description of the method by which the user can
choose an appropriate gamma value.

IMPORTANT NOTE: while this fix applies the force of the particles on the fluid, it does not apply the force
of the fluid to the particles. When the force coupling constant is set using the default method, there is only one
option to include this hydrodynamic force on the particles, and that is through the use of the lb/viscous fix.
This fix adds the hydrodynamic force to the total force acting on the particles, after which any of the built-in
LAMMPS integrators can be used to integrate the particle motion. However, if the user specifies their own
value for the force coupling constant, as mentioned in Mackay et al., the built-in LAMMPS integrators may
prove to be unstable. Therefore, we have included our own integrators fix 1b/rigid/pc/sphere, and fix 1b/pc, to
solve for the particle motion in these cases. These integrators should not be used with the Ib/viscous fix, as
they add hydrodynamic forces to the particles directly. In addition, they can not be used if the force coupling
constant has been set the default way.

IMPORTANT NOTE: if the force coupling constant is set using the default method, and the lb/viscous fix is
NOT used to add the hydrodynamic force to the total force acting on the particles, this physically corresponds
to a situation in which an infinitely massive particle is moving through the fluid (since collisions between the
particle and the fluid do not act to change the particle's velocity). Therefore, the user should set the mass of
the particle to be significantly larger than the mass of the fluid at the particle location, in order to approximate
an infinitely massive particle (see the dragforce test run for an example).

fix Ib/fluid command 406

LIGGGHTS Users Manual

Inside the fix, parameters are scaled by the lattice-Boltzmann timestep, dt, grid spacing, dx, and mass unit,
dm. dt is set equal to (nevery*dt_MD), where dt_MD is the MD timestep. By default, dm is set equal to 1.0,
and dx is chosen so that tau/(dt) = (3*eta*dt)/(rho*dx”2) is approximately equal to 1. However, the user has
the option of specifying their own values for dm, and dx, by using the optional keywords dm, and dx
respectively.

IMPORTANT NOTE: Care must be taken when choosing both a value for dx, and a simulation domain size.
This fix uses the same subdivision of the simulation domain among processors as the main LAMMPS
program. In order to uniformly cover the simulation domain with lattice sites, the lengths of the individual
LAMMPS subdomains must all be evenly divisible by dx. If the simulation domain size is cubic, with equal
lengths in all dimensions, and the default value for dx is used, this will automatically be satisfied.

Physical parameters describing the fluid are specified through viscosity, density, and a0. If the force coupling
constant is set the default way, the surface area associated with the MD particles is specified using the setArea
keyword. If the user chooses to specify a value for the force coupling constant, this is set using the setGamma
keyword. These parameters should all be given in terms of the mass, distance, and time units chosen for the
main LAMMPS run, as they are scaled by the LB timestep, lattice spacing, and mass unit, inside the fix.

The setArea keyword allows the user to associate a surface area with a given atom type. For example if a
spherical composite object of radius R is represented as a spherical shell of N evenly distributed MD particles,
all of the same type, the surface area per particle associated with that atom type should be set equal to
4*p1*R”2/N. This keyword should only be used if the force coupling constant, gamma, is set the default way.

The setGamma keyword allows the user to specify their own value for the force coupling constant, gamma,
instead of using the default value.

The scaleGamma keyword should be used in conjunction with the setGamma keyword, when the user wishes
to specify different gamma values for different atom types. This keyword allows the user to scale the
setGamma gamma value by a factor, gammaFactor, for a given atom type.

The dx keyword allows the user to specify a value for the LB grid spacing.

The dm keyword allows the user to specify the LB mass unit.

If the a0 keyword is used, the value specified is used for the square of the speed of sound in the fluid. If this
keyword is not present, the speed of sound squared is set equal to (1/3)*(dx/dt)*2. Setting a0 > (dx/dt)"*2 is not
allowed, as this may lead to instabilities.

If the noise keyword is used, followed by a a positive temperature value, and a positive integer random
number seed, a thermal lattice-Boltzmann algorithm is used. If LBtype is set equal to 1 (i.e. the standard LB
integrator is chosen), the thermal LB algorithm of Adhikari et al. is used; however if LBtype is set equal to 2

both the LB integrator, and thermal LB algorithm described in Ollila et al. are used.

If the calcforce keyword is used, both the fluid force and torque acting on the specified particle group are
printed to the screen every N timesteps.

If the keyword trilinear is used, the trilinear stencil is used to interpolate the particle nodes onto the fluid
mesh. By default, the immersed boundary method, Peskin stencil is used. Both of these interpolation methods

are described in Mackay et al..

If the keyword D3Q19 is used, the 19 velocity (D3Q19) lattice is used by the lattice-Boltzmann algorithm. By
default, the 15 velocity (D3Q15) lattice is used.

If the keyword write_restart is used, followed by a positive integer, N, a binary restart file is printed every N

fix Ib/fluid command 407

LIGGGHTS Users Manual

LB timesteps. This restart file only contains information about the fluid. Therefore, a LAMMPS restart file
should also be written in order to print out full details of the simulation.

IMPORTANT NOTE: When a large number of lattice grid points are used, the restart files may become quite
large.

In order to restart the fluid portion of the simulation, the keyword read_restart is specified, followed by the
name of the binary 1b_fluid restart file to be used.

If the zwall_velocity keyword is used y-velocities are assigned to the lower and upper walls. This keyword
requires the presence of walls in the z-direction. This is set by assigning fixed boundary conditions in the
z-direction. If fixed boundary conditions are present in the z-direction, and this keyword is not used, the walls
are assumed to be stationary.

If the bodyforce keyword is used, a constant body force is added to the fluid, defined by it's X, y and z
components.

If the printfluid keyword is used, followed by a positive integer, N, the fluid densities and velocities at each
lattice site are printed to the screen every N timesteps.

For further details, as well as descriptions and results of several test runs, see Mackay et al.. Please include a
citation to this paper if the 1b_fluid fix is used in work contributing to published research.

Restart, fix_modify, output, run start/stop, minimize info:

Due to the large size of the fluid data, this fix writes it's own binary restart files, if requested, independent of
the main LAMMPS binary restart files; no information about Ib_fluid is written to the main LAMMPS binary
restart files.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands. No parameter of this fix can be used with the start/stop keywords of
the run command. This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the USER-LB package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix can only be used with an orthogonal simulation domain.

Walls have only been implemented in the z-direction. Therefore, the boundary conditions, as specified via the
main LAMMPS boundary command must be periodic for x and y, and either fixed or periodic for z.
Shrink-wrapped boundary conditions are not permitted with this fix.

This fix must be used before any of fix lb/viscous, fix Ib/momentum, fix Ib/rigid/pc/sphere, and/ or fix Ib/pc ,
as the fluid needs to be initialized before any of these routines try to access its properties. In addition, in order
for the hydrodynamic forces to be added to the particles, this fix must be used in conjunction with the
Ib/viscous fix if the force coupling constant is set by default, or either the lb/viscous fix or one of the
Ib/rigid/pc/sphere or Ib/pc integrators, if the user chooses to specifiy their own value for the force coupling
constant.

Related commands:

fix Ib/viscous, fix Ib/momentum, fix 1b/rigid/pc/sphere, fix 1b/pc

fix Ib/fluid command 408

LIGGGHTS Users Manual

Default:

By default, the force coupling constant is set according to

2, M (1)
My, + My Atcau’isiml

and an area of dx_Ib”2 per node, used to calculate the fluid mass at the particle node location, is assumed.

dx is chosen such that tau/(delta t_LB) = (3 eta dt_LB)/(tho dx_Ib"2) is approximately equal to 1. dm is set
equal to 1.0. a0 is set equal to (1/3)*(dx_Ib/dt_Ib)*2. The Peskin stencil is used as the default interpolation
method. The D3Q15 lattice is used for the lattice-Boltzmann algorithm. If walls are present, they are assumed
to be stationary.

(Ollila et al.) Ollila, S.T.T., Denniston, C., Karttunen, M., and Ala-Nissila, T., Fluctuating lattice-Boltzmann
model for complex fluids, J. Chem. Phys. 134 (2011) 064902.

(Mackay et al.) Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into
LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.

(Mackay and Denniston) Mackay, F. E., and Denniston, C., Coupling MD particles to a lattice-Boltzmann
fluid through the use of conservative