
Motif Reference Manual 1219

Section 7 - UIL Functions
This page describes the format and contents of each reference page in Section 7,
which covers the User Interface Language (UIL) functions.

Name
Function – a brief description of the function.

Synopsis
This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. The header file <uil/UilDef.h> declares
both of the public UIL functions.

Inputs
This subsection describes each of the function arguments that pass information to
the function.

Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.

Returns
This subsection explains the return value of the function, if any.

Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Example
This section provides an example of the use of the function.

UIL Functions

1220 Motif Reference Manual

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, clients, and UIL data types. The
numbers in parentheses following each reference refer to the sections of this book
in which they are found.

UIL Functions Uil

Motif Reference Manual 1221

Name
Uil – call the UIL compiler from an application.

Synopsis
#include <uil/UilDef.h>

Uil_status_type Uil (Uil_command_type *command_desc,
Uil_compile_desc_type *compile_desc,
Uil_continue_type (*message_cb)(),
char *message_data,
Uil_continue_type (*status_cb)(),
char *status_data)

Inputs
command_desc Specifies a structure containing the compilation options.
message_cb Specifies a callback function that is called when error, warning

and informational messages are generated by the compiler.
message_data Specifies data that is passed to the message_cb function.
status_cb Specifies a callback function that is called periodically during

the compilation to indicate progress.
status_data Specifies data that is passed to the status_cb function.

Outputs
compile_desc Returns a structure containing the results of the compilation.

Returns
Uil_k_success_status on success and if no problems are detected,
Uil_k_info_status on success and if informational messages are generated,
Uil_k_warning_status on success and if warning messages are generated,
Uil_k_error_status on failure and if error messages are generated, and
Uil_k_severe_status on failure and if the compilation stopped prematurely.

Description
Uil() invokes the UIL compiler from within an application. Options for the
compiler, including the input, output and listing files, are provided in the
command_desc argument. The calling application can supply a message handling
function in message_cb that displays compiler messages in an application-
defined manner. The application can also supply a status-monitoring function in
status_cb. This function is called periodically by the compiler to report progress.
Upon completion, the Uil() function fills in the compile_desc structure with
information about the compilation and returns the status of the compilation.

Usage
An application that calls Uil() is responsible for allocating the command_desc
and compile_desc arguments. The application must initialize all members of the

Uil UIL Functions

1222 Motif Reference Manual

command_desc structure. Members of the compile_desc structure are set by the
compiler. If the parse_tree_flag in command_desc is set, the compiler returns a
pointer to the root of the parse tree in the parse_tree_root field of the
compile_desc. This parse table cannot be freed by the calling application. There-
fore, you should not set the parse_tree_flag unless you plan to use the parse tree.
To limit memory consumption, if you set the parse_tree_flag, invoke the Uil()
routine once and exit soon thereafter.

An application can specify a function for handling compiler generated messages
in the message_cb argument. You can specify NULL for this argument if you
want to use the default message handling routine. This routine prints all messages
to stderr. If you specify a function, the value of message_data is passed to each
invocation of the function.

An application can also specify a function for monitoring the status of the compi-
lation in the status_cb argument. You can specify NULL to indicate that no status
function should be called. If you specify a function, the value of status_data is
passed to each invocation of the function. In addition to monitoring progress, the
function can also be used to process X events in an X application.

The Uil() function installs signal handlers for SIGBUS, SIGSYS, and SIGFPE
with no regard for application installed handlers. These installed handlers remain
set after the function returns, so you may wish to change them.

Applications that call the Uil() function must be linked with the UIL library,
libUil.a, in addition to the Mrm, Motif, Xt, and X libraries.

Structures
The Uil_command_type is defined as follows:

typedef struct {
char *source_file; /* name of UIL source file */
char *resource_file; /* name of UID output file */
char *listing_file; /* name of listing file */
unsigned int include_dir_count; /* length of include_dir array */
char **include_dir; /* array of include file directories */
unsigned int listing_file_flag : 1; /* write listing file flag */
unsigned int resource_file_flag : 1; /* write UID file flag */
unsigned int machine_code_flag : 1; /* write machine code flag */
unsigned int report_info_msg_flag : 1; /* report informational mes-
sages */
unsigned int report_warn_msg_flag : 1; /* report warning messages */
unsigned int parse_tree_flag : 1; /* generate parse tree flag */
unsigned int issue_summary : 1; /* write diagnostic summary flag
*/

UIL Functions Uil

Motif Reference Manual 1223

unsigned int status_update_delay; /* delay between status_cb calls */
char *database; /* WML database filename */
unsigned int database_flag : 1; /* read WML database flag */
unsigned int use_setlocale_flag : 1; /* parse strings in locale flag */

} Uil_command_type;

Uil_command_type describes the compilation options for the Uil() routine.
source_file is the name of the UIL module to compile. resource_file is the name
of the UID file that is output if resource_file_flag is set. listing_file is the name of
the compilation listing file that is output if listing_file_flag is set. Setting
machine_code_flag causes the compiler to output a binary description of the UID
file when a listing is generated.

include_dir specifies an array of include_dir_count directory names that the
compiler searches for UIL include files. If set, report_info_msg_flag,
report_warn_msg_flag, and issue_summary cause the compiler to generate infor-
mational messages, warning messages, and a summary message, respectively.

If parse_tree_flag is set, it instructs the compiler to return a pointer to the parse
tree of the module in the compile_desc structure. status_update_delay specifies
how many status check points must be passed before the status_cb callback is
called. If the field is set to zero, the function is called at every check point.

use_setlocale_flag directs the UIL compiler to parse double-quoted strings in the
current locale. (See the UIL string type man page for more information.) data-
base specifies the name of a Widget Meta-Language (WML) description file that
the compiler loads if database_flag is set.

The Uil_compile_desc_type is defined as follows:

typedef struct _Uil_comp_desc {
unsigned int compiler_version; /* UIL compiler version */
unsigned int data_version; /* UIL structures version */
char *parse_tree_root; /* parse tree for module */
unsigned int message_count[]; /* status messages counts */

} Uil_compile_desc_type;

Uil_compile_desc_type describes the return data for the Uil() routine.
compiler_version specifies the version of the UIL compiler, while data_version
specifies the version of the structures used by the compiler. If parse_tree_flag is
set in the command_desc argument, parse_tree_root contains a pointer to a com-
piler-generated parse tree if the compilation succeeds. message_count is an array
of integers that contains the number of each type of compiler message generated
by the routine. Valid indices to the array are Uil_k_info_status,
Uil_k_warning_status, Uil_k_error_status, and Uil_k_severe_status.

Uil UIL Functions

1224 Motif Reference Manual

Procedures
A message_cb function has the following syntax:

Uil_continue_type *message_cb (char *message_data,
int message_number,
int severity,
char *message_string,
char *source_text,
char *column_string,
char *location_string,
int message_count[])

A message_cb function takes eight arguments. The first argument,
message_data, is the value of the message_data argument passed to the Uil()
function. message_number is the internal index of the message, which is used by
the UIL compiler. severity specifies the severity of the message, which is one of
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, or
Uil_k_severe_status.

message_string is a string describing the problem. source_text is a copy of the
source line to which the message refers, with a tab character prepended. If the
source line is not available, source_text is the empty string. column_string is a
string that consists of a leading tab character followed by zero or more spaces
and an * (asterisk) in the same column as the problem in the source line. This
string is suitable for printing beneath message_string to indicate the location of
the problem. If the column that contains the error or the source line is not availa-
ble, column_string is the empty string.

location_string describes the location where the problem occurred. The format of
this string is "\t\t line: %d file: %s" if both source and column number are availa-
ble, or if no column number is available. If the column number, but no source line
is available, the format is "\t\t line: %d position: %d file: %s". If the location is
unavailable, the value of location_string is the empty string. If an application
does not specify a message_cb routine, the compiler prints source_text,
column_string, message_string, and location_string in that order.

message_count is an array of integers that contains the number of each type of
compiler message generated by the routine so far. Valid indices to the array are
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, and
Uil_k_severe_status.

A message_cb function should return Uil_k_continue if the compilation can con-
tinue or Uil_k_terminate if the compilation should be terminated.

UIL Functions Uil

Motif Reference Manual 1225

A status_cb function has the following format:

Uil_continue_type *status_cb (char *status_data,
int percent_complete,
int lines_processed,
char *current_file,
int message_count[])

A status_cb function takes five parameters. The first argument, status_data, is
the value of the status_data argument passed to the Uil() function.
percent_complete specifies an estimate of the percentage of the compilation that
has been completed. The value of this field falls within a fixed range of values for
each step of the compilation. The value ranges from 0 to 50 while source_file is
being parsed, from 60 to 80 while the resource_file is written, and from 80 to 100
while the listing_file is generated. Some versions of the UIL compiler may only
report percent-complete values on the boundaries of these ranges.
lines_processed indicates the number of lines that have been read from the input
file.

When the UIL compiler is invoked, it parses the source_file, writes the
resource_file, and then generates the listing_file, based on the settings of the
command_desc argument. The current_file field changes to reflect the file that
the compiler is accessing.

message_count is an array of integers that contains the number of each type of
compiler message generated by the routine so far. Valid indices to the array are
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, and
Uil_k_severe_status.

A status_cb function should return Uil_k_continue if the compilation can con-
tinue or Uil_k_terminate if the compilation should be terminated.

The frequency with which the compiler calls the status_cb function at check
points is based on the value of status_update_delay field in command_desc. A
check point occurs every time a symbol is found during the parsing of
source_file, every time an element is written to the resource_file, and every time
a line is written to the listing_file.

Example
The following routines illustrate the use of the Uil() routine in a very basic way:

#include <uil/UilDef.h>
#include <stdio.h>

static char *last_current_file;
static char *status_string_list[Uil_k_max_status] = { NULL };

Uil UIL Functions

1226 Motif Reference Manual

Uil_continue_type message_cb (char *message_data,
int message_number,
int severity,
char *message_string,
char *line_text,
char *error_col_string,
char *line_and_file_string,
int *message_count)

{
if (*line_text != ’ ’)

puts (line_text);
if (*error_col_string != ’ ’)

puts (error_col_string);
if (*message_string != ’ ’)

printf ("%s: %s\n", status_string_list[severity], message_string);
if (*line_and_file_string != ’ ’)

puts (line_and_file_string);

return (Uil_k_continue);
}

Uil_continue_type status_cb (char *status_data,
int percent_complete,
int lines_processed,
char *current_file,
int *message_count)

{
if (last_current_file == NULL || strcmp (last_current_file, current_file) != 0)
{

fprintf (stderr, "Working on file %s...\n", current_file);
last_current_file = current_file;

}

return (Uil_k_continue);
}

Uil_compile_desc_type * compile (char *filename)
{

Uil_command_type command_desc;
static Uil_compile_desc_type compile_desc;
Uil_status_type status;

if (status_string_list[Uil_k_success_status] == NULL) {
status_string_list[Uil_k_success_status] = "Success";

UIL Functions Uil

Motif Reference Manual 1227

status_string_list[Uil_k_info_status] = "Informational";
status_string_list[Uil_k_warning_status] = "Warning";
status_string_list[Uil_k_error_status] = "Error";
status_string_list[Uil_k_severe_status] = "Severe Error";

}
command_desc.source_file = filename;
command_desc.resource_file = "a.uid";
command_desc.listing_file = "uil.lst";
command_desc.include_dir_count = 0;
command_desc.include_dir = NULL;
command_desc.listing_file_flag = TRUE;
command_desc.resource_file_flag = TRUE;
command_desc.machine_code_flag = FALSE;
command_desc.report_info_msg_flag = TRUE;
command_desc.report_warn_msg_flag = TRUE;
command_desc.parse_tree_flag = FALSE;
command_desc.issue_summary = TRUE;
command_desc.status_update_delay = 0;
command_desc.database = NULL;
command_desc.database_flag = FALSE;
command_desc.use_setlocale_flag = FALSE;

last_current_file = NULL;

status = Uil (&command_desc, &compile_desc, message_cb, NULL,
status_cb, NULL);

if (status == Uil_k_error_status || status == Uil_k_severe_status)
return (NULL);

return (&compile_desc);
}

int main (int argc, char **argv)
{

Uil_compile_desc_type *compile_desc;

if (argc != 2) {
printf ("usage: Uil filename\n");
exit (1);

}

compile_desc = compile (argv[1]);

if (compile_desc != NULL)
fprintf (stderr, "Compilation Successful.\n");

Uil UIL Functions

1228 Motif Reference Manual

else
fprintf (stderr, "Compilation Failed.\n");

}

See Also
uil(4), string(6), UilDumpSymbolTable(7).

UIL Functions UilDumpSymbolTable

Motif Reference Manual 1229

Name
UilDumpSymbolTable – produce a listing of a UIL symbol table.

Synopsis
#include <uil/UilDef.h>

void UilDumpSymbolTable (sym_entry_type *parse_tree_root)
Inputs

parse_tree_root Specifies a pointer to the root entry of a symbol table.

Description
UilDumpSymbolTable() prints a listing of the symbols parsed in a UIL mod-
ule to stdout. A parse tree is generated by a call to Uil(). If the parse_tree_flag
of the Uil_command_type structure passed to the routine is set and the compila-
tion is successful, the Uil() routine returns a pointer to the root of the parse tree
in the parse_tree_root member of the Uil_compile_desc_type structure. If the
compilation is unsuccessful, the parse_tree_root field is set to NULL.

Usage
UilDumpSymbolTable() generates a listing of the internal representation of
UIL structures and symbols, which is really only useful for people who are quite
familiar with the internals of the UIL compiler. The -m option of the uil com-
mand, or the machine_code_flag option of the Uil() routine, generates far more
useful information for most users of UIL.

Instead of calling UilDumpSymbolTable(), an application can examine the
parse tree directly. The structures used in the parse tree are defined in the file
<uil/UilSymDef.h> and definitions of constants used in the structures are in <uil/
UilDBDef.h>. Both of these files are included by <uil/UilDef.h>.

The parse table generated by the Uil() routine cannot be freed by the calling
application. Therefore, you should not set the parse_tree_flag unless you plan to
use the parse tree. To limit memory consumption, if you set the parse_tree_flag,
invoke the Uil() routine once and exit soon thereafter.

See Also
uil(4).
Uil(7).

UIL Functions

Motif Reference Manual 1230

