
marginfix package documentation

Stephen Hicks
sdh33@cornell.edu

http://shicks.github.com/marginfix

v1.2 – 2020/05/06

Usage

1 Overview

Authors using LATEX to typeset books with significant margin material often run
into the problem of long notes running off the bottom of the page. A typical
workaround is to insert \vshifts by hand, but this is a tedious process that is
invalidated when pagination changes. Another workaround is memoir’s \sidebar

function, but this can be unsatisfying for short textual notes, and standard margin-
pars cannot be mixed with sidebars. This package implements a solution to make
marginpars ”just work” by keeping a list of floating inserts and arranging them in-
telligently in the output routine. The credit for the concept behind this algorithm
goes to Prof. Andy Ruina, who employed me to work on some of his textbook
macros in 2007–9.

2 Options

There are currently no options that do anything yet.

3 Commands

For the most part, this is a drop-in replacement. Simply include a call to
\usepackage{marginfix} to the preamble, use \marginpar normally and hope
for the best. In the event, however, that it doesn’t work exactly as hoped, there
are a number of tweaks that the user can apply.
Calling \marginskip{〈length〉} will insert an incompressible skip in the margin.\marginskip

These skips will force neighboring notes on the same page to be separated, but
will disappear at the top or bottom of a margin.
In an analog to \clearpage, \clearmargin prevents any further material from\clearmargin

\softclearmargin being added to the current margin. These calls are cumulative, so that two

1

\clearmargins in a row will produce a completely empty margin on the next
page as well. If this is not the desired effect, use \softclearmargin, which is
effectively idempotent: multiple calls have the same effect as one call to end the
current margin.
If a page has too much margin material to fit and an important note is floating to\extendmargin

the next page, \extendmargin{〈length〉} will extend the margin (for the current
page only) by the given length. If the length is negative, the margin will shrink.
Multiple calls on the same page are cumulative.
To adjust the position of a single note, use \mparshift{〈length〉} before a call to\mparshift

\marginpar. Positive lengths move it down the page. This essentially shifts the
call-out location, so the actual position of the note might not change if the margin
is sufficiently crowded. Multiple calls before the same note are cumulative.
If all the margins are the wrong size, the height of the margin on every\marginheightadjustment

page can be adjusted by assigning a non-zero value to the dimension register
\marginheightadjustment (as in \marginheightadjustment=〈length〉). This is
effectively the same as a call to \extendmargin on every page.
Similarly, if all the margin notes are in the wrong place, the callout positions\marginposadjustment

can be adjusted globally by assigning a non-zero value to the dimension register
\marginposadjustment. This is effectively the same as a call to \mparshift

before every note. This is particularly useful at present because the height of the
line on which the margin note is called is currently only estimated, and appears
to be off by a point or two. This may get fixed in the future, but until then, the
adjustment is possibly the easiest workaround.
As of version 1.0, we now support “margin phantoms”: sections of the margin in\blockmargin

\unblockmargin which no notes will be placed, which can be useful for large figures that jut into
the margin (note: margins already move out of the way of floats, regardless of
whether or not they extend into the margin; this is mainly for in-place figures or
equations). The easiest way to block off part of the margin is to call \blockmargin
before the extended content and \unblockmargin afterwards. No margin notes
will be placed between these two points (though one must be careful: if one of
these is called in horizontal mode, the toggle will occur at the top of the current
line). Each of these commands takes an optional argument: \blockmargin[〈pos〉]
will begin the margin block at a position pos below the current position (or above
if pos is negative), and \unblockmargin[〈pos〉] will likewise end the block at a
position pos below the current position.
Margin phantoms may also be called out in place with a known size using\marginphantom

\marginphantom[〈pos〉]{〈size〉}, which is essentially equivalent to \blockmargin[〈pos〉]\unblockmargin[〈pos+size〉].
Either argument may be negative to refer upward rather than downward.

4 Interaction with other packages

4.1 memoir

There are no known issues with memoir at present, provided that \sidebar is not
used.

2

4.2 mparhack

mparhack was designed to deal with the problem of margin notes showing up in
the wrong margin because the left/right was decided before it was known exactly
which page the note would be on. Because we defer this decision to shipout time
in this package, we are not susceptible to this problem, so mparhack is no longer
needed and should not be included (though I’m unaware whether it causes any
actual problems).

4.3 Multiple columns

There is currently no support for multiple columns.

5 Coming attractions and known issues

Here is a list of things to possibly look forward to in a future version. If any of
them are particularly important, please let me know.

• Use of pdfTEX’s \pdfsavepos and \pdflastypos for more accurate margin
placement.

• \vadjust to correct inconsistencies with \@pageht.

• Margin note placement is irrespective of vertical stretch. Previously we
gobbled any vertical stretch, but now that we have fixed that bug, there’s
the possibility of wrong alignment since we don’t know where the positions
will ultimately end up. This may be fixed by \pdfsavepos as well.

• Better interaction with floats. (We can set a default one way or the other
and then allow a macro to override it (presumably with a CS defined in
terms of the box name/meaning, so as not to get in the way of LATEX’s use
of the insert registers). We would then add or not add phantoms in the right
spots. We’d also need to shift all the callout points by the size of the top
figures (unless we’re using \pdfsavepos).)

Implementation

6 Initial Setup

Make the @-sign into a letter for use in macro names.

1 〈∗package〉
2 \makeatletter

\MFX@debug We have some optionally-included code for debugging. \MFX@debug prints a new
line followed by “MFX: ” and then the message. We’ll also ask for more error
context in the debug mode.

3

3 〈∗debug〉
4 \def\MFX@debug{\message{^^JMFX:}\message}

5 \errorcontextlines=20

6 \def\MFX@mac#1{\expandafter\MFX@@mac\meaning#1>>>}

7 \def\MFX@@mac#1->{<<<}

8 \def\MFX@htdp#1{\ht#1=\the\ht#1, \dp#1=\the\dp#1}

9 〈/debug〉

The reader might begin to note at this point a convention we adopt throughout this
package. While we strive to avoid introducing new names as much as possible (with
clever usages of \expandafter), any new names we do introduce will be prefixed
by \MFX@, \Mfx@, or \mfx@, depending on the type of name. The all-capitol
\MFX@ is used for fully-constant macros. The initial-caps \Mfx@ is used for control
sequences that are technically constant, but that refer to things that change, such
as counters, token lists, dimension registers, etc. Finally, the lowercase \mfx@

is used for control sequences whose meaning changes dynamically (i.e. variable
macros).

7 Options

Here we define the various package options. There are no options yet.
Now we actually process the options.

10 \ProcessOptions\relax

8 Variables

\mfx@marginlist We need a place to store our list of marginal material. We store material in this
variable using insert registers and a variety of macros, to be explained later.

11 \let\mfx@marginlist\@empty

\mfx@inject

\Mfx@inject@insert

These are used to hijack \marginpar to inject arbitrary code into the output
routine, rather than actually set a note. To inject code, we unshift two copies
of this dummy insert onto \@freelist for \marginpar to pull off. We append
whatever code we want to inject into \mfx@inject and then call \marginpar.
Then our custom \@addmarginpar will recognize the dummy inserts and run the
code instead of setting a margin note.

12 \let\mfx@injected\@empty

13 \newinsert\Mfx@inject@insert

\Mfx@marginbox While we’re building the margin, we need to put it in a box before we can attach
it to the main columm.

14 \newbox\Mfx@marginbox

\Mfx@marginpos@min

\Mfx@marginpos@max

\Mfx@marginspace

While we build up the margin piece boxes, we need to keep track of the possible
range of positions. The pair \Mfx@marginpos@min and \Mfx@marginpos@max are
used to accumulate how much material has been added so far, with the difference

4

that \Mfx@marginpos@min doesn’t take into account compressible space, while
\Mfx@marginpos@max does. Finally, \Mfx@marginspace is the amount of (incom-
pressible) space since the last note, which allows skips to span margin phantoms.

15 \newdimen\Mfx@marginpos@min

16 \newdimen\Mfx@marginpos@max

17 \newdimen\Mfx@marginspace

\Mfx@marginheight Because the margin height can be altered by, \extendmargin, we must maintain
a dimension for the height of the current margin. This dimension is reused in
several different ways in the shipout-time margin building routines, keeping track
of how much much space is left in (for the global passes) and the end position of
the end of (for the piecewise passes) the current piece.

18 \newdimen\Mfx@marginheight

\mfx@marginstart

\mfx@marginpieces

\Mfx@piece@content

\Mfx@piece@count

\ifmfx@in@phantom

These control sequences keep track of the margin phantoms. When the mar-
gin is unblocked then \mfx@marginstart is not \relax. When a phantom be-
gins, the current \mfx@marginstart and page position are stored as a pair in
\mfx@marginpieces, which is iterated over while building individual pieces of the
margin. We also define a box to keep the content of each margin piece, and a
counter to keep track of how many pieces we have. Finally, we define a switch for
use in the second pass to indicate that we’re inside a phantom.

19 \def\mfx@marginstart{0pt}

20 \let\mfx@marginpieces\@empty

21 \newbox\Mfx@piece@content

22 \newcount\Mfx@piece@count

23 \newif\ifmfx@in@phantom

\Mfx@mparshift We store the current shift in a dimension register.

24 \newdimen\Mfx@mparshift

9 User-configurable dimensions

We export a few dimensions that the user can redefine to tweak behavior.

\marginheightadjustment This length will be added to the total margin height of each page (the default is
zero).

25 \newdimen\marginheightadjustment

\marginposadjustment We will offset each margin note from its callout location by this length (the default
is zero).

26 \newdimen\marginposadjustment

5

10 Plan of attack

10.1 \marginpar

The default sequence of events for a \marginpar is roughly the following (assuming
no errors):

\marginpar:

let \@floatpenalty := (horizontal ? -10002 : -10003)

allocate inserts \@currbox and \@marbox from \@freelist

let \count\@marbox := -1 % signifies marginpar (not float)

if optional argument then \@xmpar else \@ympar

\@xmpar:

\@savemarbox \@currbox := required argument

\@savemarbox \@marbox := optional argument

\@xympar

\@ympar:

\@savemarbox \@currbox := required argument

copy \@marbox := \@currbox

\@xympar

\@xympar:

append \@marbox to \@currlist

\end@float

\end@float:

append \@currbox to \@currlist

if horizontal then following two lines are in \vadjust:

\penalty -10004

\penalty \@floatpenalty

To get the rest of the picture, we need to peek into the output routine. The
pertinent parts are as follows (in vanilla LATEX):

\output:

if \outputpenalty < -10000 then

\@specialoutput

else

do regular output...

details for dealing with footnotes...

\@specialoutput:

switch \outputpenalty:

case -10001: \@doclearpage

case -10004: set box \@holdpg := \vbox{\unvbox255}

case -10002 or -10003:

set box \@holdpg := \vbox{\unvbox\@holdpg \unvbox255}

let \@pageht := \ht\@holdpg, \@pagedp := \dp\@holdpg

\unvbox\@holdpg

pop \@currbox off of \@currlist

\@addmarginpar (assuming \count\@currbox <= 0)

\@addmarginpar:

pop \@marbox off of \@currlist

6

free \@currbox and \@marbox back to \@freelist

if left-hand margin then let \@marbox := \@currbox

let \@tempdima := \@mparbottom - \@pageht + \ht\@marbox

if \@tempdima < 0 then let \@tempdima := 0

let \@mparbottom := \@pageht + \@tempdima + \dp\@marbox + \marginparpush

decrement \@tempdima := \@tempdima - \ht\@marbox

prepend \vskip\@tempdima to \@marbox

let \ht\@marbox := \dp\@marbox := 0

\kern -\@pagedp, \nointerlineskip

set an \hbox to \columnwidth (zero height/depth):

attach \@marbox to correct margin

set a \vbox with height 0 and depth \@pagedp

We see from here that \@addmarginpar is the place where LATEX does the work
of calculating the current page position and where the next note should go, and
then actually puts it there. We will need to completely replace this routine, but
can leave everything else as is.

10.2 \output

While LATEX’s margin routines end with \@addmarginpar, we must dig even
deeper to apply our patch, since we need to insert some code to run during the
main output routine that ships out each page. Thus, we’ll expand “do regular

output...” from the previous \output listing.

do regular output...:

\@makecol

do { \@opcol \@startcolumn } while @fcolmade

\@makecol:

set box \@outputbox := box255 (plus any footnotes)

let \@freelist := \@freelist + \@midlist, \@midlist := \@empty

\@combinefloats

add \@texttop and \@textbottom to \@outputbox (default no-op)

\@opcol:

\@outputpage (or \@outputdblcol in twocolumn mode)

let \@mparbottom := \@textfloatsheight := 0

\@floatplacement

\@startcolumn:

try to make a float column from \@deferlist, setting @fcolmade

if !@fcolmade then add floats from \@deferlist to next column

\@combinefloats:

aggregate \@toplist floats into a box and prepend to \@outputbox

aggregate \@botlist floats into a box and append to \@coutputbox

free inserts from \@toplist and \@botlist

\@outputpage:

ship out the page

reset a bunch of stuff

let \@colht := \textheight (in \@outputpage)

7

We’ve seen two main times when action occurs: callout time and shipout time.
We proceed chronologically with our patches.

11 Callout-time patches

\@addmarginpar The first thing we must modify is that at callout time, we need to get the inserts
into \mfx@marginlist. This should happen in the output routine so that we can
get ahold of the current page position. Even if we have a better idea of the page
position (e.g. from pdfTEX), we still might as well do this in the OR. In addition
to actually setting the margin note, we also use this routine to inject arbitrary
code into the OR (see \MFX@inject).

27 \def\@addmarginpar{%

28 \@next\@marbox\@currlist{}\MFX@AssertionError

29 〈debug〉\MFX@debug{addmarginpar (running insert) \@marbox/ \@currbox at

30 〈debug〉 \the\c@page:\the\@pageht, marginlist=\MFX@mac\mfx@marginlist}%

31 〈debug〉\MFX@debug{addmarginpar outputpenalty=\the\outputpenalty}%

32 \MFX@getypos

33 \expandafter\ifx\@marbox\Mfx@inject@insert

34 \mfx@injected\global\let\mfx@injected\@empty

35 \else

36 \MFX@cons\mfx@marginlist{%

37 \noexpand\mfx@build@note\@currbox\@marbox{\mfx@ypos}%

38 \noexpand\mfx@build@skip{\the\marginparpush}%

39 }%

40 \fi

41 〈debug〉\MFX@debug{addmarginpar (exit): marginlist=\MFX@mac\mfx@marginlist}%

42 }

\MFX@cons

\MFX@snoc

In passing we’ll define the cons macro, which fully-expands its second argument,
but makes sure to only expand the first one once, so that any fragile control
sequences in it are correctly protected. We also define snoc, which prepends.
Note that we could put the \temp@ definition into a group if it was really gonna
matter. . .

43 \def\MFX@cons#1#2{%

44 \edef\temp@{#2}%

45 \expandafter\expandafter\expandafter\gdef

46 \expandafter\expandafter\expandafter#1%

47 \expandafter\expandafter\expandafter{\expandafter#1\temp@}%

48 }

49

50 \def\MFX@snoc#1#2{%

51 \edef\temp@{#2}%

52 \expandafter\expandafter\expandafter\gdef

53 \expandafter\expandafter\expandafter#1%

54 \expandafter\expandafter\expandafter{\expandafter\temp@#1}%

55 }

8

\MFX@run@clear Finally, \MFX@run@clear is a quick trick to expand the contents of a macro and
then clear it (to \@empty) before any of its tokens are consumed.

56 \def\MFX@run@clear#1{%

57 \expandafter\global\expandafter\let\expandafter#1\expandafter\@empty#1%

58 }

\MFX@inject As mentioned earlier, \@addmarginpar is also a hook for injecting arbitrary code
into the output routine, i.e. to get a vertical position for blocking the margin. We
define \MFX@inject to facilitate this.

59 \def\MFX@inject#1{

60 \expandafter\def\expandafter\@freelist\expandafter{%

61 \expandafter\@elt\expandafter\Mfx@inject@insert

62 \expandafter\@elt\expandafter\Mfx@inject@insert

63 \@freelist}%

64 \expandafter\def\expandafter\mfx@injected\expandafter{\mfx@injected#1}%

65 \marginpar{}%

66 }

\MFX@getypos

\mfx@ypos

We now need to settle on a way to determine the vertical position. Someday this
may be an option, and will depend on a variety of factors. But for starters, we
define the simplest version. Note the subtraction of \Mfx@strutheight. Ideally
we would simply grab a copy of \@holdpg from the middle of \@specialoutput

and then discard the last box to figure out what height we’re really at, since
\@holdpg includes the box from the line we’re currently on, and we want to be
level with the top of that box, rather than the baseline. But since \@holdpg is
accessible only deep within \@specialoutput, and it’s not worth the risky job of
performing surgery on it (which is unfortunately brittle if anyone else has a similar
idea), we instead resort to this approximation. And since this should ultimately be
only a fallback for when \pdflastypos isn’t available, it’s good enough. (NOTE:
we might be able to use a \vadjust instead here?)

67 \def\MFX@getypos{%

68 \dimen@\dimexpr\@pageht+\@pagedp+\marginposadjustment+\Mfx@mparshift\relax

69 \ifnum\outputpenalty=-10002\relax

70 \advance\dimen@-\Mfx@strutheight

71 \fi

72 \edef\mfx@ypos{\the\dimen@}%

73 \global\Mfx@mparshift\z@

74 }

\marginpar

\Mfx@strutheight

We need to make sure \Mfx@strutheight gets defined somewhere, and the best
time is probably right before the \marginpar does its work, since that will most
likely ensure we’re using the right font for the line.

75 \newdimen\Mfx@strutheight

76 \edef\marginpar{%

77 \unexpanded{\setbox\@tempboxa\hbox{\strut}\Mfx@strutheight\ht\@tempboxa}%

78 \expandafter\unexpanded\expandafter{\marginpar}%

79 }

9

12 Shipout-time patches

\@combinefloats We need to patch in somewhere before \@combinefloats at the latest, so that
any heights calculated from \@pageht are correct—otherwise the top figures will
confuse us. So we’ll start by simply adding our own \MFX@combinefloats@before

at the very beginning of \@combinefloats

80 \expandafter\def\expandafter\@combinefloats\expandafter{\expandafter

81 \MFX@combinefloats@before\@combinefloats}

\MFX@combinefloats@before \MFX@combinefloats@before is then responsible for picking the needed notes
from \mfx@marginlist, building them into a box, and attaching that box onto the
correct side of \@outputbox. We also add any global \marginheightadjustment
to \Mfx@marginheight before building the margin, and then reset it back to zero
at the end. This allows any calls to \extendmargin during the page itself to work
as expected.

82 \def\MFX@combinefloats@before{%

83 \advance\Mfx@marginheight\marginheightadjustment

84 \MFX@buildmargin

85 \MFX@attachmargin

86 \global\Mfx@marginheight\z@

87 }

\MFX@attachmargin We’ll start with the second half of \MFX@combinefloats@before, since it’s sim-
pler. We need to do several things here.

88 \def\MFX@attachmargin{%

89 〈debug〉\MFX@debug{attachmargin}%
We start by moving the reference point of \Mfx@marginbox to the top.

90 〈debug〉\MFX@debug{attachmargin: \MFX@htdp\@outputbox, \MFX@htdp\Mfx@marginbox}%

91 \setbox\Mfx@marginbox\vtop{%

92 \vskip\z@\unvbox\Mfx@marginbox}%

Next we need to figure out which side of \@outputbox to attach the \Mfx@marginbox
on. We now use \columnwidth instead of \wd\@outputbox to set the right-hand
margins, since tufte-LATEXsometimes makes too-wide output boxes. If this be-
comes a problem, we’ll need to consider making this configurable elsewhere. We
should also pay attention to whether adding a box at the top of \@outputbox

might have unintended consequences w.r.t. any glue being retained that should
have been swallowed. This will require further investigation.

93 \setbox\@outputbox\vbox{%

94 \begingroup

95 \setbox\@tempboxa\vbox{%

96 \hbox{%

97 \if\MFX@leftmargin

98 \llap{\box\Mfx@marginbox\hskip\marginparsep}%

99 \else

100 \hskip\columnwidth

101 \rlap{\hskip\marginparsep\box\Mfx@marginbox}%

102 \fi

10

103 }}%

104 \ht\@tempboxa\z@

105 \dp\@tempboxa\z@

106 \box\@tempboxa

107 \endgroup

108 \unskip

109 \unvbox\@outputbox

110 }%

111 }

\MFX@buildmargin When \MFX@buildmargin is called, we have a list of tokens in \mfx@marginlist

that need to be processed: combinations of \mfx@build@note, \mfx@build@skip,
and \mfx@build@clear, with various parameters to indicate what material still
needs to be set in the margin. This macro therefore must pull off the first n > 0 of
these commands to set on the current page (n must be positive to prevent infinite
loops), and leave the rest to be deferred. We do not currently support taking notes
out of order, though that is a possible feature to allow in the future, on an opt-
in basis. The typeset material will be left in \Mfx@marginbox, which must have
the same height as \@outputbox (although because we \unvbox\@outputbox in
\MFX@attachmargin, we can’t guarantee that this will correctly line up the notes
with their callouts). This procedure happens in four passes. But first, we initialize
\Mfx@marginheight to \@colroom, which is the height of the page minus any
floats that have been added to the top or bottom (these floats may extend into
the margins: in the future we may look into detecting this and using the whole
page, with overwide floats blocked off as phantoms). We add \@colroom rather
than assigning it because any global or per-page adjustments have already been
added to \Mfx@marginheight. We can then close out any still-open margin pieces
(this is the typical case, where the margin is not blocked across a page boundary,
so that \mfx@marginstart will hold a position, rather than \relax). After this,
\Mfx@marginheight is no longer necessary, so we reuse it for keeping track of
available space in individual margin pieces.

112 \def\MFX@buildmargin{%

113 \advance\Mfx@marginheight\@colroom

114 \ifx\mfx@marginstart\relax

115 \else

116 \MFX@cons\mfx@marginpieces{%

117 \noexpand\@elt{\mfx@marginstart}{\the\Mfx@marginheight}}%

118 \gdef\mfx@marginstart{0pt}%

119 \global\advance\Mfx@piece@count\@ne

120 \fi

121 〈debug〉\MFX@debug{buildmargin: marginheight=\the\Mfx@marginheight,

122 〈debug〉 marginlist=\MFX@mac\mfx@marginlist,

123 〈debug〉 marginpieces=\MFX@mac\mfx@marginpieces}%

We now execute the four passes. First is a global downward pass, whose purpose
is to determine the maximum number of notes (and other material) that can fit
in the margin, taking any phantoms into consideration. Every note identified by
\MFX@buildmargin@down is guaranteed to show up on this page, so we free its in-

11

serts back to \@freelist. The second pass is the global upward pass, in which we
determine the lowest possible margin piece each note may go into without causing
lower notes to fall off the bottom. The third pass is the piecewise downward pass.
For each piece, we figure out where in the piece each note will go by inserting
compressible spaces between the notes. If a note is called out past the end of the
piece and does not need to go into the piece (as determined by pass 2), it will be
deferred to a later piece. The fourth pass is the piecewise upward pass, in which
the compressible spaces are shrunk just enough to fit everything into the piece.
The last two (piecewise) passes both occur in each piece before the next piece is
addressed. The whole process is bypassed if there are no eligible margin pieces.

124 \ifx\mfx@marginpieces\@empty\else

125 \MFX@buildmargin@down

126 \MFX@buildmargin@up

127 \MFX@buildmargin@pieces

128 \fi

129 }

12.1 First pass: global downward

\MFX@buildmargin@down

\mfx@pieceheights

The first step is the global “down” step, in which we move the notes that will
fit on the current page into \mfx@marginout in reverse order (to prepare for
the second, upward, pass), and anything that doesn’t fit is deferred back into
\mfx@marginlist. We do this by changing the meaning of \mfx@build@note,
\mfx@build@skip, and \mfx@build@clear, which delimit the different types of
material in \mfx@marginlist. Note that as we continue processing, these macros
will change from time to time (i.e. changing \mfx@build@skip to actually doing
something once we find a note, rather than gobbling so as to remove skips at page
boundaries; or changing them to save material back onto \mfx@marginlist once
the margin fills up). The first thing we need to do is iterate over the piece positions
to get the list of heights.

130 \def\MFX@buildmargin@down{%

131 \let\mfx@pieceheights\@empty

132 \def\@elt##1##2{%

133 \MFX@cons\mfx@pieceheights{\noexpand\@elt{\the\dimexpr##2-##1}}}%

134 \mfx@marginpieces

135 \MFX@popdimen\Mfx@marginheight\mfx@pieceheights

Now we run forwards over the \mfx@marginlist to actually operate on each thing
in the margin.

136 \let\mfx@build@note\MFX@margin@note@down

137 \let\mfx@build@skip\@gobble

138 \let\mfx@build@clear\MFX@build@clear@down

139 \let\mfx@marginout\@empty

140 \MFX@run@clear\mfx@marginlist

141 〈debug〉\MFX@debug{buildmargin@down: RETURN

142 〈debug〉 marginout=\MFX@mac\mfx@marginout,

143 〈debug〉 marginlist=\MFX@mac\mfx@marginlist}%

144 }

12

We now define the various \MFX@margin@...@down macros. At this stage in the
game, the only difference between notes and skips is that we ignore skips before
any notes by setting \mfx@build@skip initially to \@gobble. Once we’ve seen
the first note, skips are treated exactly the same: as fixed-height material. If
there is room in the current piece for the given height, then we prepend it to
\mfx@marginout, decrement the remaining height, and arrange for the boxes to
be freed. If not, we unshift the next piece height from \mfx@pieceheights and
try again, until \mfx@pieceheights is empty and we simply defer everything to
later pages.

\MFX@margin@note@down Upon seeing a note, we must do several things:

1. determine which box (left or right) is needed for the current page, by calling
\MFX@whichbox

2. if the box fits, free both boxes, prepend \mfx@marginout with a call to
\mfx@build@note, and re-enable skips

3. otherwise, defer the current note and all future notes

The latter two steps are taken care of by \MFX@margin@fit, which takes the height
and two blocks of material: one to prepend to \mfx@marginout if it fits, the other
to append to \mfx@marginlist if it doesn’t.

145 \def\MFX@margin@note@down#1#2#3{%

146 〈debug〉\MFX@debug{margin@note@down: ENTRY: #1/ #2 at #3}%

147 \MFX@whichbox\@marbox#1#2%

148 \if\MFX@check@fit{}{\ht\@marbox+\dp\@marbox}%

149 \MFX@snoc\mfx@marginout{%

150 \noexpand\@cons\noexpand\@freelist#1%

151 \noexpand\@cons\noexpand\@freelist#2%

152 \noexpand\mfx@build@note\@marbox{#3}}%

153 \let\mfx@build@skip\MFX@margin@skip@down

154 \else

155 \mfx@build@clear

156 \mfx@build@note{#1}{#2}{#3}%

157 \fi

158 }

\MFX@margin@skip@down Skips are similar. A skip needs only to save itself back into \mfx@marginout,
provided it fits. If not, there is no need to defer it because it will just get gobbled
at the top of the next page anyway.

159 \def\MFX@margin@skip@down#1{%

160 〈debug〉\MFX@debug{margin@skip@down #1}%

161 \if\MFX@check@fit{}{#1}%

162 \MFX@snoc\mfx@marginout{\noexpand\mfx@build@skip{#1}}%

163 \else

164 \mfx@build@clear

165 \fi

166 }

13

\MFX@margin@clear@down Finally, \MFX@margin@clear@down is the only place we actually need to handle
full-margin clears, since the downward pass does not ever push \mfx@build@clear

onto \mfx@marginout. When we see this, we simply redefine all three commands
to append themselves back to \mfx@marginlist.

167 \def\MFX@build@clear@down{%

168 〈debug〉\MFX@debug{clear@down}%
169 \def\mfx@build@note##1##2##3{%

170 \MFX@cons\mfx@marginlist{\noexpand\mfx@build@note##1##2{\MFX@minus@inf}}}%

171 \def\mfx@build@skip##1{%

172 \MFX@cons\mfx@marginlist{\noexpand\mfx@build@skip{##1}}}%

173 \def\mfx@build@clear{%

174 \MFX@cons\mfx@marginlist{\noexpand\mfx@build@clear}}%

175 }

\MFX@check@fit We factored out some of the common functionality between the note and skip
routines, so that must now be defined. The \MFX@check@fit macro acts as a
conditional and should be used as \if\MFX@check@fit{〈piece-hook〉}{〈size〉}. It
takes care of iterating through the list of heights and accumulating the total size
of material encountered so far. The piece-hook is executed each time a new piece
height is popped.

176 \def\MFX@check@fit#1#2{%

177 00\fi % close out the \if

178 〈debug〉\MFX@debug{check@fit{\unexpanded{#1}}{#2=\the\dimexpr#2} ENTRY:

179 〈debug〉 marginheight=\the\Mfx@marginheight}%

180 \@tempswafalse

181 \ifdim\dimexpr#2<\Mfx@marginheight % it fits

182 \advance\Mfx@marginheight-\dimexpr#2\relax % deduct the size

183 \@tempswatrue

184 \else % didn’t fit: check the next piece

185 〈debug〉\MFX@debug{check@fit overflow: pieceheights=\MFX@mac\mfx@pieceheights}%

186 \ifx\mfx@pieceheights\@empty\else % make sure there’s anything there

187 #1%

188 \MFX@popdimen\Mfx@marginheight\mfx@pieceheights

189 \if\MFX@check@fit{#1}{#2}\fi

190 \fi

191 \fi

192 〈debug〉\MFX@debug{check@fit RETURN \meaning\if@tempswa:

193 〈debug〉 marginheight=\the\Mfx@marginheight,}%

194 \if@tempswa % start a new \if

195 }

\MFX@popdimen Here is a quick convenience routine. \MFX@popdimen{〈dimen〉} {〈list〉} removes
the first dimension from list and stores it into dimen.

196 \def\MFX@popdimen#1#2{%

197 \def\@elt##1{%

198 #1##1\relax

199 \def\@elt####1{%

200 \MFX@cons#2{\noexpand\@elt{####1}}%

201 }%

14

202 }%

203 \MFX@run@clear#2%

204 }

\MFX@whichbox We also need to determine which box should be used, since they may have dif-
ferent heights. The macro \MFX@whichbox {〈target-box 〉}{〈left-box 〉}{〈right-box 〉}
checks which margin we’re setting and stores the correct box into target-box. Note
that target-box must be a single control sequence.

205 \def\MFX@whichbox#1#2#3{%

206 \if\MFX@leftmargin

207 \def#1{#2}%

208 \else

209 \def#1{#3}%

210 \fi

211 〈debug〉\MFX@debug{whichbox: \@marbox (\the\dimexpr\ht#1+\dp#1)}%

212 }

\MFX@leftmargin And here is the logic to figure out which margin we’re in, based on the page
number and other flags. This is another conditional-like macro, and should be
used after an \if, as in \if\MFX@leftmargin. . . \else. . . \fi.
This is different from the corresponding code in the LATEX routines because we
don’t support double columns. In addition, we would ideally allow \if@reversemargin

to work on a per-note basis (i.e. at callout time) but we also need something work-
ing at shipout time so we can figure out which margin to use. Thus, until we figure
out how to use multiple margins, this will have to do.

213 \def\MFX@leftmargin{%

214 00\fi % close out the \if

215 \@tempcnta\@ne

216 \if@mparswitch

217 \unless\ifodd\c@page

218 \@tempcnta\m@ne

219 \fi

220 \fi

221 \if@reversemargin

222 \@tempcnta-\@tempcnta

223 \fi

224 〈debug〉\MFX@debug{margin on \ifnum\@tempcnta<\z@ left\else right\fi}%

225 \ifnum\@tempcnta<\z@ % start a new \if

226 }

\MFX@minus@inf Finally, note that when deferring notes to the next page, we adjust their position
to the top of the page, rather than the callout position. This is a large negative
dimension (near TEX’s maximum), but we may reconsider making this zero or
even a small positive amount, since there seems to be a small amount of space
before the first paragraph in normal text, though I’m not sure where that comes
from.

227 \def\MFX@minus@inf{-4000\p@}

15

12.2 Second pass: global upward

\MFX@buildmargin@up

\mfx@phantomheights

The next step is the global “up” step, in which we figure out the lowest piece a
note can possibly occupy (without pushing later notes off the bottom) and add
this information to the \mfx@build@note in \mfx@marginout. We start similar
to \MFX@buildmargin@down, except we need the list of heights to be backwards.
We also need a list of phantom heights, in order to handle skips properly, which
we intersperse as negative heights.

228 \def\MFX@buildmargin@up{%

229 〈debug〉\MFX@debug{buildmargin@up: ENTRY

230 〈debug〉 marginpieces=\MFX@mac\mfx@marginpieces,

231 〈debug〉 marginout=\MFX@mac\mfx@marginout}%

232 \let\mfx@pieceheights\@empty

233 \let\mfx@phantomheights\@empty

234 \let\temp@@\relax

235 \def\@elt##1##2{%

236 〈debug〉\MFX@debug{ -> piece (##1,##2), temp@@=\meaning\temp@@}%

237 \MFX@snoc\mfx@pieceheights{\noexpand\@elt{\the\dimexpr##2-##1}}%

238 \ifx\temp@@\relax\else

239 〈debug〉\MFX@debug{ -> phantom (\temp@@,##1)}%

240 \MFX@snoc\mfx@phantomheights{\noexpand\@elt{\the\dimexpr##1-\temp@@}}%

241 \fi

242 \def\temp@@{##2}%

243 }%

244 \mfx@in@phantomfalse

245 \mfx@marginpieces

The piece counter, \Mfx@piece@count has not been touched yet, so now we will
start decrementing it for each piece to keep track of where we are. Note that
\mfx@marginout will never contain \mfx@build@clear so we don’t need to reas-
sign it. Since we don’t do any deferrals here, we don’t need to empty out a new
target list. Instead, we operate “in-place” in \mfx@marginout, after popping off
the first height.

246 \MFX@popdimen\Mfx@marginheight\mfx@pieceheights

247 \let\mfx@build@note\MFX@margin@note@up

248 \let\mfx@build@skip\@gobble

249 \MFX@run@clear\mfx@marginout

250 〈debug〉\MFX@debug{buildmargin@up: RETURN marginout=\MFX@mac\mfx@marginout}%

251 }

\MFX@margin@note@up We must again define the specific behavior of each build command. These macros
simply reuse \MFX@check@fit, but ask it to decrement the piece counter when a
piece runs out of space. Aside from that, the only thing that actually happens here
is that we append the current piece to each note, and also end up reversing the con-
tents by again prepending everything. We are guaranteed that \MFX@check@fit

will never fail. Since we cannot put notes in a phantom, we start by ensuring we’re
not in one.

252 \def\MFX@margin@note@up#1#2{%

253 〈debug〉\MFX@debug{margin@note@up: #1at #2, marginheight=\the\Mfx@marginheight}%

16

254 \ifmfx@in@phantom

255 \MFX@popdimen\Mfx@marginheight\mfx@pieceheights

256 \advance\Mfx@piece@count\m@ne

257 \mfx@in@phantomfalse

258 \fi

Now we’re guaranteed to be in a piece, rather than a phantom, we look for a piece
that can fit this note, making sure to decrement the piece count and pop off a
phantom for each new piece we check. Once it’s found, we add the note back to
\mfx@marginout with the correct piece.

259 \if\MFX@check@fit{\advance\Mfx@piece@count\m@ne

260 \MFX@popdimen\dimen@\mfx@phantomheights}{\ht#1+\dp#1}%

261 \MFX@snoc\mfx@marginout{%

262 \noexpand\mfx@build@note{#1}{#2}{\the\Mfx@piece@count}}%

263 \let\mfx@build@skip\MFX@margin@skip@up

264 \else\MFX@AssertionError\fi

265 }

\MFX@margin@skip@up Skips are similar, but we have the added complication of handling margin phan-
toms. When we cross between phantom and piece, we split the skip so that we
can use the simplest recursion possible.

266 \def\MFX@margin@skip@up#1{%

267 〈debug〉\MFX@debug{margin@skip@up: #1}%

268 \dimen@#1\relax

269 \advance\Mfx@marginheight-\dimen@

270 \ifdim\Mfx@marginheight<\z@

This skip was bigger than the piece, so we need to split this skip, adding the
overflow back, and try again. Since we’re done with this piece, we’ll pop the next
one and recurse on whatever’s left. This looks slightly different depending on
whether or not we’re in a phantom.

271 \advance\dimen@\Mfx@marginheight

272 \MFX@snoc\mfx@marginout{%

273 \noexpand\mfx@build@skip{\the\dimen@}{\the\Mfx@piece@count}}%

274 \dimen@-\Mfx@marginheight

275 \ifmfx@in@phantom

276 \MFX@popdimen\Mfx@marginheight\mfx@pieceheights

277 \advance\Mfx@piece@count\m@ne

278 \mfx@in@phantomfalse

279 \else

280 \MFX@popdimen\Mfx@marginheight\mfx@phantomheights

281 \mfx@in@phantomtrue

282 \fi

283 \mfx@build@skip\dimen@

284 \else

This skip fit entirely within the phantom, so we simply emit it.

285 \MFX@snoc\mfx@marginout{%

286 \noexpand\mfx@build@skip{\the\dimen@}{\the\Mfx@piece@count}}%

287 \fi

288 }

17

12.3 Margin pieces

\MFX@buildmargin@pieces Before we can start the third and fourth passes, we need to set up a loop over the
pieces so that each piece can do these passes at one time. In case we didn’t use
up all the pieces in the second phase, we’ll reset \Mfx@piece@count to zero. We
also reset \Mfx@marginspace and \Mfx@marginbox.

289 \def\MFX@buildmargin@pieces{%

290 \Mfx@piece@count\z@

291 \Mfx@marginspace\z@

292 \setbox\Mfx@marginbox\vbox{\vskip\z@}% TODO - do we need this?

Now we run over the individual margin pieces, clearing it out as we build up the
contents of \Mfx@marginbox. Once we’re done with that, we need to do a bit of
clean-up before finishing.

293 \let\@elt\MFX@buildmargin@piece

294 \MFX@run@clear\mfx@marginpieces

295 \let\@elt\relax

296 \global\Mfx@piece@count\z@

297 }

\MFX@buildmargin@piece The \MFX@buildmargin@piece macro is called for each piece of the margin, and
is passed the top and bottom positions of the piece. Here we need to do a few
things. First, if the output so far is smaller than the top of the piece (this
is generally true, except sometimes for the first piece) then we need to insert
padding into \Mfx@marginbox before continuing. We accumulate this padding
into \Mfx@marginspace, which allows skips to do double-duty across phantoms.

298 \def\MFX@buildmargin@piece#1#2{%

299 〈debug〉\MFX@debug{buildmargin@piece: ENTRY (#1, #2)}%

300 \ifdim\ht\Mfx@marginbox<#1\relax

301 \dimen@\dimexpr#1-\ht\Mfx@marginbox\relax

302 〈debug〉\MFX@debug{buildmargin@piece: padding \the\dimen@}%

303 \setbox\Mfx@marginbox\vbox{%

304 \unvbox\Mfx@marginbox

305 \vskip\dimen@

306 }%

307 \advance\Mfx@marginspace\dimen@

308 \fi

Now that \Mfx@marginbox has been padded, we proceed to set things up for our
down and up passes, and then run them to build \Mfx@piece@content.

309 \Mfx@marginpos@min#1\relax

310 \Mfx@marginpos@max#1\relax

311 \Mfx@marginheight#2\relax

312 \advance\Mfx@piece@count\@ne

313 \MFX@buildpiece@down

314 \MFX@buildpiece@up

Once \Mfx@piece@content has been built, we append it to the \Mfx@marginbox.

315 \setbox\Mfx@marginbox\vbox{%

316 \unvbox\Mfx@marginbox

18

317 \box\Mfx@piece@content

318 \vskip\z@

319 }%

320 }

12.4 Third pass: piecewise downward

\MFX@buildpiece@down

\mfx@pieceout

The next pass is another downward pass. This is very similar to the first
(global downward) pass, except we’re now moving the first several notes from
\mfx@marginout into \mfx@pieceout (again, inverting the order) and deferring
the rest back into \mfx@marginout.

321 \def\MFX@buildpiece@down{%

322 〈debug〉\MFX@debug{buildpiece@down: ENTRY piece=\the\Mfx@piece@count,

323 〈debug〉 marginpos=(\the\Mfx@marginpos@min, \the\Mfx@marginpos@max),

324 〈debug〉 marginspace=\the\Mfx@marginspace,

325 〈debug〉 marginout=\MFX@mac\mfx@marginout}%

326 \let\mfx@build@note\MFX@piece@note@down

327 \let\mfx@build@skip\MFX@piece@skip@down

328 \let\mfx@pieceout\@empty

329 \MFX@run@clear\mfx@marginout

330 〈debug〉\MFX@debug{buildpiece@down: RETURN pieceout=\MFX@mac\mfx@pieceout,

331 〈debug〉 marginout=\MFX@mac\mfx@marginout}%

332 }

\MFX@piece@note@down We again define each of our building macros. First, the note builder. When we
encounter a note, we first zero out \Mfx@marginspace. Then we need to decide
whether to put it in the current piece, or whether to defer it to the next piece,
based on a few signals. A note will only be deferred for one of two reasons. In
either case, we store the decision to defer in @tempswa, so we’ll start by clearing
it.

333 \def\MFX@piece@note@down#1#2#3{%

334 〈debug〉\MFX@debug{piece@note@down: ENTRY: #1at #2, lowest=#3,

335 〈debug〉 marginpos=(\the\Mfx@marginpos@min,\the\Mfx@marginpos@max,

336 〈debug〉 marginspace=\the\Mfx@marginspace}%

337 \Mfx@marginspace\z@

338 \@tempswafalse

The first reason to defer is if its callout position (#2) is beneath the end of the cur-
rent piece (\Mfx@marginheight) and if its lowest-possible-piece (#3, as computed
in the second pass) is after the current one (\Mfx@piece@count).

339 \ifdim#2>\Mfx@marginheight

340 \ifnum#3>\Mfx@piece@count

341 \@tempswatrue

342 \fi

343 \fi

The second possibility is that we’ve run out of room in this piece. In this case,
there’s no need to check #3, since that number was computed assuming everything
that fit was as low as possible.

19

344 \ifdim\dimexpr\ht#1+\dp#1+\Mfx@marginpos@min>\Mfx@marginheight

345 \@tempswatrue

346 \fi

If a note is deferred, then we push it and everything after it back onto
\mfx@marginout.

347 \if@tempswa

348 〈debug〉\MFX@debug{piece@note@down: clearing margin}%

349 \MFX@piece@clear

350 \mfx@build@note{#1}{#2}{#3}%

351 \else

Otherwise, we have decided the note is going into this piece. In this case, we now
need to check if any compressible space is needed above it. In order to get better
alignment for deferred notes, we check for the case that the current position is
zero and the note’s callout position is \MFX@minus@inf. In this case, we change
the callout position to instead be the greater of 0 or \topskip− \ht#1.

352 \dimen@#2\relax

353 \ifdim\dimen@=\MFX@minus@inf

354 \ifdim\Mfx@marginpos@max=\z@

355 \dimen@\topskip

356 \advance\dimen@-\ht#1\relax

357 \ifdim\dimen@<\z@ \dimen@\z@ \fi

358 \fi

359 \fi

360 \advance\dimen@-\Mfx@marginpos@max

361 \ifdim\dimen@>\z@

362 〈debug〉\MFX@debug{piece@note@down: adding compressible \the\dimen@}%

363 \MFX@snoc\mfx@pieceout{\noexpand\mfx@build@compressible{\the\dimen@}}%

364 \advance\Mfx@marginpos@max\dimen@

365 \fi

After (maybe) adding the compressible space, we now add the (incompressible)
box itself, and accumulate its height in both position registers. We no longer need
the piece index or the position, so we only store the box itself here.

366 \MFX@snoc\mfx@pieceout{\noexpand\mfx@build@note{#1}}%

367 \advance\Mfx@marginpos@min\dimexpr\ht#1+\dp#1\relax

368 \advance\Mfx@marginpos@max\dimexpr\ht#1+\dp#1\relax

369 \fi

370 }

\MFX@piece@skip@down Skips are a bit more complicated now. We no longer gobble the initial skips (since
the skips at the top and bottom of the page have already been eaten). Instead, we
need to look at \Mfx@marginspace: if it’s nonzero, we substract it from the skip
length before adding it incompressibly (if there’s any left). While we have piece
number information here, we just pass it on to the upward pass, which can choose
to “late-defer” initial (i.e. the bottom-most) skips in a piece.

371 \def\MFX@piece@skip@down#1#2{%

372 \dimen@#1\relax

373 \ifdim\Mfx@marginspace>\z@

20

374 \advance\dimen@-\Mfx@marginspace

375 \ifdim\dimen@<\z@ \dimen@\z@ \fi

376 \advance\Mfx@marginspace-\dimen@

377 \fi

At this point, \dimen@ now stores any further incompressible skip we need to
add, which is now relative to the top of this piece. In that case (note that
\Mfx@marginspace is now necessarily zero), we need to check that it actually
fits in the current piece, and if not, defer it.

378 \ifdim\dimen@>\z@

379 \ifdim\dimexpr#1+\Mfx@marginpos@min>\Mfx@marginheight

380 \MFX@piece@clear

381 \mfx@build@skip{\the\dimen@}{#2}%

382 \else

If the skip does fit, we need to add it to \mfx@pieceout and advance the position
registers.

383 \MFX@snoc\mfx@pieceout{\noexpand\mfx@build@skip{\the\dimen@}{#2}}%

384 \advance\Mfx@marginpos@min\dimen@

385 \advance\Mfx@marginpos@max\dimen@

386 \fi

387 \fi

388 }

\MFX@piece@clear Finally, we need to handle the case of deferring material. By analogy with the
previous two passes, we’ll continue to refer to this as clearing. In this case, we need
to redefine the note and skip macros to save themselves back to \mfx@marginout.

389 \def\MFX@piece@clear{%

390 〈debug〉\MFX@debug{piece@clear}%
391 \def\mfx@build@note##1##2##3{%

392 \MFX@cons\mfx@marginout{\noexpand\mfx@build@note##1{##2}{##3}}}%

393 \def\mfx@build@skip##1##2{%

394 \MFX@cons\mfx@marginout{\noexpand\mfx@build@skip{##1}{##2}}}%

395 }

12.5 Fourth pass: piecewise upward

\MFX@buildpiece@up We are now ready for the final pass, where we take the reversed list of notes
for this piece and stack them up, compressing as much compressible space as
necessary to make them all fit. Since this is the last pass, we can finally prepend
all the boxes into \Mfx@piece@content. Because it is still possible for pieces to
have skips at the bottom, we need to worry about which piece these skips belong
in. Since we’ve passed forward the lowest-piece information from pass 2, we can
choose at the last possible moment to defer the bottom-most skips of a piece to the
next piece (by prepending it to \mfx@marginout. Note that compressible spaces
will never be at the beginning of \mfx@pieceout. We store the excess space in
\Mfx@marginheight.

396 \def\MFX@buildpiece@up{%

397 \Mfx@marginheight\dimexpr\Mfx@marginpos@max-\Mfx@marginheight\relax

21

398 \ifdim\Mfx@marginheight<\z@\Mfx@marginheight\z@\fi

399 〈debug〉\MFX@debug{buildpiece@up: excess=\the\Mfx@marginheight}%

400 \let\mfx@build@note\MFX@piece@note@up

401 \let\mfx@build@compressible\MFX@piece@compressible@up

402 \let\mfx@build@skip\MFX@piece@skip@maybedefer

403 \MFX@run@clear\mfx@pieceout\relax

404 }

\MFX@piece@skip@maybedefer As mentioned earlier, the initial skips in a piece may be deferred to later pieces,
provided they can possibly go there. Here we check the #2 argument against
\Mfx@piece@count and defer if it is larger. Otherwise, we switch back to the
standard behavior defined in \MFX@piece@skip@up. Deferred skips do not need
to be subtracted from the excess because they were never compressible in the first
place.

405 \def\MFX@piece@skip@maybedefer#1#2{%

406 \ifnum#2>\Mfx@piece@count

407 〈debug〉\MFX@debug{piece@skip deferring: #1, #2 (\the\Mfx@piece@count)}%

408 \MFX@snoc\mfx@marginout{\noexpand\mfx@build@skip{#1}{#2}}%

409 \else

410 \let\mfx@build@skip\MFX@piece@skip@up

411 \mfx@build@skip{#1}{#2}%

412 \fi

413 }

\MFX@piece@note@up Now that we’ve taken care of late deferrals, we can define the standard behavior
without worrying as much about that. These macros finally set their contents
into \Mfx@piece@content, as well as reset \mfx@build@skip back to its standard
value.

414 \def\MFX@piece@note@up#1{%

415 〈debug〉\MFX@debug{piece@note@up: #1}%

416 \setbox\Mfx@piece@content\vbox{%

417 \box#1%

418 \unvbox\Mfx@piece@content}%

419 \let\mfx@build@skip\MFX@piece@skip@up

420 }

\MFX@piece@skip@up Skips are also straightforward.

421 \def\MFX@piece@skip@up#1#2{%

422 〈debug〉\MFX@debug{skip@up: #1=\the\dimexpr#1\relax (#2)}%

423 \setbox\Mfx@piece@content\vbox{%

424 \vskip#1\relax

425 \unvbox\Mfx@piece@content}%

426 }

\MFX@piece@compressible@up Finally we come to the compressible space. Here, as long as there’s excess space
(\Mfx@marginheight) we drop the compressible space. Once the excess is ex-
hausted, we insert them as normal skips.

427 \def\MFX@piece@compressible@up#1{%

22

428 〈debug〉\MFX@debug{compressible@up: #1, excess=\the\Mfx@marginheight}%

429 \advance\Mfx@marginheight-#1\relax

430 \ifdim\Mfx@marginheight<\z@

431 \MFX@piece@skip@up{-\Mfx@marginheight}\relax

432 \Mfx@marginheight\z@

433 \fi

434 }

13 Cleaning up

We need to worry about a few more things. First, what happens if we reach the
end of the document and there are still deferred margin notes? We need to be able
to dump all the margin notes whenever the user wants (i.e. before a new chapter),
so we’ll make a macro \dumpmargins to do this, and then make sure it gets called
\AtEndDocument. Since we’re looping to do this, we need to make darned sure
that every \newpage shrinks the marginlist.

\dumpmargins

435 \def\dumpmargins{%

436 〈debug〉\MFX@debug{dumpmargins}%
437 \loop

438 \unless\ifx\mfx@marginlist\@empty

439 〈debug〉\MFX@debug{dumpmargins: marginlist=\MFX@mac\mfx@marginlist}%

440 \let\temp@\mfx@marginlist

441 \vbox{}\clearpage

442 \ifx\temp@\mfx@marginlist

443 \PackageError{marginfix}{lost some margin notes%

444 \ifx\mfx@marginstart\relax\ (missing \noexpand\unblockmargin)\fi

445 〈debug〉: \MFX@mac\mfx@marginlist

446 }\@eha

447 \let\mfx@marginlist\@empty % be nicer by just dropping one?

448 % TODO: also, set an emergency mode to allow oversized notes

449 \fi

450 \repeat

451 }

452 \AtEndDocument{\dumpmargins}

14 User macros

\marginskip Inserting a skip in the margin list is simple. We need only append \mfx@build@skip

to \mfx@marginlist.

453 \def\marginskip#1{%

454 \MFX@cons\mfx@marginlist{\noexpand\mfx@build@skip{#1}}%

455 }

\clearmargin Likewise, \clearmargin is easy too.

456 \def\clearmargin{%

23

457 \MFX@cons\mfx@marginlist{\noexpand\mfx@build@clear}%

458 }

\softclearmargin While we call \softclearmargin a “clear margin”, it’s actually just a big
\marginskip. This allows us to stack multiple copies without backing them all
up.

459 \def\softclearmargin{%

460 \marginskip{\the\textheight}%

461 }

\extendmargin We overload \Mfx@marginheight to be the amount of extension at all times except
shipout-time.

462 \def\extendmargin#1{%

463 \advance\Mfx@marginheight#1\relax

464 }

\mparshift This is as simple as setting the dimen register. We advance so that the shifts are
cumulative, but there’s not really any point either way.

465 \def\mparshift#1{%

466 \advance\Mfx@mparshift#1\relax

467 }

\blockmargin

\MFX@blockmargin

We need two macros to process the optional bracket argument. Essentially,
\blockmargin just checks that \mfx@marginstart is defined and then appends
a new item to the \mfx@marginpieces list to indicate a piece that starts at
\mfx@marginstart and ends at the current position, potentially modified by the
argument. It then resets \mfx@marginstart to \relax and optionally adds a
\softclearmargin if there was no star, to keep margin material separated on
either side of the phantom.

468 \def\blockmargin{%

469 \@ifnextchar[%]

470 \MFX@blockmargin

471 {\MFX@blockmargin[0\p@]}%

472 }

473 \def\MFX@blockmargin[#1]{%

474 \MFX@inject{%

475 \ifx\mfx@marginstart\relax

476 \PackageError{marginfix}{two \\blockmargin with no \\unblockmargin}\@eha

477 \else

478 \MFX@cons\mfx@marginpieces{\noexpand

479 \@elt{\mfx@marginstart}{\expandafter\dimexpr\mfx@ypos+#1\relax}}%

480 \global\let\mfx@marginstart\relax

481 \global\advance\Mfx@piece@count\@ne

482 \fi

483 }%

484 }

24

\unblockmargin

\MFX@unblockmargin

This is the other half of \blockmargin. It ensures that the margin is currently
blocked, and if so, sets \mfx@marginstart back to a real dimension (the current
page position, plus the optional modifier).

485 \def\unblockmargin{%

486 \@ifnextchar[%]

487 \MFX@unblockmargin

488 {\MFX@unblockmargin[0\p@]}%

489 }

490 \def\MFX@unblockmargin[#1]{%

491 \MFX@inject{%

492 \ifx\mfx@marginstart\relax

493 \xdef\mfx@marginstart{\dimexpr\mfx@ypos+#1\relax}%

494 \else

495 \PackageError{marginfix}{\\unblockmargin with no \\blockmargin}\@eha

496 \fi

497 }%

498 }

\marginphantom

\MFX@marginphantom

The \marginphantom command is basically just a concatenation of \blockmargin
and \unblockmargin. We reimplement it from the ground up mainly so that the
error messages make more sense.

499 \def\marginphantom{%

500 \@ifnextchar[%]

501 \MFX@marginphantom

502 {\MFX@marginphantom[0\p@]}%

503 }

504 \def\MFX@marginphantom[#1]#2{%

505 \ifdim#2<\z@\MFX@marginphantom[#1+#2]{-#2}\else

506 \MFX@inject{%

507 \ifx\mfx@marginstart\relax

508 \PackageError{marginfix}{\\marginphantom while margin blocked}\@eha

509 \else

510 \MFX@cons\mfx@marginpieces{\noexpand

511 \@elt{\mfx@marginstart}{\expandafter\dimexpr\mfx@ypos+#1\relax}}%

512 \xdef\mfx@marginstart{\dimexpr\mfx@ypos+#1+#2\relax}%

513 \global\advance\Mfx@piece@count\@ne

514 \fi

515 }%

516 \fi

517 }

15 Random scribbles

Later we’ll get fancier with putting notes next to top/bottom figures but for now,
not so much.
In the future we will support the use of \pdfsavepos and \pdflastypos for more
accurately determining where the callouts actually were, which will end up going
right around here. But in order to work with older versions of LATEX, we still need

25

